Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Ditch control and land reclamation promote vegetation recovery in Loess Plateau


  • Received: 15 August 2023 Revised: 08 January 2024 Accepted: 01 February 2024 Published: 18 February 2024
  • This study aimed to assess the impact of land consolidation projects and climate change on changes in vegetation in the Loess Plateau during 2012–2021. The study also explored the impacts of human activities and climate change on the ecological quality of the Loess Plateau during this period. The spatial and temporal normalized difference combined meteorological monitoring data, project data, and normalized difference vegetation index (NDVI) data that was used to create the vegetation index dataset spanning from 2012–2021. The study discussed and assessed the effectiveness of the project, revealing the following results: 1) A significant increase was observed in the vegetation index of the Loess Plateau region from 2012 to 2021, with an upward trend of 0.0024 per year (P < 0.05). 2) Contributions to changes in vegetation attributed to climatic factors and the anthropogenic factors of the ditch construction project were 82.74 and 17.62%, respectively, with climatic factors dominating and the degree of response of the ditch construction project increasing annually. 3) In the Loess Plateau, climatic variables dominated changes in vegetation. However, land consolidation projects in vegetation factors played a key role in changes in vegetation, and the degree of influence was gradually increasing.

    Citation: Hui Kong, Liangyan Yang, Dan Wu, Juan Li, Shenglan Ye. Ditch control and land reclamation promote vegetation recovery in Loess Plateau[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3784-3797. doi: 10.3934/mbe.2024168

    Related Papers:

    [1] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [2] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
    [5] Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
    [6] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [7] Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227
  • This study aimed to assess the impact of land consolidation projects and climate change on changes in vegetation in the Loess Plateau during 2012–2021. The study also explored the impacts of human activities and climate change on the ecological quality of the Loess Plateau during this period. The spatial and temporal normalized difference combined meteorological monitoring data, project data, and normalized difference vegetation index (NDVI) data that was used to create the vegetation index dataset spanning from 2012–2021. The study discussed and assessed the effectiveness of the project, revealing the following results: 1) A significant increase was observed in the vegetation index of the Loess Plateau region from 2012 to 2021, with an upward trend of 0.0024 per year (P < 0.05). 2) Contributions to changes in vegetation attributed to climatic factors and the anthropogenic factors of the ditch construction project were 82.74 and 17.62%, respectively, with climatic factors dominating and the degree of response of the ditch construction project increasing annually. 3) In the Loess Plateau, climatic variables dominated changes in vegetation. However, land consolidation projects in vegetation factors played a key role in changes in vegetation, and the degree of influence was gradually increasing.



    Let q be a positive integer. For each integer a with 1a<q,(a,q)=1, we know that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let r(q) be the number of integers a with 1a<q for which a and ˉa are of opposite parity.

    D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:

    r(q)=12ϕ(q)+O(q12d2(q)log2q).

    Zhang [4] generalized the problem over short intervals and proved that

    aNaR(q)1=12Nϕ(q)q1+O(q12d2(q)log2q),

    where

    R(q):={a:1aq,(a,q)=1,2a+ˉa}.

    Let n2 be a fixed positive integer, q3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ21. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

    rn(δ1,δ2,c;q):=aδ1qˉaδ2qaˉacmod

    and obtained an interesting asymptotic formula,

    r_{n}\left(\delta_{1}, \delta_{2}, c ; q\right) = \left(1-n^{-1}\right) \delta_{1} \delta_{2} \phi(q)+O\left(q^{\frac{1}{2}} d^{6}(q) \log ^{2} q\right).

    Liu and Zhang [6] r -th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers \alpha and \beta , the associated non-homogeneous Beatty sequence is the sequence of integers defined by

    \mathcal{B}_{\alpha, \beta}: = (\lfloor\alpha n+\beta\rfloor)_{n = 1}^{\infty},

    where \lfloor t\rfloor denotes the integer part of any t \in \mathbb{R} . Such sequences are also called generalized arithmetic progressions. If \alpha is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that \mathcal{B}_{\alpha, \beta} contains infinitely many prime numbers; in fact, one has the asymptotic estimate

    \#\left\{\text { prime } p \leqslant x: p \in \mathcal{B}_{\alpha, \beta}\right\} \sim \alpha^{-1} \pi(x) \quad \text { as } \quad x \rightarrow \infty

    where \pi(x) is the prime counting function.

    We define type \tau = \tau(\alpha) for any irrational number \alpha by the following definition:

    \tau: = \sup \left\{t \in \mathbb{R}: \liminf \limits_{n \rightarrow \infty} n^t\|\alpha n\| = 0\right\}.

    Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,

    r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right): = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in B_{\alpha,\beta}} \atop \scriptstyle {n \nmid x_{1}+\cdots+x_{k}}}} 1,(0 < \delta_{1}, \delta_{2},\cdots, \delta_{k} \leq 1),

    and where k = 2, we get the result of [7].

    By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.

    Theorem 1.1. Let k \geq 2 be a fixed positive integer, q\geq n^{3} and c be two integers with (n, q) = (c, q) = 1 , and \delta_{1}, \delta_{2}, \cdots, \delta_{k} be real numbers satisfying 0 < \delta_{1}, \delta_{2}, \cdots, \delta_{k} \leq 1 . Let \alpha > 1 be an irrational number of finite type. Then, we have the following asymptotic formula:

    r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = \left(1-n^{-1}\right) \alpha^{-(k-1)} \delta_{1} \delta_{2} \cdots \delta_{k}\phi^{k-1}(q)+O(q^{k-1-\frac{1}{\tau+1}+\varepsilon} ),

    where \phi(\cdot) is the Euler function, \varepsilon is a sufficiently small positive number, and the implied constant only depends on n .

    Notation. In this paper, we denote by \lfloor t\rfloor and \{t\} the integral part and the fractional part of t , respectively. As is customary, we put

    \mathbf{e}(t): = e^{2 \pi i t} \quad \text { and } \quad\{t\}: = t-\lfloor t\rfloor .

    The notation \|t\| is used to denote the distance from the real number t to the nearest integer; that is,

    \|t\|: = \min \limits_{n \in \mathbb{Z}}|t-n| .

    Let \chi^{0} be the principal character modulo q . The letter p always denotes a prime. Throughout the paper, \varepsilon always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters \alpha, n, \varepsilon but are absolute otherwise. For given functions F and G , the notations F \ll G , G \gg F and F = O(G) are all equivalent to the statement that the inequality |F| \leqslant \mathcal{C}|G| holds with some constant \mathcal{C} > 0 .

    To complete the proof of the theorem, we need the following several definitions and lemmas.

    Definition 2.1. For an arbitrary set \mathcal{S} , we use \mathbf{1}_{\mathcal{S}} to denote its indicator function:

    \mathbf{1}_{\mathcal{S}}(n): = \begin{cases}1 & { if } \;n \in \mathcal{S}, \\ 0 & { if }\; n \notin \mathcal{S} .\end{cases}

    We use \mathbf{1}_{\alpha, \beta} to denote the characteristic function of numbers in a Beatty sequence:

    \mathbf{1}_{\alpha, \beta}(n): = \begin{cases}1 & { if } \;n \in \mathcal{B}_{\alpha, \beta}, \\ 0 & { if }\; n \notin \mathcal{B}_{\alpha, \beta}.\end{cases}

    Lemma 2.2. Let a, q be integers, \delta \in(0, 1) be a real number, \theta be a rational number. Let \alpha be an irrational number of finite type \tau and H = q^{\varepsilon} > 0 . We have

    \sum\limits_{\scriptstyle {a \le \delta q} \atop \scriptstyle{a \in {{\cal B}_{\alpha ,\beta }}}} ' 1 = \alpha^{-1} \delta \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right),

    and

    \sum\limits_{\substack{a \leqslant \delta q \\ a \in \mathcal{B}_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-1} q^{-\varepsilon}+q^{\varepsilon}\right).

    Taking

    H = \|\theta\|^{-\frac{1}{\tau+1}+\varepsilon},

    we have

    \sum\limits_{\substack{a \leqslant \delta q \\ a \in B_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-\left(\frac{\tau}{\tau+1}+\varepsilon\right)}\right) .

    Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

    Lemma 2.3. Let

    \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) = \sum\limits_{x_{1} \leqslant q-1} \cdots \sum\limits_{x_{k-1} \leqslant q-1} \mathbf{e}\left(\frac {r_{1}x_{1}+\cdots+r_{k-1}x_{k-1}+ r_{k}\overline{x_{1} \cdots x_{k-1}}}{p}\right).

    Then

    \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) \ll q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}, q\right)^{\frac{1}{2}}

    where (a, b, c) is the greatest common divisor of a, b and c .

    Proof. See [9].

    Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If

    a = \frac{s}{r}+\frac{\theta}{r^{2}}, \quad(r, s) = 1, r \geq 1,|\theta| \leq 1,

    then

    \sum\limits_{k \leqslant K} \min (U, \frac{1}{\|a k+b\|}) \ll (\frac{K}{r}+1 )(U+r \log r).

    Proof. The proof is given in [10].

    We begin by the definition

    r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = S_{1}-S_{2},

    where

    S_{1}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}} }} 1,

    and

    S_{2}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle{x_{1} \cdots x_{k} \equiv c\bmod q }\atop {\scriptstyle{x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}}\atop \scriptstyle{n \mid x_{1}+\cdots+x_{k}}}} 1.

    By the Definition 2.1, Lemma 2.2 and congruence properties, we have

    \begin{aligned} S_{1}& = \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{x_{1} \cdots x_{k} \equiv c\bmod q }\mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = \frac{1}{\phi(q)} \sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{11}+S_{12}, \end{aligned}

    where

    \begin{align*} S_{11}: = \frac{1}{\phi(q)}\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*}

    and

    S_{12}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left(\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} ( x_{1}) \cdots \mathbf{1}_{\alpha,\beta}( x_{k-1} )\right).

    For S_{2} , it follows that

    \begin{aligned} S_{2}& = \frac{1}{\phi(q)} \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{1}+\cdots+x_{k}} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{21}+S_{22}, \end{aligned}

    where

    \begin{align*} S_{21}: = \frac{1}{\phi(q)} \mathop{\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} }_{n \mid x_{1}+\cdots+x_{k}} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*}

    and

    \begin{align*} S_{22}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \mathop{{\sum\limits_{x_{1} \leqslant \delta_{1} q}} \cdots {\sum\limits_{x_{k} \leqslant \delta_{k} q}}}_{n \mid x_{1}+\cdots+x_{k}} \chi(x_{1}) \cdots \chi(x_{k-1}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1}\right) . \end{align*}

    From the classical bound

    \sum \limits_{a \le \delta q}' 1 = \delta \phi(q)+O\left(d(q)\right)

    and Lemma 2.2, we have

    \begin{align} S_{11}& = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}1\right) \\ & = \left(\delta_{k}+O\left(\frac{d(q)}{\phi(q)}\right)\right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right) \\ & = \alpha^{-(k-1)}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O\left(q^{k-1-\frac{1}{\tau+1}+\varepsilon}\right). \end{align} (3.1)

    From Lemma 2.2, we obtain

    \begin{align} S_{21}& = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left(\mathop{\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{k}+(x_{1}+ \cdots +x_{k-1})}1\right) \\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{\sum\limits_{x_{k} \leqslant \delta_{k} q }}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1}) \bmod n} \sum\limits_{\substack{d \mid(x_{k}, q)}} \mu(d)\right)\\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \mathop{\mathop{\sum\limits_{x_{k} \leqslant \delta_{k}q}}_{d \mid x_{k}}}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1})\bmod n} 1 \right) \\ & = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \left( \frac{\delta_{k}q}{nd}+O(1)\right)\right) \\ & = \frac{1}{\phi(q)}\left(\frac{\delta_{k}\phi(q)}{n}+O\left(d(q)\right) \right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right)\\ & = \alpha^{-(k-1)}n^{-1}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O (q^{k-1-\frac{1}{\tau+1}+\varepsilon} ). \end{align} (3.2)

    By the properties of exponential sums,

    \begin{align} S_{22} = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left({\sum\limits_{x_{1} \leqslant \delta_{1} q}}\cdots {\sum\limits_{x_{k} \leqslant \delta_{k-1} q}}\chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\right) \\ &\times \left(\sum \limits_{l = 1}^{n}\mathbf{e}(\frac{x_{1}+\cdots+x_{k}}{n}l) \right)\\ = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n} \prod \limits_{i = 1}^{k-1}\left( \sum\limits_{x_{i} \leqslant \delta_{i} q}\mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e}(\frac{x_{i}}{n} l)\right)\left( \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l)\right). \end{align} (3.3)

    Let

    G(r, \chi): = \sum\limits_{h = 1}^{q} \chi(h) \mathbf{e} (\frac{r h}{q} )

    be the Gauss sum, and we know that for \chi \neq \chi_{0} ,

    \chi(x_{i}) = \frac{1}{q} \sum\limits_{r = 1}^{q} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ) = \frac{1}{q} \sum\limits_{r = 1}^{q-1} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ),

    and

    \frac{l}{n}-\frac{r}{q} \neq 0

    for 1 \leqslant l \leqslant n, 1 \leqslant r \leqslant q-1 and (n, q) = 1 .

    Therefore,

    \begin{equation} \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l ) = \frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{h})-1}, \end{equation} (3.4)

    where

    f(\delta, l, r ; n, p): = 1-\mathbf{e}\left( (\frac{l}{n}-\frac{r}{q} )\lfloor\delta q\rfloor\right)

    and

    \left|f\left(\delta_{k}, l, r_{k} ; n, q\right)\right| \leqslant 2.

    For x_{i}(1\leqslant i \leqslant k-1) , using Lemma 2.2, we also have

    \begin{align} & \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e} (\frac{x_{i}}{n} l ) \\ = & \frac{1}{q} \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\alpha^{-1}\sum\limits_{a \leqslant \delta_{i} q} \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right)+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) \\ = &\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\frac{f\left(\delta_{i} , l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n} )-1}+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) . \end{align} (3.5)

    Let

    \begin{align} S_{23}& = \frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1} \left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \frac{f\left(\delta_{i}, l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n})-1}\right)\left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) \\ & = \frac{1}{n \phi(q) q^{k} \alpha^{k-1}} \sum\limits_{l = 1}^{n}\sum\limits_{r_{1} = 1}^{q-1}\cdots \sum\limits_{r_{k} = 1}^{q-1} \frac{f\left(\delta_{1} , l, r_{1} ; n, q\right)\cdots f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\left(\mathbf{e} (\frac{r_{1}}{q}-\frac{l}{n} )-1\right)\cdots \left(\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{n} )-1\right)} \\ &\times \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right). \end{align} (3.6)

    From the definition of Gauss sum and Lemma 2.3, we know that

    \begin{align} &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\sum\limits_{\chi \mathrm{mod}q}\chi(\overline c)\chi(h_{1})\cdots \chi(h_{k})\mathbf{e} ( \frac{r_{1}h_{1}+\cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\mathop{\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}}_{h_{1} \cdots h_{k} \equiv c \bmod q}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots r_{k-1}h_{k-1}+r_{k}c\overline{h_{1} \cdots h_{k-1}}}{q} )\\ = &\phi(q) \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k}c;q) \\ \ll& \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}c, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}c, q\right)^{\frac{1}{2}} \\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} (3.7)

    By Mobius inversion, we get

    G(r, \chi_{0}) = \sum\limits_{h = 1}^{q}' \mathbf{e} (\frac{r h}{q} ) = \mu\left(\frac{q}{(r, q)}\right) \frac{\varphi(q)}{\varphi(q /(r, q))} \ll(r, q),

    and

    \chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right) \ll\left(r_{1}, q\right) \cdots\left(r_{k}, q\right).

    Hence,

    \begin{align} &\mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)-\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right)\\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} (3.8)

    From (3.8) we may deduce the following result:

    \begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\mathbf{e} (\frac{r}{q}-\frac{l}{n} )-1\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\sin \pi (\frac{r}{q}-\frac{l}{n} )\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k}\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }\mathop{\sum\limits_{r \leq q-1}}_{(r,q) = d }\frac{d}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\mathop{\sum\limits_{m \leq\frac{q-1}{d} }}_{(m,q) = 1}\frac{1}{\|\frac{md}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\sum\limits_{k \mid q}\mu(k)\sum\limits_{m \leq\frac{q-1}{kd} }\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|}\right)^{k }. \end{align}

    It is easy to see

    \|\frac{mkd}{q}-\frac{l}{n}\| = \|\frac{mkn-l(q/d)}{(q/d)n}\| \geq \frac{1}{(q/d)n},

    and we obtain

    S_{23}\ll\frac{k^{\omega(q)}}{n \phi(q) q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q\\{d < q }}}d\sum\limits_{k \mid q}\sum\limits_{m \leq\frac{q-1}{kd} }\min (\frac{qn}{d},\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|} )\right)^{k }.

    Let k d / q = h_{0} / q_{0} , where q_{0} \geq 1, \left(h_{0}, q_{0}\right) = 1 , and we will easily obtain q /(k d) \leq q_{0} \leq q / d . By using Lemma 2.4, we have

    \begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q_{0}}+1\right) (\frac{q n}{d}+q_{0} \log q_{0} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q/(kd)}+1\right) (\frac{q n}{d}+\frac{q}{d} \log \frac{q}{d} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}q^{\frac{k-1}{2}}}{ \alpha^{k-1}}\left(\sum\limits_{\substack{d \mid q \\ d < q}} \sum\limits_{k \mid q}n+\log q\right)^{k}\\ &\ll q^{\frac{k-1}{2}}d^{2k}(q)(\log q+n)^{k}. \end{align}

    Let

    S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right)

    and

    S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right).

    By the same argument of S_{23} , it follows that

    S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k},
    S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n).

    Since n\ll q^{\frac{1}{3}} , we have

    \begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} (3.9)

    Taking n = 1 , we get

    \begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} (3.10)

    With (3.1), (3.2), (3.9) and (3.10), the proof is complete.

    This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] F. Ji, D. Han, L. Yan, S. Yan, J. Zha, J. Shen, Assessment of benthic invertebrate diversity and river ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey method, Sci. Total Environ., 806 (2022), 150587. https://doi.org/10.1016/j.scitotenv.2021.150587 doi: 10.1016/j.scitotenv.2021.150587
    [2] X. Yao, Y. Cao, G. Zheng, A. T. Devlin, J. S. Khim, Use of life cycle assessment and water quality analysis to evaluate the environmental impacts of the bioremediation of polluted water. Sci. Total Environ., 761 (2021), 143260. https://doi.org/10.1016/j.scitotenv.2020.143260 doi: 10.1016/j.scitotenv.2020.143260
    [3] R. Pascual-Rico, Z. Morales-Reyes, N. Aguilera-Alcalá, A. Olszańska, E. Sebastián-González, R. Naidoo, et al., Usually hated, sometimes loved: A review of wild ungulates' contributions to people, Sci. Total Environ., 801 (2021), 149652. https://doi.org/10.1016/j.scitotenv.2021.149652 doi: 10.1016/j.scitotenv.2021.149652
    [4] H. Liu, G. Liu, W. Xing, Functional traits of submerged macrophytes in eutrophic shallow lakes affect their ecological functions, Sci. Total Environ., 760 (2021), 143332. https://doi.org/10.1016/j.scitotenv.2020.143332 doi: 10.1016/j.scitotenv.2020.143332
    [5] Z. Q. Gao, J. Y. Liu, D. F. Zhuang, The relations analysis between ecological environmental quality of Chinese land resources and population, Can. J. Remote Sens., 1 (1999), 66–70. https://doi.org/10.11834/jrs.19990110 doi: 10.11834/jrs.19990110
    [6] D. Jarvis, N. Stoeckl, S. Larson, D. Grainger, J. Addison, A. Larson, The learning generated through indigenous natural resources management programs increases quality of life for indigenous people–improving numerous contributors to Wellbeing, Ecol. Econ., 180 (2021), 106899. https://doi.org/10.1016/J.ECOLECON.2020.106899 doi: 10.1016/J.ECOLECON.2020.106899
    [7] P. Huang, C. Ma, A. Zhou, Assessment of groundwater sustainable development considering geo-environment stability and ecological environment: a case study in the Pearl River Delta, China, Environ. Sci. Pollut. R, 29 (2021), 18010–18035. https://doi.org/10.1007/s11356-021-16924-6 doi: 10.1007/s11356-021-16924-6
    [8] N. Chai, X. Yi, J. Xiao, T. Liu, Y. Liu, L. Deng, Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River, Sci. Total Environ., 757 (2021), 143882. https://doi.org/ 10.1016/j.scitotenv.2020.143882 doi: 10.1016/j.scitotenv.2020.143882
    [9] T. Zhai, J. Wang, Y. Fang, Y. Qin, L. Huang, Y. Chen, Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration, Sci. Total Environ., 708 (2020), 135153. https://doi.org/10.1016/j.scitotenv.2019.135153 doi: 10.1016/j.scitotenv.2019.135153
    [10] F. Shi, S. Liu, Y. Sun, Y. An, S. Zhao, Y. Liu, et al., Ecological network construction of the heterogeneous agro-pastoral areas in the upper Yellow River basin, Agr. Ecosyst. Environ., 302 (2020), 107069. https://doi.org/10.1016/j.agee.2020.107069 doi: 10.1016/j.agee.2020.107069
    [11] J. Li, Study on the impact of seashore leisure behavior on ecological environment based on water quality analysis, J. Coastal. Res., 115 (2020), 193. https://doi.org/10.2112/JCR-SI115-060.1 doi: 10.2112/JCR-SI115-060.1
    [12] M. Höglind, D. Cameron, T. Persson, X. Huang, M. V. Oijen, BASGRA_N: A model for grassland productivity, quality and greenhouse gas balance, Ecol. Model., 417 (2020), https://doi.org/10.1016/j.ecolmodel.2019.108925 doi: 10.1016/j.ecolmodel.2019.108925
    [13] Y. X. Gao, Study on water resources carrying capacity of ChangjiArea based on water quality-ecological system, Ground Water, 26 (2019) 11000–11011, https://doi.org/10.1007/s11356-019-04414-9 doi: 10.1007/s11356-019-04414-9
    [14] G. Sun, S. J. Hoff, B. C. Zelle, M. A. Nelson, Forecasting daily source air quality using multivariate statistical analysis and radial basis function networks, J. Air Waste Manage., 58 (2019), 1571–1578. https://doi.org/10.3155/1047-3289.58.12.1571 doi: 10.3155/1047-3289.58.12.1571
    [15] L. C. Evans, R. M. Sibly, P. Thorbek, I. Sims, T. H. Oliver, R. J. Walters, Quantifying the effectiveness of agri-environment schemes for a grassland butterfly using individual-based models, Ecol. Model., 411 (2019), 108798. https://doi.org/10.1016/j.ecolmodel.2019.108798 doi: 10.1016/j.ecolmodel.2019.108798
    [16] S. R. Corsi, L. A. De Cicco, D. L. Villeneuve, B. R. Blackwell, K. A. Fay, G. T. Ankley, et al., Prioritizing chemicals of ecological concern in Great Lakes tributaries using high-throughput screening data and adverse outcome pathways, Sci. Total Environ., 686 (2019), 995–1009. https://doi.org/10.1016/j.scitotenv.2019.05.457 doi: 10.1016/j.scitotenv.2019.05.457
    [17] D. Saadoud, M. Hassani, F. J. M. Peinado, M. S. Guettouche, Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS, Aeolian Res., 32 (2018), 762–781. https://doi.org/10.3390/sym11060762 doi: 10.3390/sym11060762
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1178) PDF downloads(45) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog