Research article

On the edge metric dimension of some classes of cacti

  • Received: 07 March 2024 Revised: 21 April 2024 Accepted: 24 April 2024 Published: 10 May 2024
  • MSC : 97H50, 70G65, 14J15

  • The cactus graph has many practical applications, particularly in radio communication systems. Let G=(V,E) be a finite, undirected, and simple connected graph, then the edge metric dimension of G is the minimum cardinality of the edge metric generator for G (an ordered set of vertices that uniquely determines each pair of distinct edges in terms of distance vectors). Given an ordered set of vertices Ge={g1,g2,...,gk} of a connected graph G, for any edge eE, we referred to the k-vector (ordered k-tuple), r(e|Ge)=(d(e,g1),d(e,g2),...,d(e,gk)) as the edge metric representation of e with respect to Ge. In this regard, Ge is an edge metric generator for G if, and only if, for every pair of distinct edges e1,e2E implies r(e1|Ge)r(e2|Ge). In this paper, we investigated another class of cacti different from the cacti studied in previous literature. We determined the edge metric dimension of the following cacti: C(n,c,r) and C(n,m,c,r) in terms of the number of cycles (c) and the number of paths (r).

    Citation: Lyimo Sygbert Mhagama, Muhammad Faisal Nadeem, Mohamad Nazri Husin. On the edge metric dimension of some classes of cacti[J]. AIMS Mathematics, 2024, 9(6): 16422-16435. doi: 10.3934/math.2024795

    Related Papers:

    [1] Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the $p$--System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495
    [2] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [5] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [6] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [7] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [8] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [9] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • The cactus graph has many practical applications, particularly in radio communication systems. Let G=(V,E) be a finite, undirected, and simple connected graph, then the edge metric dimension of G is the minimum cardinality of the edge metric generator for G (an ordered set of vertices that uniquely determines each pair of distinct edges in terms of distance vectors). Given an ordered set of vertices Ge={g1,g2,...,gk} of a connected graph G, for any edge eE, we referred to the k-vector (ordered k-tuple), r(e|Ge)=(d(e,g1),d(e,g2),...,d(e,gk)) as the edge metric representation of e with respect to Ge. In this regard, Ge is an edge metric generator for G if, and only if, for every pair of distinct edges e1,e2E implies r(e1|Ge)r(e2|Ge). In this paper, we investigated another class of cacti different from the cacti studied in previous literature. We determined the edge metric dimension of the following cacti: C(n,c,r) and C(n,m,c,r) in terms of the number of cycles (c) and the number of paths (r).





    [1] S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Digital Repository at the University of Maryland, 1994.
    [2] G. Chartrand, L. Eroh, M. Johnson, O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [3] J. Hu, X. Shang, Detection of network motif based on a novel graph canonization algorithm from transcriptional regulation networks, Molecules, 22 (2017), 2194. https://doi.org/10.3390/molecules22122194 doi: 10.3390/molecules22122194
    [4] B. Spinelli, L. E. Celis, P. Thiran, Observer placement for source localization: The effect of budgets and transmission variance, In 54th Annual Allerton Conference on Communication, Control, and Computing, 2016.
    [5] R. C. Tillquist, M. E. Lladser, Low-dimensional representation of genomic sequences, J. Math. Biol., 79 (2019), 1–29. https://doi.org/10.1007/s00285-019-01348-1 doi: 10.1007/s00285-019-01348-1
    [6] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.
    [7] F. Harary, R. A. Melter, On the metric dimension of graph, Ars Combinatoria, 2 (1976), 191–195.
    [8] A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discret. Appl. Math., 251 (2018), 204–220. https://doi.org/10.1016/j.dam.2018.05.052 doi: 10.1016/j.dam.2018.05.052
    [9] T. Iqbal, M. N. Azhar, S. A. Ul Haq Bokhary, The K-size edge metric dimension of graphs, J. Math., 2020 (2020). https://doi.org/10.1155/2020/1023175
    [10] V. Filipović, A. Kartelj, J. Kratica, Edge metric dimension of some generalized Petersen graphs, Results Math., 74 (2019). https://doi.org/10.1007/s00025-019-1105-9
    [11] H. Raza, Y. Ji, Computing the mixed metric dimension of a generalized Petersen graph P(n, 2), Front. Phys., 2020. http://dx.doi.org/10.3389/fphy.2020.00211
    [12] T. Iqbal, M. Rafiq, M. N. Azhar, M. Salman, I. Khalid, On the edge resolvability of double generalized Petersen graphs, J. Math., 2022. http://dx.doi.org/10.1155/2022/6490698
    [13] J. Geneson, Metric dimension and pattern avoidance in graphs, Discret. Appl. Math., 2020. http://dx.doi.org/10.1016/j.dam2020.03.001.
    [14] N. Goshi, S. Zafar, T. Rashid, Fractional local edge dimensions of a graph, Discret. Math. Algorit., 2023. http://dx.doi.org/10.1142/S1793830923500246
    [15] J. Geneson, S. Kaustav, A. Labelle, Extremal results for graphs of bounded metric dimension, Discret. Appl. Math., 2022. http://dx.doi.org/10.1016/j.dam2021.11.015.
    [16] N. Zubrilina, On the edge dimension of a graph, Discrete Math., 341 (2018), 2083–2088. http://dx.doi.org/10.1016/j.disc.2018.04.010 doi: 10.1016/j.disc.2018.04.010
    [17] I. Peterin, I. G. Yero, Edge metric dimension of some graph operations, B. Malaysian Math. Sci. Soc., 43 (2020), 2465–2477. http://dx.doi.org/10.1007/s40840-019-00816-7 doi: 10.1007/s40840-019-00816-7
    [18] Y. Zhang, S. Gao, On the edge metric dimension of convex polytopes and its related graphs, J. Comb. Optim., 2020. http://dx.doi.org/10.1007/s10878-019-00472-4
    [19] H. M. A. Siddiqui, A. Mujahid, M. A. Binyamin, M. F. Nadeem, On certain bounds for edge metric dimension of Zero-Divisor graphs associated with rings, Math. Probl. Eng., 2021 (2021). http://dx.doi.org/10.1155/2021/5826722
    [20] M. Wei, J. Yue, X. Zhu, On the edge metric dimension of graphs, AIMS Math., 5 (2020), 4459–4465. http://dx.doi.org/10.3934/math.2020286 doi: 10.3934/math.2020286
    [21] E. Zhu, A. Taranenko, Z. Shao, J. Xu, On graphs with the maximum edge metric dimension, Discret. Appl. Math., 257 (2019), 317–324. http://dx.doi.org/10.1016/j.dam.2018.08.031 doi: 10.1016/j.dam.2018.08.031
    [22] R. Adawiyah, R. Alfarisi, R. M. Prihandini, I. H. Agustin, Edge metric dimension on some families of tree, In: Journal of Physics: Conference Series, Institute of Physics Publishing, 2019. http://dx.doi.org/10.1088/1742-6596/1180/1/012005
    [23] B. Deng, M. F. Nadeem, M. Azeem, On the edge metric dimension of different families of möbius networks, Math. Probl. Eng., 2021 (2021). http://dx.doi.org/10.1155/2021/6623208
    [24] M. Knor, S. Majstorović, A. T. M. Toshi, R. Škrekovski, I. G. Yero, Graphs with the edge metric dimension smaller than the metric dimension, Appl. Math. Comput., 401 (2021). http://dx.doi.org/10.1016/j.amc.2021.126076
    [25] J. Sedlar, R. Škrekovski, Vertex and edge metric dimensions of cacti, Discret. Appl. Math., 320 (2022), 126–139. http://dx.doi.org/10.1016/j.dam.2022.05.008 doi: 10.1016/j.dam.2022.05.008
    [26] H. M. Ikhlaq, H. M. A. Siddiqui, M. Imran, A comparative study of three resolving parameters of graphs, Complexity, 2021 (2021). http://dx.doi.org/10.1155/2021/1927181
    [27] E. Zhu, S. Peng, C. Liu, Identifying the exact value of the metric dimension and edge dimension of unicyclic graphs, Mathematics, 10 (2022), 1–14. http://dx.doi.org/10.3390/math10193539 doi: 10.3390/math10193539
    [28] E. Zhu, S. Peng, C. Liu, Metric dimension and edge metric dimension of unicyclic graphs, arXiv Preprint, 2021.
    [29] M. Knor, J. Sedlar, R. Škrekovski, Remarks on the vertex and the edge metric dimension of 2-connected graphs, Mathematics, 10 (2022), 1–19. http://dx.doi.org/10.3390/math10142411 doi: 10.3390/math10142411
    [30] J. Sedlar, R. Škrekovski, Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two, Appl. Math. Comput., 427 (2022), 1–19. http://dx.doi.org/10.1016/j.amc.2022.127147 doi: 10.1016/j.amc.2022.127147
    [31] J. Sedlar, R. Škrekovski, Bounds on metric dimensions of graphs with edge disjoint cycles, Appl. Math. Comput., 396 (2021), 125908. http://dx.doi.org/10.1016/j.amc.2020.125908 doi: 10.1016/j.amc.2020.125908
    [32] M. Rafiullah, H. M. A. Siddiqui, S. Ahmad, Resolvability of some convex polytopes, Util. Math., 111 (2019).
    [33] M. Ahsan, Z. Zahid, S. Zafar, Edge metric dimension of some classes of circulant graphs, An. Stiint. U. Al. I.-Mat., 28 (2020), 15–37. http://dx.doi.org/10.2478/auom-2020-0032 doi: 10.2478/auom-2020-0032
    [34] F. Yasmeen, S. Akhter, K. Ali, S. T. R. Rizvi, Edge Mostar indices of cacti graph with fixed cycles, Front. Chem., 9 (2021), 1–7. http://dx.doi.org/10.3389/fchem.2021.693885 doi: 10.3389/fchem.2021.693885
    [35] S. Chen, Cacti with the smallest, second smallest, and third smallest Gutman index, J. Comb. Optim., 31 (2016), 327–332. http://dx.doi.org/10.1007/s10878-014-9743-z doi: 10.1007/s10878-014-9743-z
    [36] S. Li, H. Yang, Q. Zhao, Sharp bounds on Zagreb indices of cacti with k pendant vertices, Filomat, 26 (2012), 1189–1200. http://dx.doi.org/10.2298/FIL1206189L doi: 10.2298/FIL1206189L
    [37] S. Wang, On extremal cacti with respect to the Szeged index, Appl. Math. Comput., 309 (2017), 85–92. http://dx.doi.org/10.1016/j.amc.2017.03.036 doi: 10.1016/j.amc.2017.03.036
    [38] M. F. Nadeem, W. Ali, H. M. A. Siddiqui, Locating number of biswapped networks, Int. J. Found. Comput. S., 33 (2022), 667–690. http://dx.doi.org/10.1142/S0129054122420096 doi: 10.1142/S0129054122420096
  • This article has been cited by:

    1. R. M. Colombo, M. Herty, V. Sachers, On $2\times2$ Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    2. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    3. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    4. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    5. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    6. Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927
    7. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    8. Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X
    9. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    10. Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8
    11. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    12. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    13. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    14. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    15. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    16. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    17. J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004
    18. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    19. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    20. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    21. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    22. Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283
    23. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    24. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    25. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    26. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    27. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    28. R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957
    29. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    30. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    31. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    32. Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011
    33. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    34. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    35. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    36. Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042
    37. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    38. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    39. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    40. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    41. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    42. Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049
    43. Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049
    44. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    45. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    46. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    47. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    48. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    49. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    50. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    51. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    52. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    53. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    54. Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006
    55. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    56. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    57. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    58. Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003
    59. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    60. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    61. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    62. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    63. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    64. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1079) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog