This paper introduces the geometric distribution in the context of neutrosophic statistics. The research outlines the essential properties of this new distribution and introduces novel algorithms for generating imprecise geometric data. The study explores the practical applications of this distribution in the industry, highlighting differences in data generated under deterministic and indeterminate conditions using detailed tables, simulation studies, and real-world applications. The results indicate that the level of uncertainty has a substantial impact on data generation from the geometric distribution. These findings suggest updating classical statistical algorithms to better handle the generation of imprecise data. Therefore, decision-makers should exercise caution when using data from the geometric distribution in uncertain environments.
Citation: Muhammad Aslam, Mohammed Albassam. Neutrosophic geometric distribution: Data generation under uncertainty and practical applications[J]. AIMS Mathematics, 2024, 9(6): 16436-16452. doi: 10.3934/math.2024796
[1] | Yong-Ki Ma, N. Valliammal, K. Jothimani, V. Vijayakumar . Solvability and controllability of second-order non-autonomous impulsive neutral evolution hemivariational inequalities. AIMS Mathematics, 2024, 9(10): 26462-26482. doi: 10.3934/math.20241288 |
[2] | Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652 |
[3] | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004 |
[4] | Misbah Iram Bloach, Muhammad Aslam Noor . Perturbed mixed variational-like inequalities. AIMS Mathematics, 2020, 5(3): 2153-2162. doi: 10.3934/math.2020143 |
[5] | Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154 |
[6] | Ebrahem A. Algehyne, Abdur Raheem, Mohd Adnan, Asma Afreen, Ahmed Alamer . A study of nonlocal fractional delay differential equations with hemivariational inequality. AIMS Mathematics, 2023, 8(6): 13073-13087. doi: 10.3934/math.2023659 |
[7] | Qiang Li, Jina Zhao . Extremal solutions for fractional evolution equations of order 1<γ<2. AIMS Mathematics, 2023, 8(11): 25487-25510. doi: 10.3934/math.20231301 |
[8] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[9] | Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403 |
[10] | Zhi Guang Li . Global regularity and blowup for a class of non-Newtonian polytropic variation-inequality problem from investment-consumption problems. AIMS Mathematics, 2023, 8(8): 18174-18184. doi: 10.3934/math.2023923 |
This paper introduces the geometric distribution in the context of neutrosophic statistics. The research outlines the essential properties of this new distribution and introduces novel algorithms for generating imprecise geometric data. The study explores the practical applications of this distribution in the industry, highlighting differences in data generated under deterministic and indeterminate conditions using detailed tables, simulation studies, and real-world applications. The results indicate that the level of uncertainty has a substantial impact on data generation from the geometric distribution. These findings suggest updating classical statistical algorithms to better handle the generation of imprecise data. Therefore, decision-makers should exercise caution when using data from the geometric distribution in uncertain environments.
Differential variational inequality is a dynamical system that includes variational inequalities and ordinary differential equations. Differential variational inequalities plays an important role for formulating models involving both dynamics and inequality constraints. Aubin and Cellina [3] introduced the concept of differential variational inequality and after that it was studied by Pang and Stewart [25]. The partial differential variational inequalities was studied by Liu, Zeng and Motreanu [15] and shown that the solution set is compact and continuous. There are some obstacles in their work that constraint set necessarily be compact and only local boundary conditions are satisfied. Liu, Migórskii and Zeng [14] relaxed the conditions of [15] and proved the existence of partial differential variational inequality in non-compact setting. Properties of solution set like strong-weak upper semicontinuity and measurability was proved by them.
Differential variational inequalities are application oriented and have several applications in engineering and physical sciences, operation research, etc. In particular, they are applicable in electrical circuits with ideal diodes, economical dynamics, dynamic traffic network, functional problems, differential Nash games, control systems, etc., see for example [1,2,16,17,18,19,20,23,26,27,31].
Evolution equation can be explained as the differential law of the development (evolution) in time of a system. The evolution character of the equation make easier its numerical solution. Variational-like inequality is a generalized form of a variational inequalities and has many applications in operations research, optimization, convex mathematical programming, etc. On the other hand, many problems of engineering and applied sciences can be solved by using second order evolution equation, see for example [5,6,9,10,12,13,22,28,30,32,33].
Throughout the paper, we assume ~B1 and ~B2 denote separable reflexive Banach spaces and ˆK(≠ϕ) be convex and closed subset of ~B1. We define some mapping below, that is,
˜F:[0,T]×~B2×~B2⟶L(~B1,~B2),˜f:[0,T]×~B2×~B2⟶~B2,˜g:[0,T]×~B2×~B2⟶~B2,˜A:ˆK⟶~B∗1,η:ˆK׈K⟶~B1,ψ:˜K⟶R∪{+∞}, where T>0. |
Inspired by the above discussed work, in this paper, we introduce and study a second order evolutionary partial differential variational-like inequality in Banach spaces. We mention our problem below:
{y″(x)=˜Ay(x)+˜F(x,y(x),y′(x))ˆu(x)+˜f(x,y(x),y′(x)), a.e. x∈[0,T],ˆu(x)∈Sol(˜K,˜g(x,y(x),y′(x))+˜A(⋅),ψ), a.e. x∈[0,T],y(0)=y0,y′(0)=y0. | (2.1) |
We also consider a variational-like inequality problem of finding ˆu:[0,T]→ˆK such that
⟨˜g(x,y(x),y′(x))+˜A(ˆu(x)),η(ˆv,ˆu(x))⟩+ψ(ˆv)−ψ(ˆu(x))≥0,∀ˆv∈ˆK, a.e. x∈[0,T]. | (2.2) |
The solution set of problem (2.2) is denoted by Sol[(2.1)].
The mild solution of problem (2.1) is described by the following definition.
Definition 2.1. A pair of function (y,ˆu) such that y∈C1([0,T],~B2) and ˆu:[0,T]→ˆK(⊂~B1) measurable, called mild solution of problem (2.1) if
y(x)=Q(x)y0+R(x)y0+∫x0R(x−p)[˜F(p,y(p),y′(p))ˆu(p)+˜f(p,y(p),y′(p))]dp, |
where x∈[0,T] and ˆu(p)∈Sol(ˆK,˜g(p,y(p),y′(p))+A(⋅,ψ). R(x) will be defined in continuation. Here, Sol(ˆK,ˆw+A(.),ψ) denotes the solution set of mixed variational-like inequality (3.1). If (y,ˆu) is a mild solution of above assumed problem, then y is said to be the mild trajectory and ˆu is called the variational control trajectory. Here C1([0,T],~B2) denotes the Banach space of all continuous differentiable mappings y:[0,T]→~B2 with norm
‖y‖C1=max{maxx∈[0,T]‖y(x)‖,maxx∈[0,T]‖y′(x)‖}, |
and L(~B2) denotes the Banach space of bounded linear operators from ~B2 into ~B2.
The subsequent part of this paper is organised in this way. In the next section, some definitions and results are defined, which will be used to achieve our goal. In Section 3, an existence result for variational-like inequalities is proved. Also, we have proved that Sol(ˆK,ˆw+A(.),ψ) is nonempty, closed and convex. The upper semicontinuity of the multi-valued mapping F:[0,T]×~B2×~B2→Πbv(^B1) is discussed. In the last section, we have proved that the existence result for the mild solution of second order evolutionary partial differerntial variational-like inequalities under some appropriate conditions.
Let ^X1 and ^X2 are topological spaces. We shall use Π(^X2) to denote the family of all nonempty subsets of X2, and
Πc(^X2):={ˆD∈Π(^X2):ˆD is closed};
Πb(^X2):={ˆD∈Π(^X2):ˆD is bounded};
Πbc(^X2):={ˆD∈Π(^X2):ˆD is bounded and closed};
Πcv(^X2):={ˆD∈Π(^X2):ˆD is closed and convex};
Πbv(^X2):={ˆD∈Π(^X2):ˆD is bounded and convex};
Πkv(^X2):={ˆD∈Π(^X2):ˆD is compact and convex}.
One parameter family Q(x), where x is real number, of bounded linear operators from a Banach space ^B2 into itself is called a strongly continuous cosine family if and only if
(1) Q(x+p)+Q(x−p)=2C(x)C(p),∀x,p∈R,
(2) Q(0)=I,(I is the identity operator in ^B2),
(3) Q(x)w is continuous in x on R for every fixed w∈^B2.
We associate with the strongly continuous cosine family Q(x) in ^B2 the strongly continuous sine family R(x), such that
R(x)W=∫x0Q(p)wdp,w∈^B2,x∈R, |
and the two sets
E1={w∈^B2:Q(x)uis one time continuously differentiable in x on R},E2={w∈^B2:Q(x)wis two times continuously differentiable in x onR}. |
The operator A:D(A)⊂^B2→^B2 is the infinitesimal generator of a strongly continuous cosine family Q(x), x∈R defined by A(y)=d2/dx2Q(0)ywith D(A)=E2.
Proposition 2.1. [29] Let Q(x),x∈R be a strongly continuous cosine family in ^B1. Then the following hold:
(i) Q(x)=Q(−x),∀ x∈R,
(ii) Q(p),R(p),Q(x),andR(x)commute ∀x,p∈R,
(iii) R(x+p)+Q(x−p)=2R(x)Q(p),∀ x,p∈R,
(iv) R(x+p)=R(x)Q(p)+R(p)C(x),∀ x,p∈R,
(v) R(x)=−R(−x),∀ x∈R.
For furthure information related to the properties of the sine and cosine families, see [12,23,27] and references therein.
Definition 2.2. [21] Let ^X1,^X2 are topological spaces. Then the multi-valued mapping ˆF:^X1→Π(^X2) is said to be:
(i) Upper semicontinuous (u.s.c., in short) at x∈^X1, if for each open set U⊂^X2 with ˆF(x)⊂U, ∃ a neighbourhood N(x) of x such that
ˆF(N(x)):=ˆF(y)y∈N(x)⊂U. |
If ˆF is u.s.c. ∀ x∈^X1, then ˆF is said to be upper semicontinuous on ^X1.
(ii) Lower semicontinuous (l.s.c., in short) at x∈^X1 if, for each open set U⊂^X2 satisfying ˆF∩U≠ϕ, ∃ a neighbourhood N(x) of x such that ˆF∩U≠ϕ ∀ y∈N(x). If ˆF is l.s.c. ∀ x∈^X1, then ˆF is called lower semicontinuous on ^X1.
Proposition 2.2. [21] Let ˆF:^X1→Π(^X2) be a multi-valued mapping, where ^X1,and^X2 denote topological vector spaces. Then the following are equivalent:
(i) ˆF is upper semicontinuous,
(ii) the set
ˆF−(C)={x∈^X1:ˆF(x)∩C≠ϕ}, |
is closed in ^X1, for each closed set C⊂^X2,
(iii) the set
ˆF+(C)={x∈^X1:ˆF(x)⊂U}, |
is open in ^X1, for each open set U⊂^X2.
Proposition 2.3. [4] Let Ω(≠ϕ) subset of Banach space ˆX. Assume that the multi-valued mapping ˆF:Ω→Π(ˆX) is weakly compact and convex. Then, ˆF is strongly-weakly u.s.c. if and only if {xn}⊂Ω with xn→x0∈Ω and yn∈ˆF(xn) implies yn⇀y0∈ˆF(x0) up to a subsequence.
Lemma 2.1. [7] Let {xn} be a sequence such that xn⇀ˉx in a normed space V. Then there is a sequence of combinations {yn} such that
yn=∞∑i=nλixi,∞∑i=nλi=1andλi≥0,1≤i≤∞, |
which converges to ˉx in norm.
Now we define the measurability of a multi-valued mapping, which is needed in the proof of existence of solution of second order evolutionary partial differential variational-like inequality problem (2.1).
(i) A multi-valued mapping ˆF:I→Π(ˆX) is called measurable if for each open subset U⊂ˆX the set ˆF+(U) is measurable in R.
And
(ii) the multi-valued mapping ˆF:I→Πbc(ˆX) is called strongly measurable if ∃ a sequence {ˆFn}∞n=1 of step set-valued mappings such that
ˆH(ˆF(t),ˆFn(t))→0,asn→∞,t∈I a.e., |
here ˆX denotes Banach space, I be an interval of real numbers and ˆH(.,.) denotes the Hausdorff metric on Πbc(ˆX).
Definition 2.4. [11,34] Let ˆX be Banach space and (F,⪯) be a partial ordered set. A function β:Πb(ˆX)→F is called a measure of non compactness (MNC, for short) in ˆX if
β(¯convO)=β(O)foreveryO∈Πb(ˆX), |
here ¯convO showing the closure of convex hull of O.
Definition 2.5. [34] A measure of non compactness β is called
(i) monotone, if O0,O1∈Πb(ˆX) and O0⊆O1 implies β(O0)⪯β(O1),
(ii) nonsingular, if β(a∪O)=β(O) ∀ a∈ˆX and O∈Πb(ˆX),
(iii) invariant with respect to union of compact set, if β(K∪O)=β(O) for each relatively compact set K⊂ˆX and O∈Πb(ˆX),
(iv) algebraically semiadditive, if β(O0+O1)⪯β(O0)+β(O1) for every O0,O1∈Πb(ˆX),
(v) regular, if β(O)=0 is equivalent to the relative compactness of O.
A very famous example of measure of non compactness is the following Hausdorff measure of non compactness on C([0,T],ˆX) with 0<T<∞ calculated by the following formula:
χT(O)=12limδ→0supx∈Omax|t1−t2|≤δ‖x(t1)−x(t2)‖ˆX. | (2.3) |
Here, χT(O) is said to be the modulus of equicontinuity of O⊂C([0,T],ˆX). Definition (2.4) is applicable on (2.3).
Definition 2.6. [11] A multi-valued mapping ˆF:ˆK⊂ˆX→Π(ˆX) is said to be condensing relative to measure of non compactness β (or β-condensing) if for each O⊂ˆK, we have
β(ˆF(O))⋡ |
That is not relatively compact.
Definition 2.7. [8] A single valued mapping T:\widehat{K}\to \widehat{X}^* is called relaxed \eta - \alpha monotone if \exists a mapping \eta: \widehat{K}\times \widehat{K}\to \widehat{X} and a real-valued mapping \alpha: \widehat{X} \to \mathbb{R} , with \alpha(tz) = t^p\alpha(z) , { \forall } t > 0, and z\in \widehat{X} , such that
\begin{equation} \langle Tx-Ty, \eta(x, y)\rangle\geq- \alpha(x-y), {\rm{ \forall }}x, y\in \widehat{K}, \end{equation} | (2.4) |
where p > 1 is a constant.
Definition 2.8. [8] A mapping T:\widehat{K}\to \widehat{X}^* is called \eta -coercive with respect to \psi if \exists x_0\in \widehat{K} such that
\begin{equation} \underset{x\in K, \; \|x\|\to \infty}{lim \; inf}\frac{\langle T(x)-T(y), \eta(x, x_0)\rangle+\psi(x)-\psi(x_0)}{\|\eta(x, x_0)\|}\to +\infty. \end{equation} | (2.5) |
Where \eta: \widehat{K}\times \widehat{K}\to \widehat{X} be a mapping and \psi:\widehat{X}\to \mathbb{R}\cup\{+\infty\} is proper convex lower semicontinuous function.
Theorem 2.1. [11] Let \widehat{X} be a Banach space and \mathcal{M} its closed convex subset, then the fixed point set of \mathcal{\beta} -condensing multi-valued mapping \widehat{F}:\mathcal{M}\to \Pi_{kv}(\mathcal{M}) is nonempty. That is \mathit{\mbox{Fix}}\widehat{F}: = \{x\in \mathcal{M}:x\in \widehat{F}(x)\}\neq \phi. Where \mathcal{\beta} is a nonsingular measure of non compactness defined on subsets of \mathcal{M} .
Let \widehat{B_1} and \widehat{B_2} are real reflexive Banach spaces and {\widehat{B_1}^*} be the dual of \widehat{B_1} and \widehat{K} be a nonempty closed, convex subset of \widehat{B_1} .
We consider the following problem of finding \widehat{\mathfrak{u}}\in \widehat{K} such that
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq 0, {\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}, \end{equation} | (3.1) |
where \widehat{\mathfrak{w}}\in \widehat{B_1}^* , \mathcal{A}:\widehat{K}\to \widehat{B_1}^* and \eta:\widehat{K}\times \widehat{K}\to \widehat{B_1}. Problem (3.1) is called generalized mixed variational-like inequality. We prove the following lemma.
Lemma 3.1. Suppose that the following conditions are satisfied:
(I_1) \mathcal{A}: \widehat{B_1}\to \widehat{B_1}^* is an \eta -hemicontinuous and \eta - \alpha monotone mapping;
(I_2) \psi: \widehat{B_1}\to \mathbb{R}\cup\{+\infty\} be a proper convex and lower semicontinuous;
(I_3) the mapping \widehat{\mathfrak{u}}\to\langle \mathcal{A}\widehat{\mathfrak{z}}, \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})\rangle is convex, lower semicontinuous for fixed \widehat{\mathfrak{v}}, \widehat{\mathfrak{z}}\in \widehat{K} and \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{u}}) = 0, \mathit{\rm{\forall }\; }\widehat{\mathfrak{u}}\in \widehat{K}.
Then \widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \psi) , if and only if \widehat{\mathfrak{u}} is the solution of following inequality:
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), \mathit{\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.2) |
Proof. Let \widehat{\mathfrak{u}} is a solution of problem (3.1), then
\begin{equation*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq 0. \end{equation*} |
Since \mathcal{A} is relaxed \eta - \alpha monotone, we have
\begin{eqnarray*} && \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\\ & = &\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\langle \mathcal{A}(\widehat{\mathfrak{v}})-\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\\ &\geq& \langle \mathcal{A}(\widehat{\mathfrak{v}})-\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle\geq\alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), {\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}. \end{eqnarray*} |
Hence, \widehat{\mathfrak{u}} is the solution of inequality (3.2).
Conversely, let \widehat{\mathfrak{u}}\in \widehat{K} be a solution of problem (3.2) and let \widehat{\mathfrak{v}}\in \widehat{K} be any point \psi(\widehat{\mathfrak{v}}) < \infty . We define \widehat{\mathfrak{v}}_s = (1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}}, \; \; s\in (0, 1), then due to convexity of \widehat{K} \widehat{\mathfrak{v}}_s\in K . Since \widehat{\mathfrak{v}}_s\in \widehat{K} is the solution of inequality (3.2), it follows from (I_1) – (I_3)
\begin{eqnarray*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}_s, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}}_s)-\psi(\widehat{\mathfrak{u}})&\geq& \alpha(\widehat{\mathfrak{v}}_s-\widehat{\mathfrak{u}})\\ \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta((1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi((1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})&\geq& \alpha((1-s)\widehat{\mathfrak{u}}\\ &&+s\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})\\ \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), (1-s)\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{u}})+s\eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +(1-s)\psi(\widehat{\mathfrak{u}})+s\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})&\geq& \alpha(s(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})). \end{eqnarray*} |
Using (I_3) , we have
\begin{eqnarray*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), s\eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +s(\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}))&\geq&s^p\alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})\\ \langle \widehat{\mathfrak{w}}+\mathcal{A}((1-s)\widehat{\mathfrak{u}}+s\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +(\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}))&\geq&s^{p-1}\alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), \end{eqnarray*} |
letting s\to 0^{+} , we get
\begin{equation*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq 0, {\rm{ \forall }}\widehat{\mathfrak{v}}\in K. \end{equation*} |
Theorem 3.1. Suppose that the conditions (I_1) – (I_3) are satisfied. Additionally, if the following conditions hold.
(I_4) \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})+\eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) = 0,
(I_5) \exists \; \; \widehat{\mathfrak{v}}_0\in \widehat{K}\cap D(\psi) such that
\begin{equation} \underset{\widehat{\mathfrak{u}}\in \widehat{K}, \; \|\widehat{\mathfrak{u}}\|\to \infty}{lim \; inf}\frac{\langle \mathcal{A}(\widehat{\mathfrak{u}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}_0)}{\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|}\xrightarrow{} +\infty. \end{equation} | (3.3) |
Then, Sol(K, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) = \{\widehat{\mathfrak{u}}\in \widehat{K}: \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})\geq0, \mathit{\rm{\forall }\; }\widehat{\mathfrak{v}}\in K\}\neq \phi , bounded, closed and convex, for \widehat{\mathfrak{w}}\in \widehat{B_1}^*.
Proof. Clearly, Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi)\neq \phi , as \widehat{\mathfrak{v}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) , for each \widehat{\mathfrak{v}}\in \widehat{K}.
Now, we have to show that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is bounded. Suppose to contrary that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is not bounded, then there exists a sequence \{\widehat{\mathfrak{u}}_n\}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) such that \|\widehat{\mathfrak{u}}_n\|_{\widehat{B_1}}\to \infty as n\to \infty . We can consider, \forall n\in \mathbb{N} , \|\widehat{\mathfrak{u}}_n\| > n. By \eta -coercive condition (3.3), \exists a constant M > 0 and a mapping \kappa:[0, \infty)\to [0, \infty) with \kappa(k)\to \infty such that for every \|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}\geq M,
\begin{equation*} \langle \mathcal{A}(\widehat{\mathfrak{u}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}_0)\geq \kappa(\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}})\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}. \end{equation*} |
Thus, if n is sufficiently large as \kappa(n) > (\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|+\|\widehat{\mathfrak{w}}\|),
\begin{eqnarray*} 0&\leq& \langle \mathcal{A}(\widehat{\mathfrak{u}}_n)+\widehat{\mathfrak{w}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_n)\\ & = &\langle \mathcal{A}(\widehat{\mathfrak{u}}_n), \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle+\langle \widehat{\mathfrak{w}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_n)\\ & = &-\langle \mathcal{A}(\widehat{\mathfrak{u}}_n)-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_n)+\langle \mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle\\ &&+\langle \widehat{\mathfrak{w}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_n)\rangle\\ &\leq& -\kappa(\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|)\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|.\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}+\|\widehat{\mathfrak{w}}\|.\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}\\ & = &\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}\Big[-\kappa(\|\eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}})+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|+\|\widehat{\mathfrak{w}}\|\Big]\\ & < &0. \end{eqnarray*} |
Which is not possible. Thus, Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is bounded.
Now it remains to prove that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is closed.
Let \{\widehat{\mathfrak{u}}_n\} be a sequence in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) such that \widehat{\mathfrak{u}}_n\to \widehat{\mathfrak{u}}\in \widehat{K}. Then, \forall n\in \mathbb{N}
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{u}}_n), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)\geq 0, \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.4) |
From Lemmas (3.1) and (3.4) same as
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{u}}_n, \widehat{\mathfrak{v}})\rangle +\psi(\widehat{\mathfrak{u}}_n)-\psi(\widehat{\mathfrak{v}})\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.5) |
By using (I_4) , we have
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)+ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n)\leq 0, \ {\rm{ \forall }}\ \widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.6) |
Which implies that
\begin{equation} \underset{n\to 0^+}{lim\; sup}\{\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)+ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n)\}\leq 0, {\rm{ \forall }}\; \widehat{\mathfrak{v}}\in \widehat{K}, \end{equation} | (3.7) |
as \widehat{\mathfrak{u}}\to\langle \mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle , \psi and \alpha are lower semicontinuous functions. From (3.7), we have
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}})+ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}})\leq0, \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}, \end{equation} | (3.8) |
that is,
\begin{equation} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})\rangle +\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}})\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.9) |
By Lemma 3.1, we get \widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) , that is Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is closed.
Lastly, we show that Sol(\widehat{K}, \widehat{\mathfrak{w}}+G(.), \; \psi) is convex. For any \widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) and s\in [0, 1], let \widehat{\mathfrak{v}}_s = (1-s)\widehat{\mathfrak{v}}+s\widehat{\mathfrak{u}} . Since \widehat{K} is convex, so that \widehat{\mathfrak{u}}_s\in \widehat{K} . Using (I_3) and letting s\to 0^+ , we obtain
\begin{align*} \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}_s, \widehat{\mathfrak{v}})\rangle+\psi(\widehat{\mathfrak{v}}_s)&-\psi(\widehat{\mathfrak{v}})\rangle\\ & = \langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta((1-s)\widehat{\mathfrak{v}}+s\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}})\rangle +\psi((1-s)\widehat{\mathfrak{v}}+s\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}})\\ &\leq (1-s)\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{v}})\rangle +s\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle\\ &+s(\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}))\\ &\leq s[\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\rangle+(\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}))]\\ &\leq0, \end{align*} |
that is,
\langle \widehat{\mathfrak{w}}+\mathcal{A}(\widehat{\mathfrak{v}}_s), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{v}}_s)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{v}}_s)\geq 0. |
Hence, Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is convex.
Boundedness of \widehat{\mathfrak{w}} implies that Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) is bounded.
Theorem 3.2. Suppose that all the conditions and mappings are same as considered in Theorem 3.1. Additionally, \forall \widehat{\mathfrak{w}}\in \overline{B}(n, \widehat{B_1}^*), \exists a constant M_n > 0, depending on n , such that
\begin{equation} \|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}\leq M_n, \; \mathit{\rm{ \forall }\;}\widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi), \end{equation} | (3.10) |
where \overline{B}(n, \widehat{B_1}^*) = \{\widehat{\mathfrak{w}}\in \widehat{B_1}^*:\|\widehat{\mathfrak{w}}\|_{\widehat{B_1}^*}\leq n\}.
Proof. On contrary let us suppose that \exists N_0 > 0 and
\begin{equation*} \underset{\widehat{\mathfrak{w}}\in\overline{B}(N_0, \widehat{B_1}^*)}{Sup}\Big\{\|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}:\widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi)\Big\} = +\infty. \end{equation*} |
Therefore, \exists \widehat{\mathfrak{w}}_{\hat{k}}\in \overline{B}(N_0, \widehat{B_1}^*) and \widehat{\mathfrak{u}}_{\hat{k}}\in Sol(\widehat{K}, \widehat{\mathfrak{w}}+\mathcal{A}(.), \; \psi) with \|\eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\| > \hat{k} (\hat{k} = 1, 2, 3, \cdots). By \eta -coercivity assumption, \exists a constant M > 0 such that \forall \|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|\geq M and a function \kappa:[0, \infty)\to [0, \infty) with \kappa(\hat{k})\to \infty as \hat{k}\to \infty , we have
\begin{equation*} \langle \mathcal{A}(\widehat{\mathfrak{u}}), \eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}})-\psi(\widehat{\mathfrak{v}}_0)\geq \kappa(\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|)\|\eta(\widehat{\mathfrak{u}}, \widehat{\mathfrak{v}}_0)\|_{\widehat{B_1}}. \end{equation*} |
Thus, for \hat{k} > M sufficiently large such that \kappa(\hat{k}) > \frac{N_0+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|}{\hat{k}} , one has
\begin{eqnarray*} 0&\leq& \langle \widehat{\mathfrak{w}}_{\hat{k}}+\mathcal{A}(\widehat{\mathfrak{u}}_{\hat{k}}), \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\rangle+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_{\hat{k}})\\ & = & \langle \widehat{\mathfrak{w}}_{\hat{k}}, \eta(\widehat{\mathfrak{v}}_0, u_{\hat{k}})\rangle- \langle \mathcal{A}(\widehat{\mathfrak{u}}_{\hat{k}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle+\langle \mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle\\ &&+\psi(\widehat{\mathfrak{v}}_0)-\psi(\widehat{\mathfrak{u}}_{\hat{k}})\\ & = &\langle \widehat{\mathfrak{w}}_{\hat{k}}, \eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\rangle- [\langle \mathcal{A}(\widehat{\mathfrak{u}}_{\hat{k}})-\mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle+\psi(\widehat{\mathfrak{u}}_{\hat{k}})-\psi(\widehat{\mathfrak{v}}_0)]\\ &&+\langle \mathcal{A}(\widehat{\mathfrak{v}}_0), \eta(\widehat{\mathfrak{u}}_{\hat{k}}, \widehat{\mathfrak{v}}_0)\rangle\\ & = &\|\widehat{\mathfrak{w}}_{\hat{k}}\|_{\widehat{B_1}^*}\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|-r(\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|)\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|\\ & = &N_0\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|-r(\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|)\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|\|\eta(\widehat{\mathfrak{v}}_0, \widehat{\mathfrak{u}}_{\hat{k}})\|\\ &\leq& (N_0+\|\mathcal{A}(\widehat{\mathfrak{v}}_0)\|)\hat{k}-r(\hat{k}) < 0, \end{eqnarray*} |
which is a contradiction. Hence our supposition is wrong.
Let \widetilde{\mathfrak{g}}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\rightarrow \widehat{B_1}^* be the single valued mapping and a multi-valued mapping \mathfrak{F}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \Pi(\widehat{K}) is defined as follows:
\begin{equation*} \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)): = \Big\{\widehat{\mathfrak{u}}\in \widehat{K}: \widehat{\mathfrak{u}}\in Sol(\widehat{K}, \widetilde{\mathfrak{g}}(x, \mathfrak{y}(x), \mathfrak{y}'(x))+\mathcal{A}(.), \; \psi)\Big\}. \end{equation*} |
It follows from Theorem 3.1 that \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is nonempty, bounded, closed and convex that is, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\in \Pi_{bcv}(\widehat{B_1}) \forall (x, \mathfrak{y}(x), \mathfrak{y}'(x))\in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}.
Theorem 3.3. Suppose that all the conditions and mappings are same as considered in Theorem 3.1 and the mapping \widetilde{g}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \widehat{B_1}^* is bounded and continuous, then the following assertions hold:
(i) \mathfrak{F} is strongly weakly u.s.c.;
(ii) x\to \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is measurable \forall \mathfrak{y}, \mathfrak{y}'\in \widehat{B_2} ;
(iii) for every bounded subset \Omega^* = \Omega_1\times \Omega_2 of C^1\Big([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}\Big) , \exists a constant M_{\Omega^*} such that
\begin{equation} \|\mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\|: = sup\{\|\widehat{\mathfrak{u}}\|_{\widehat{B_1}}: \widehat{\mathfrak{u}}\in \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\}\leq M_{\Omega^*}, \mathit{\rm{ \forall }\;}x\in [0, \mathcal{T}]\; \end{equation} | (3.11) |
\mathit{\mbox{and}}\; (\mathfrak{y}, \mathfrak{y}')\in \Omega^*.
Proof. (ⅰ) Let \mathcal{C}\subset \widehat{B_1} be any weakly closed subset of \widehat{B_1} , suppose that \{(x_n, \mathfrak{y}_n, \mathfrak{y'}_n)\} \subset [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2} such that (x_n, \mathfrak{y}_n, {\mathfrak{y}'}_n)\to (x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'}) in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2} with (x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})\in \mathfrak{F}^{-1}(\mathcal{C}): = \{(x, \mathfrak{y}, \mathfrak{y'})\; |\; \mathcal{C}\cap \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}')\neq \phi\}. Therefore, for any n\in\mathbb{N} , there exists \widehat{\mathfrak{u}}_n\in \mathcal{C}\cap \mathfrak{F}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'}) such that
\begin{equation} \langle \widetilde{\mathfrak{g}}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})+\mathcal{A}(\widehat{\mathfrak{u}}_n), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}_n)\geq 0, {\rm{ \forall }}\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.12) |
By Lemma 3.1, (3.12) is equivalent to
\begin{equation} \langle \widetilde{\mathfrak{g}}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{v}}_n)\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.13) |
Which implies that,
\begin{eqnarray} \underset{n\to 0^+}{lim\; sup}\{\langle \widetilde{\mathfrak{g}}(x_n, \mathfrak{y}_n, \mathfrak{y}_n{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}_n)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{v}}_n)\}\geq \underset{n\to 0^+}{lim\; sup}\{ \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n)\}, \\ \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}.\; \; \; \; \; \; \; \end{eqnarray} | (3.14) |
Since \widetilde{\mathfrak{g}} is continuous. Therefore, by Theorem 3.3, it implies that \{\widehat{\mathfrak{u}}_n\} is bounded. Hence, by reflexivity of \widehat{B_1}, we can suppose that \widehat{\mathfrak{u}}_n\to \widehat{\mathfrak{u}}^*\in \mathcal{C} in \widehat{B_1}.
From (3.14), we get
\begin{equation} \langle \widetilde{\mathfrak{g}}(x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}^*)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}^*)\geq \alpha(\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}^*), \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation} | (3.15) |
Using Lemma 3.1, we have
\begin{equation*} \langle \widetilde{\mathfrak{g}}(x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'})+\mathcal{A}(\widehat{\mathfrak{v}}), \eta(\widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}^*)\rangle +\psi(\widehat{\mathfrak{v}})-\psi(\widehat{\mathfrak{u}}^*)\geq 0, \; \ {\rm{ \forall }}\;\widehat{\mathfrak{v}}\in \widehat{K}. \end{equation*} |
It follows from weakly closeness of \mathcal{C} that
\begin{equation*} (x^*, \mathfrak{y}^{*}, \mathfrak{y}^*{'})\in \mathfrak{F}^{-1}(\mathcal{C}): = \{(x, \mathfrak{y}, \mathfrak{y}'):\mathcal{C}\cap \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}')\neq \phi\}. \end{equation*} |
Hence, \mathfrak{F} is strongly weakly u.s.c..
(ⅱ) Define a set
L_\lambda: = \{x\in [0, \mathcal{T}]; d(v, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x))) > \lambda\}, \; { \forall }\; (\mathfrak{y}, \mathfrak{y}')\in \widehat{B_2}\times \widehat{B_2}, \; \widehat{\mathfrak{v}}\in \widehat{B_1}. |
Now we will show that L_\lambda is an open set for all \lambda\geq 0. For this let \{x_n\} \subset (L_\lambda)^c = [0, \mathcal{T}]\setminus L_\lambda be a sequence with x_n\to x. Then \forall n\in \mathbb{N} , we have d(v, \mathfrak{F}(x_n, \mathfrak{y}, \mathfrak{y}'))\leq \lambda . As for every (x, \mathfrak{y}, \mathfrak{y}')\in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}, the multi-valued mapping \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}') is bounded, closed and convex by Theorem 3.1, we get \forall n\in \mathbb{N}, \widehat{\mathfrak{u}}_n\in \mathfrak{F}(x_n, \mathfrak{y}, \mathfrak{y}') such that \|\widehat{\mathfrak{v}}-\widehat{\mathfrak{u}}_n\|\leq \lambda. By Theorem 3.3, \{\widehat{\mathfrak{u}}_n\} is bounded, so we may assume that \widehat{\mathfrak{u}}_n\rightharpoonup \widehat{\mathfrak{u}}\in \widehat{K}. By (i) , \widehat{\mathfrak{u}}\in \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) . Hence, we obtain
\begin{equation*} d(v, \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}'))\leq \|\widehat{\mathfrak{u}}-\widehat{\mathfrak{v}}\|_{\widehat{B_1}} = \underset{n\to \infty}{\liminf}\|\widehat{\mathfrak{u}}_n-\widehat{\mathfrak{v}}\|_{\widehat{B_1}}\leq \lambda, \end{equation*} |
that is x\in (L_\lambda)^c , thus [0, \mathfrak{F}]\setminus L_\lambda is closed. Hence, L_\lambda is open, consequently L_\lambda is measurable. By [24,Proposition 6.2.4], the mapping x\mapsto \mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}') is measurable \forall (\mathfrak{y}, \mathfrak{y}')\in \widehat{B_2}\times \widehat{B_2} .
(ⅲ) As \widetilde{\mathfrak{g}} is bounded. Therefore
\widetilde{\mathfrak{g}}_{\Omega^*}: = \{\widetilde{\mathfrak{g}}(x, \mathfrak{y}(x), \mathfrak{y}'(x)):\; x\in [0, \mathcal{T}] \mbox{ and } (\mathfrak{y}, \mathfrak{y}')\in \Omega^*\}, |
is also bounded in \widehat{B_1} for every bounded subset \Omega^* of C^1\Big([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}\Big) . Then, by Theorem 3.3, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is bounded, \forall\; x\in [0, \mathcal{T}] and (\mathfrak{y}, \mathfrak{y}')\in\Omega^* . Hence, \exists a constant M_{\Omega^*} > 0 such that 3.11 holds.
Before proving our main result, we mention that by Theorem 3.3, \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) is measurable and \widehat{B_1} is a separable Banach space. Hence, by [21,Theorem 3.17] \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)) possess a measurable selection \xi such that \xi\in L^\infty \Big([0, \mathcal{T}]; \widehat{B_1}\Big)\subset L^2\Big([0, \mathcal{T}], \widehat{B_1}\Big) \forall (\mathfrak{y}, \mathfrak{y}')\in C^1\Big([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}\Big). So
\begin{equation} P_\mathfrak{F}(\mathfrak{y}, \mathfrak{y}'): = \Big\{\xi\in L^2([0, \mathcal{T}], \widehat{B_1})\; |\; \xi(t)\in \mathfrak{F}(x, \mathfrak{y}(x), \mathfrak{y}'(x)), \; \; a.e., \; x\in [0, \mathcal{T}]\Big\}, \end{equation} | (4.1) |
is well defined \forall (\mathfrak{y}, \mathfrak{y}')\in C^1([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}).
Lemma 4.1. Suppose that (I_1)-(I_4) hold and \widetilde{g}:[0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \widehat{B_1}^* is bounded and continuous. Then, multi-valued mapping P_\mathfrak{F} is strongly upper semicontinuous.
Proof. Let \{\mathfrak{y}_n, \mathfrak{y}_n'\}\subset C^1([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}) with (\mathfrak{y}_n, \; \mathfrak{y}_n')\to (\mathfrak{y}_0, \mathfrak{y}_0') in C^1([0, \mathcal{T}], \widehat{B_2}\times \widehat{B_2}) and \xi_n\in P_\mathfrak{F}(\mathfrak{y}_n, \mathfrak{y}_n') for n\in \mathbb{N} . Now, we need to prove that \exists a subsequence of \{\xi_n\} , such that \xi_n\to\xi_0\in P_\mathfrak{F}(\mathfrak{y}_0, \mathfrak{y}_0') .
Indeed, (I_5) confirms that the sequence \{\xi_n\} is bounded in L^2([0, \mathcal{T}], \widehat{B_1}) . Therefore, we can suppose \xi_n\to \xi_0 weakly in L^2([0, T], \widehat{B_1}) . By Lemma 2.1, there is \{\xi\} , a finite combination of the \{\xi_i: i\geq n\} with \bar{\xi_n}\to \xi_0 converges strongly in L^2([0, \mathcal{T}], \widehat{B_1}).
Since \mathfrak{F} is strongly weakly upper semicontinuous and (\mathfrak{y}_n, \mathfrak{y}_n')\to (\mathfrak{y}_0, \mathfrak{y}_0')\in C^1([0, \mathcal{T}], \widehat{B_2}), therefore for every weak neighborhood \mathcal{Y}_x of \mathfrak{F}(x, \mathfrak{y}_0(x), \mathfrak{y}_0'(x)) there exists a strong neighborhood
\mathfrak{F}(x, \mathfrak{y}, \mathfrak{y}')\subset \mathcal{Y}_x, \; \; \; { \forall }\; (\mathfrak{y}, \mathfrak{y}')\in \mathcal{U}_x. |
Which shows that \xi \in P_\mathfrak{F}(\mathfrak{y}_0, \mathfrak{y}_0'). Thus, by Proposition 2.3, P_\mathfrak{F} is strongly upper semi continuous.
We also need the following assumptions for achieving the goal.
(I_6) \widetilde{\mathfrak{g}}: [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}\to \widehat{B_1}^* is continuous and bounded;
(I_7) \widetilde{\mathcal{F}}(., \mathfrak{y}, .):[0, \mathcal{T}]\to \mathcal{L}(\widehat{B_1}, \widehat{B_2}) , \widetilde{\mathcal{F}}(., ., \mathfrak{y}'):[0, \mathcal{T}]\to \mathcal{L}(\widehat{B_1}, \widehat{B_2}) are measurable for all \mathfrak{y}, \mathfrak{y}'\in \widehat{B_2} and \widetilde{\mathcal{F}}(x, ., .):\widehat{B_2}\to \mathcal{L}(\widehat{B_2}, \widehat{B_1}) is continuous for a.e. x\in [0, \mathcal{T}], where \mathcal{L}(\widehat{B_1}, \widehat{B_2}) denotes the class of bounded linear operators from \widehat{B_1} to \widehat{B_2} , and there exists \rho_{\widetilde{\mathcal{F}}}\in L^2([0, \mathcal{T}], \mathbb{R_+}) and a non-decreasing continuous mapping \gamma_{\widetilde{\mathcal{F}}}:[0, \infty)\to [0, \infty) such that
\|\widetilde{\mathcal{F}}(x, \mathfrak{y}(x), \mathfrak{y}'(x))\|\leq \rho_{\widetilde{\mathcal{F}}}(x)\gamma_{\widetilde{\mathcal{F}}}\Big(\|\mathfrak{y}(x)\|_{\widehat{B_2}}+\|\mathfrak{y}'(x)\|_{\widehat{B_2}}\Big), \ {\rm{ \forall }}\;(x, \mathfrak{y}, \mathfrak{y}')\in [0, \mathcal{T}]\times \widehat{B_2}\times \widehat{B_2}. |
(I_8) \widetilde{\mathfrak{f}}(., \mathfrak{y}, .), \; \widetilde{\mathfrak{f}}(., ., \mathfrak{y}'):[0, \mathcal{T}]\to \widehat{B_2} are measurable for all \mathfrak{y}, \mathfrak{y}'\in \widehat{B_2} and there exists \rho_{\widetilde{\mathfrak{f}}}\in L^2\Big([0, \mathcal{T}], \mathbb{R_+}\Big) such that for x\in [0, \mathcal{T}] \widetilde{\mathfrak{f}}(x, ., .):\widehat{B_2}\to \widehat{B_2} satisfies
\begin{equation} \begin{cases} \|\widetilde{\mathfrak{f}}(x, \mathfrak{y}, \mathcal{y})-\widetilde{\mathfrak{f}}(x, \mathfrak{y}', \mathcal{y})\|\leq \rho_{\widetilde{\mathfrak{f}}}(x)\|\mathfrak{y}-\mathfrak{y}'\|_{\widehat{B_2}}, \cr \|\widetilde{\mathfrak{f}}(x, \mathfrak{y}, \mathcal{y})-\widetilde{\mathfrak{f}}(x, \mathfrak{y}, \mathcal{y}')\|\leq \rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{y}-\mathcal{y}'\|_{\widehat{B_2}}, \cr \|\widetilde{\mathfrak{f}}(x, 0, 0)\|\leq \rho_{\widetilde{\mathfrak{f}}}(x). \end{cases} \end{equation} | (4.2) |
The following result ensures the existence of solution of problem (2.1).
Theorem 4.1. Under the assumptions (I_1) – (I_8) , if the following inequalities hold
\begin{equation} \underset{\hat{k}\to \infty}{lim\; inf}\Big[\frac{\gamma_{\widetilde{\mathcal{F}}}(\hat{k})}{\hat{k}}\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}+\|\rho_{\widetilde{\mathfrak{f}}}(x)\|_{L^2}+\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\hat{k}\mathcal{T}^{1/2}}\Big] < \frac{1}{\delta \mathcal{T}^{1/2}}, \end{equation} | (4.3) |
\begin{equation} \|Q(x_1)-Q(x_2)\|\leq \|x_1-x_2\|\; \mathit{\mbox{and}}\; \|R(x_1)-R(x_2)\|\leq \|x_1-x_2\|, \end{equation} | (4.4) |
where
\begin{equation*} \delta = max\Big\{\underset{x\in J}{sup}\|Q(x)\|_{L(\widehat{B_2})}, \; \; \underset{x\in J}{sup}\|R(x)\|_{L(\widehat{B_2})}\Big\}, \end{equation*} |
and M_{\|\widetilde{\mathfrak{g}}\|} > 0 is a constant stated in Theorem 3.2, then, the problem (2.1) has at least one mild solution (\mathfrak{y}, \widehat{\mathfrak{u}}).
Proof. We define the multi-valued mapping \Gamma: C^1([0, \mathcal{T}], \widehat{B_2})\to \Pi(C^1([0, \mathcal{T}], \widehat{B_2})) such that
\begin{eqnarray} \Gamma(\mathfrak{y}): = \Big\{y\in C^1([0, \mathcal{T}], \widehat{B_2})\Big{|}\; y(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)\Big[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\Big]dp, \; x\in [0, \mathcal{T}], \; \xi\in P_\mathfrak{F}(x)\Big\}, \\ \end{eqnarray} | (4.5) |
where P_\mathfrak{F} is defined in (4.1). Our aim is to show that Fix(\Gamma)\neq \phi .
Step-Ⅰ. \Gamma(\mathfrak{y})\in \Pi_{cv}\Big(C^1([0, \mathcal{T}], \widehat{B_2})\Big) for each \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).
Clearly, \Gamma(\mathfrak{y}) is convex for every \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}) due to the convexity of P_\mathfrak{F}(\mathfrak{y}).
Since for each y\in \Gamma(\mathfrak{y}), we can choose \xi\in P_\mathfrak{F}(\mathfrak{y}) such that
\begin{eqnarray*} y(x)& = &Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{eqnarray*} |
which implies that,
\begin{eqnarray*} \|y(x)\|&\leq& \|\mathfrak{y}_0Q(x)\|+\|y_0R(x)\|+\Big\|\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|\\ &\leq& \delta \|\mathfrak{y}_0\|+\delta \|y_0\|+\delta \Big[\int_{0}^{x}\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\|dp\\ &&+\int_{0}^{x}\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp\Big]. \end{eqnarray*} |
Using (I_7) and (I_8) and applying Hölder's inequality,
\begin{eqnarray*} \|y(x)\|&\leq& \delta \|\mathfrak{y}_0\|+\delta \|y_0\|+\delta \Big[\int_{0}^{x}\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\|dp\\ &&+\int_{0}^{x}\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dt\Big], \\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta \Big[\int_{0}^{x}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}dp\\ &&+\int_{0}^{x}\rho_{\widetilde{\mathfrak{f}}}(p)(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)dp\Big]\\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta \gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\int_{0}^{x}\rho_{\widetilde{\mathcal{F}}}(p)dp\\ &&+\delta(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\int_{0}^{x}\rho_{\widetilde{\mathfrak{f}}}(p)dp, \\ & = &\delta\Big(\|\mathfrak{y}_0\|+\|y_0\|+\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}\|\mathcal{T}^{1/2}\\ &&+(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\|\rho_{\widetilde{\mathfrak{f}}}\|\mathcal{T}^{1/2}\Big)\\ & = &\delta \mathcal{T}^{1/2}\Big[\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\mathcal{T}^{1/2}}+\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}\|\\ &&+(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\|\rho_{\widetilde{\mathfrak{f}}}\|\Big]. \end{eqnarray*} |
Hence, \Gamma(\mathfrak{y}) is bounded in C^1([0, \mathcal{T}], \widehat{B_2}) for each \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).
Next we shall prove that \Gamma(\mathfrak{y}) is a collection of equicontinuous mappings \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).
\begin{eqnarray} \|y(x_2)-y(x_1)\|_{\widehat{B_2}}& = &\Big\|\mathfrak{y}_0Q(x_2)+y_0R(x_2)+\int_{0}^{x_2}R(x_2-p)\Big[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\nonumber\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\Big]dp-\mathfrak{y}_0Q(x_1)-y_0R(x_1)\nonumber\\ &&-\int_{0}^{x_1}R(x_1-t)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|_{\widehat{B_2}} \\ &\leq&\|\mathfrak{y}_0\|\|Q(x_2)-Q(x_1)\|+\|y_0\|\|R(x_2)-R(x_1)\|\\ &&+\Big\|\int_{0}^{x_2}R(x_2-t)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&-\int_{0}^{x_1}R(x_1-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&+\int_{0}^{x_1}R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&-\int_{0}^{x_1}R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|\\ &\leq& \|\mathfrak{y}_0\|\|x_2-x_1\|+\|y_0\|\|x_2-x_1\|+\int_{x_1}^{x_2}\Big\|R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \\ &&\mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|+\int_{0}^{x_1}\Big\|(R(x_2-p) \\ &&-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ & = &(\|\mathfrak{y}_0\|+\|y_0\|)\|x_2-x_1\|+I_1+I_2, \end{eqnarray} | (4.6) |
\begin{eqnarray} \label{eq4.6} \text{where} \quad I_1& = &\int_{x_1}^{x_2}\Big\|R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|, \\ \text{and}\ \ \ \ \quad I_2& = &\int_{0}^{x_1}\Big\|(R(x_2-p)-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp. \end{eqnarray} |
Applying Hölder's inequality, we have
\begin{eqnarray} I_1&\leq& \int_{x_1}^{x_2}\|R(x_2-p)\|\|[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\|dp\\ &&+\int_{x_1}^{x_2}\|R(x_2-p)\|\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\|dp\\ &\leq& \int_{x_1}^{x_2}\delta M_{\|\widetilde{\mathfrak{g}}\|}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)dp\\ &&+\int_{x_1}^{x_2}\delta\gamma_{\widetilde{\mathfrak{g}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)dp, \\ & = &\delta M_{\|\widetilde{\mathfrak{g}}\|}\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\|\rho_{\widetilde{\mathcal{F}}}(p)\|(x_2-x_1)^{1/2}\\ &&+\delta \gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)(x_2-x_1)^{1/2}\\ & = &\delta (x_2-x_1)^{1/2}\Big[M_{\|\widetilde{\mathfrak{g}}\|}\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p))\|\rho_{\widetilde{\mathcal{F}}}(p)\|\\ &&+\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\Big]\rightarrow 0\text{ as } x_1\to x_2. \end{eqnarray} | (4.7) |
Further by Proposition 2.2 and (4.4) and Hölder's inequality, we have
\begin{eqnarray} I_2& = &\int_{0}^{x_1}\Big\|(R(x_2-p)-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ & = &\Big\|\int_{0}^{x_1}[R(p)(Q(x_2)-Q(x_1))+Q(p)(R(x_1)-R(x_2))]\\ &&\times[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ &\leq& \int_{0}^{x_1}\|R(p)\|\|Q(x_1)-Q(x_2)\|\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp+\int_{0}^{x_1}\|Q(p)\|\|R(x_1)-R(x_2)\|\\ &&\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp\\ &\leq& \int_{0}^{x_1}\delta\|x_1-x_2\|\Big[\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|\|\xi(p)\|\\ &&+\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|\Big]dp+\int_{0}^{x_1}\delta \|x_1-x_2\|\\ &&\times[\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|+\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|]dp\\ &\leq&2\delta(\|x_1-x_2\|)\int_{0}^{x_1}[M_{\|\widetilde{\mathfrak{g}}\|}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\\ &&+\rho_{\widetilde{\mathfrak{f}}}(p)\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)]dp, \\ &\leq&2\delta\|x_1-x_2\|\Big[M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}(p)\|\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\\ &&+\gamma_{\widetilde{\mathcal{F}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\Big]x^{1/2}\to0\text{ as } x_1\to x_2. \end{eqnarray} | (4.8) |
From (4.6)–(4.8), we have
\begin{equation*} \|y(x_2)-y(x_1)\|_{\widehat{B_2}}\longrightarrow 0, \; \mbox{as}\; \; x_1\to x_2. \end{equation*} |
Hence, \Gamma(\mathfrak{y}) is equicontinuous, \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}). By Arzela-Ascoli theorem [34], we obtained that \Gamma(\mathfrak{y}) is relatively compact \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).
Now, we have to check that \Gamma(\mathfrak{y}) is closed in C^1([0, \mathcal{T}], \widehat{B_2}) \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).
Let \{y_n\}\subset \Gamma(\mathfrak{y}) is a sequence with y_n\to y^* in C^1([0, \mathcal{T}]; \widehat{B_2}) as n\to \infty . Hence, there exist a sequence \{\xi_n\}\subset P_\mathfrak{F}(\mathfrak{y}) such that
\begin{equation*} y_n(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi_n(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{equation*} |
x\in [0, \mathcal{T}]. By (iii) of Theorem 3.3, it follows that the sequence \{\xi_n\} is weakly relatively compact. Since P_\mathfrak{F}(\mathfrak{y}) is upper semicontinuity (see Lemma 4.1), we may assume \xi_n\to \xi^*\in P_\mathfrak{F}(\mathfrak{y}) in L^2([0, \mathcal{T}], \widehat{B_1}) , where \xi^*\in P_\mathfrak{F}(\mathfrak{y}) . On the other hand, by strongly continuity of Q(x) and R(x) for x > 0 , we have
\begin{equation*} y^*(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi^*(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{equation*} |
x\in [0, \mathcal{T}]. Which implies that y^*\in \Gamma(\mathfrak{y}) , that is \Gamma(\mathfrak{y})\in \Pi_{cv}(C^1[0, \mathcal{T}], \widehat{B_2}) .
Step-Ⅱ. The multi-valued mapping \Gamma is closed.
For this assume \mathfrak{y}_n\to \mathfrak{y}^* and y_n\to y^* in C^1([0, \mathcal{T}], \widehat{B_2}) with y_n\in \Gamma(\mathfrak{y}_n) \forall \; n\in \mathbb{N}. We need to prove that y^*\in \Gamma(\mathfrak{y}^*). From the definition of multi-valued map \Gamma , we may take \xi_n\in P_\mathfrak{F}(\mathfrak{y}_n) \forall\; n\in \mathbb{N} such that
\begin{eqnarray} y_n(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}_n(p), \mathfrak{y}_n{'}(p))\xi_n(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_n(p), \mathfrak{y}_n{'}(p))]dp, \\ x\in [0, \mathcal{T}].\\ \end{eqnarray} | (4.9) |
With the help of Theorem 3.3 and Lemma 4.1, we may consider that \xi_n\rightharpoonup \xi^*\in P_\mathfrak{F}(\mathfrak{y}^*) . By using, I_8 we get that \widetilde{\mathfrak{f}}(., \mathfrak{y}_n(.), \mathfrak{y}_n'(.))\to \widetilde{\mathfrak{f}}(., \mathfrak{y}^*, \mathfrak{y}^*{'}) in L^2([0, \mathcal{T}], \widehat{B_2}) .
By using the continuity of \widetilde{\mathcal{F}}(x, ., .) and strongly continuity of Q(x) , R(x) for x > 0 , we obtain from (4.9) that
\begin{eqnarray*} y^*(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}^*(p), \mathfrak{y}^*{'}(p))\xi^*(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}^*(p), \mathfrak{y}^*{'}(p))]dp, \\ x\in [0, \mathcal{T}], \end{eqnarray*} |
and \xi^*\in P_\mathfrak{F}(\mathfrak{y}) . Thus \mathfrak{y}^*\in \Gamma(\mathfrak{y}^*).
Step-Ⅲ. \Gamma is \chi_T condensing.
Let \mathcal{D}\subset \Pi_b(C^1([0, \mathcal{T}], \widehat{B_2})). Therefore, \mathcal{D} is not relatively compact subset of C^1([0, \mathcal{T}], \widehat{B_2}). For \mathcal{D} , we need to prove that \chi_\mathcal{T}(\mathcal{(D)})\nleq \chi_\mathcal{T}(\Gamma(\mathcal{(D)})). Since \mathcal{D} is bounded subset of C^1([0, \mathcal{T}], \widehat{B_2}) , then by applying the same technique as in Step-I, we may prove that \Gamma(\mathcal{(D)}) is relatively compact, that is, \chi_\mathcal{T}(\mathcal{D}) = 0. Hence, \chi_\mathcal{T}(\mathcal{(D)})\leq \chi_\mathcal{T}(\Gamma(\mathcal{D})) = 0 implies that \mathcal{D} is relatively compact by regularity of \chi_T , we conclude that \Gamma is \chi_\mathcal{T} -condensing.
Step-Ⅳ. \exists a constant M_\mathfrak{R} > 0 such that
\begin{equation} \Gamma(\bar{B}_{M_\mathfrak{R}}\subset \bar{B}{M_\mathfrak{R}}): = \{\mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}):\|\mathfrak{y}\|_C\leq M_\mathfrak{R}\}\subset C^1([0, \mathcal{T}], \widehat{B_2}). \end{equation} | (4.10) |
Let us assume that \forall k > 0, \exists two sequences \{\mathfrak{y}_k\} and \{y_k\} such that
\|\mathfrak{y}_k\|_{C^1([0, \mathcal{T}], \widehat{B_2})}, \; \|\mathfrak{y}_k^{'}\|_{C^1([0, \mathcal{T}], \widehat{B_2})}\leq k/2 and y_k\in \Gamma(\mathfrak{y}_k) such that \|y_k\| > 0 . Hence, there is \xi_k\in P_\mathfrak{F}(\mathfrak{y}_k) such that
\begin{eqnarray*} y_k(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))\xi_k(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))]dp, \\ \; \; x\in [0, \mathcal{T}]. \end{eqnarray*} |
Using Hölder's inequality, for every x\in [0, \mathcal{T}] , we have
\begin{eqnarray*} \|\mathfrak{y}_k(x)\|&\leq& \|Q(x)\|\|\mathfrak{y}_0\|+\|R(x)\|\|y_0\|\\ && +\int_{0}^{x}\|R(x-p)\|\|[\widetilde{\mathcal{F}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))\xi_k(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))]\|dp, \\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\int_{0}^{x}\delta[\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}_k\|+\|\mathfrak{y}_k{'}\|)\rho_{\widetilde{\mathcal{F}}}(p)M_{\|\widetilde{\mathfrak{f}}\|}]dp\\ &&+\int_{0}^{x}\delta\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}_k\|+\|\mathfrak{y}_k^{'}\|)\rho_{\widetilde{\mathfrak{f}}}(p)dp\\ &\leq&\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\int_{0}^{x}\delta[\gamma_{\widetilde{\mathcal{F}}}(k)\rho_{\widetilde{\mathcal{F}}}(p)M_{\|\widetilde{\mathfrak{g}}\|}]dp\\ &&+\int_{0}^{x}\delta\gamma_{\widetilde{\mathfrak{f}}}(1+k)\rho_{\widetilde{\mathfrak{f}}}(p)dp\\ &\leq&\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}\mathcal{T}^{1/2}\\ &&+\delta\gamma_{\widetilde{\mathfrak{f}}}(1+\kappa)\|\rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{T}^{1/2}\\ & = &\delta \mathcal{T}^{1/2}\Big[\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}+\gamma_{\widetilde{\mathfrak{f}}}(1+k)\|\rho_{\widetilde{\mathfrak{g}}}(x)\|+\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\mathcal{T}^{1/2}}\Big], \end{eqnarray*} |
we obtain by using (4.9),
\begin{eqnarray*} 1&\leq& \underset{k\to \infty}{lim\; inf}\frac{\|y_k\|_{C^1([0, \mathcal{T}], \widehat{B_2})}}{k}\\ &\leq&\underset{k\to \infty}{lim\; inf}\Big[\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}\mathcal{T}^{1/2}+\gamma_{\widetilde{\mathfrak{f}}}(1+k)\|\rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{T}^{1/2}+(\|\mathfrak{y}_0\|+\|y_0\|)\Big]\\ & < &1, \end{eqnarray*} |
which is a contradiction. Therefore there exists M_\mathfrak{R} such that (4.10) holds.
Thus, all requirements of Theorem 2.1 are fulfilled. This implies that Fix\Gamma\neq \phi in \overline{B}_{M_\mathfrak{R}}. Therefore, (SOEPDVLI) has at least one mild solution (\mathfrak{y}, \widehat{\mathfrak{u}}).
In this paper, a second order evolutionary partial differential variational-like inequality problem is introduced and studied in a Banach space, which is much more general than the considered by Liu-Migórski-Zeng [14], Li-Huang-O'Regan [13] and Wang-Li-Li-Huang [33] etc. We investigate suitable conditions to prove an existence theorem for our problem by using the theory of strongly continuous cosine family of bounded linear operator, fixed point theorem for condensing set-valued mapping and the theory of measure of non-compactness.
The authors are highly thankful to anonymous referees and the editor for their valuable suggestions and comments which improve the manuscript a lot.
The authors declare that they have no conflicts of interest.
[1] | M. Beria, Confidence interval estimation for a geometric distribution, UNLV Retrospective Theses & Dissertations, 2015 (2005), 1924. http://doi.org/10.25669/too9-2lgp |
[2] | F. Y. Chen, The goodness-of-fit tests for geometric models, Dissertations, 2013 (2013), 350. https://digitalcommons.njit.edu/dissertations/350 |
[3] | L. Bertoli-Barsotti, T. Lando, A geometric model for the analysis of citation distributions, International Journal of Mathematical Models and Methods in Applied Sciences, 9 (2015), 315–319. |
[4] | A. Slim, G. L. Heileman, M. Hickman and C. T. Abdallah, A geometric distributed probabilistic model to predict graduation rates, 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 2017, 1–8. http://doi.org10.1109/UIC-ATC.2017.8397646 |
[5] | W. K. Gao, An extended geometric process and its application in replacement policy, P. I. Mech. Eng. O-J. Ris., 234 (2020), 88–103. http://doi.org10.1177/1748006X19868891 |
[6] | E. Altun, A new generalization of geometric distribution with properties and applications, Commun. Stat.-Simul. C., 49 (2020), 793–807. https://doi.org/10.1080/03610918.2019.1639739 |
[7] | M. M. A. Almazah, T. Erbayram, Y. Akdoğan, M. M. A. Sobhi, A. Z. Afify, A new extended geometric distribution: properties, regression model, and actuarial applications, Mathematics, 9 (2021), 1336. http://doi.org10.3390/math9121336 |
[8] | Z. Y. Zhang, X. T. Tang, Q. Huang, W. J. Lee, Preemptive medium-low voltage arc flash detection with geometric distribution analysis on magnetic field, IEEE T. Ind. Appl., 57 (2021), 2129–2137. http://doi.org10.1109/TIA.2021.3057314 |
[9] | I. Ghosh, F. Marques, S. Chakraborty, A bivariate geometric distribution via conditional specification: properties and applications, Commun. Stat.-Simul. C., 52 (2023), 5925–5945. http://doi.org10.1080/03610918.2021.2004419 |
[10] | N. Abbas, On classical and Bayesian reliability of systems using bivariate generalized geometric distribution, J. Stat. Theory Appl., 22 (2023), 151–169. https://doi.org/10.1007/s44199-023-00058-4 |
[11] | Y. Akdoğan, C. Kuş, A. Asgharzadeh, İ. Kınacı, F. Sharafi, Uniform-geometric distribution, J. Stat. Comput. Sim., 86 (2016), 1754–1770. http://doi.org10.1080/00949655.2015.1081907 |
[12] | S. Nadarajah, S. A. A. Bakar, An exponentiated geometric distribution, Appl. Math. Model., 40 (2016), 6775–6784. https://doi.org/10.1016/j.apm.2015.11.010 |
[13] | A. S. Hassan, M. A. Abdelghafar, Exponentiated Lomax geometric distribution: properties and applications, Pak. J. Stat. Oper. Res., 13 (2017), 545–566. https://doi.org/10.18187/pjsor.v13i3.1437 |
[14] | A. T. Ramadan, A. H. Tolba, B. S. El-Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 |
[15] | F. Smarandache, Introduction to neutrosophic statistics: infinite study, Columbus: Romania-Educational Publisher, 2014. http://doi.org10.13140/2.1.2780.1289 |
[16] | F. Smarandache, Neutrosophic statistics is an extension of interval statistics, while Plithogenic statistics is the most general form of statistics (second version), International Journal of Neutrosophic Science, 19 (2022), 148–165. http://doi.org10.54216/IJNS.190111 |
[17] | J. Q. Chen, J. Ye, S. G. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 |
[18] | J. Q. Chen, J. Ye, S. G. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 |
[19] | W. Q. Duan, Z. Khan, M. Gulistan, A. Khurshid, Neutrosophic exponential distribution: modeling and applications for complex data analysis, Complexity, 2021 (2021), 5970613. https://doi.org/10.1155/2021/5970613 |
[20] | C. Granados, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Hacet. J. Math. Stat., 51 (2022), 1442–1457. http://doi.org10.15672/hujms.1099081 |
[21] | C. Granados, A. K. Das, D. A. S. Birojit, Some continuous neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Advances in the Theory of Nonlinear Analysis and its Application, 6 (2023), 380–389. https://doi.org/10.31197/atnaa.1056480 |
[22] | M. Aslam, Simulating imprecise data: sine-cosine and convolution methods with neutrosophic normal distribution, J. Big Data, 10 (2023), 143. https://doi.org/10.1186/s40537-023-00822-4 |
[23] | M. Aslam, Truncated variable algorithm using DUS-neutrosophic Weibull distribution, Complex Intell. Syst., 9 (2023), 3107–3114. https://doi.org/10.1007/s40747-022-00912-5 |
[24] | M. Aslam, Uncertainty-driven generation of neutrosophic random variates from the Weibull distribution, J. Big Data, 10 (2023), 177. https://doi.org/10.1186/s40537-023-00860-y |
[25] | M. Aslam, F. S. Alamri, Algorithm for generating neutrosophic data using accept-reject method, J. Big Data, 10 (2023), 175. https://doi.org/10.1186/s40537-023-00855-9 |
[26] | M. Jdid, R. Alhabib, A. A. Salama, The basics of neutrosophic simulation for converting random numbers associated with a uniform probability distribution into random variables follow an exponential distribution, Neutrosophic Sets Sy., 53 (2023), 358–366. http://doi.org10.5281/zenodo.7536049 |
[27] | N. T. Thomopoulos, Essentials of Monte Carlo simulation: Statistical methods for building simulation models, New York: Springer, 2013. http://doi.org10.1007/978-1-4614-6022-0 |