This paper revealed new fractional calculus applications of special functions in the geometric function theory. The aim of the study presented here was to introduce and begin the investigations on a new fractional calculus integral operator defined as the fractional integral of order for the Bessel function of the first kind. The focus of this research was on obtaining certain geometric properties that give necessary and sufficient univalence conditions for the new fractional calculus operator using the methods associated to differential subordination theory, also referred to as admissible functions theory, developed by Sanford S. Miller and Petru T. Mocanu. The paper discussed, in the proved theorems and corollaries, conditions that the fractional integral of the Bessel function of the first kind must comply in order to be a part of the sets of starlike functions, positive and negative order starlike functions, convex functions, positive and negative order convex functions, and close-to-convex functions, respectively. The geometric properties proved for the fractional integral of the Bessel function of the first kind recommend this function as a useful tool for future developments, both in geometric function theory in general, as well as in differential subordination and superordination theories in particular.
Citation: Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada. Certain geometric properties of the fractional integral of the Bessel function of the first kind[J]. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
[1] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[2] | Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035 |
[3] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347 |
[4] | Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[5] | A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092 |
[6] | Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006 |
[7] | John E. Franke, Abdul-Aziz Yakubu . Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences and Engineering, 2011, 8(2): 385-408. doi: 10.3934/mbe.2011.8.385 |
[8] | Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[9] | Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51 |
[10] | Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi . On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4314-4338. doi: 10.3934/mbe.2019215 |
This paper revealed new fractional calculus applications of special functions in the geometric function theory. The aim of the study presented here was to introduce and begin the investigations on a new fractional calculus integral operator defined as the fractional integral of order for the Bessel function of the first kind. The focus of this research was on obtaining certain geometric properties that give necessary and sufficient univalence conditions for the new fractional calculus operator using the methods associated to differential subordination theory, also referred to as admissible functions theory, developed by Sanford S. Miller and Petru T. Mocanu. The paper discussed, in the proved theorems and corollaries, conditions that the fractional integral of the Bessel function of the first kind must comply in order to be a part of the sets of starlike functions, positive and negative order starlike functions, convex functions, positive and negative order convex functions, and close-to-convex functions, respectively. The geometric properties proved for the fractional integral of the Bessel function of the first kind recommend this function as a useful tool for future developments, both in geometric function theory in general, as well as in differential subordination and superordination theories in particular.
[1] |
D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. https://doi.org/10.1186/s13662-021-03270-7 doi: 10.1186/s13662-021-03270-7
![]() |
[2] | H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. |
[3] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
![]() |
[4] | S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. |
[5] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–172. |
[6] | O. P. Ahuja, A. Çetinkaya, A Survey on the theory of integral and related operators in geometric function theory, In: Mathematical analysis and computing, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-33-4646-8_49 |
[7] | S. Owa, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53–59. |
[8] | S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39 (1987), 1057–1077. |
[9] |
H. M. Srivastava, M. Saigo, S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl., 131 (1988), 412–420. https://doi.org/10.1016/0022-247X(88)90215-6 doi: 10.1016/0022-247X(88)90215-6
![]() |
[10] |
V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comput. Math. Appl., 9 (2010), 1128–1141. https://doi.org/10.1016/j.camwa.2009.05.014 doi: 10.1016/j.camwa.2009.05.014
![]() |
[11] |
M. Acu, G. Oros, A. M. Rus, Fractional integral of the confluent hypergeometric function related to fuzzy differential subordination theory, Fractal Fract., 6 (2022), 413. https://doi.org/10.3390/fractalfract6080413 doi: 10.3390/fractalfract6080413
![]() |
[12] |
G. I. Oros, S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10 (2022), 1690. https://doi.org/10.3390/math10101690 doi: 10.3390/math10101690
![]() |
[13] |
G. I. Oros, G. Oros, S. Owa, Subordination properties of certain operators concerning fractional integral and Libera integral operator, Fractal Fract., 7 (2023), 42. https://doi.org/10.3390/fractalfract7010042 doi: 10.3390/fractalfract7010042
![]() |
[14] | F. Ghanim, S. Bendak, A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. R. Soc. A, 478 (2022), 20210839. |
[15] | A. A. Lupaş, G. I. Oros, Differential sandwich theorems involving Riemann-Liouville fractional integral of -hypergeometric function, AIMS Mathematics, 8 (2023), 4930–4943. |
[16] | S. S. Miller, P. T. Mocanu, Differential subordinations, theory and applications, New York: Marcel Dekker, 2000. |
[17] | Á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155–178. |
[18] | Á. Baricz, Geometric properties of generalized Bessel functions, In: Generalized Bessel functions of the first kind, Berlin/Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-12230-9_2 |
[19] |
Á. Baricz, S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21 (2010), 641–653. https://doi.org/10.1080/10652460903516736 doi: 10.1080/10652460903516736
![]() |
[20] | Á Baricz, A. P. Kupán, R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Am. Math. Soc., 142 (2014), 2019–2025. |
[21] | Ç. Murat, E. Deniz, R. Szász, Radii of a-convexity of some normalized Bessel functions of the first kind, Results Math., 72 (2017), 2023–2035. |
[22] |
L. I. Cotîrlă, A. P. Kupán, R. Szász, New results about radius of convexity and uniform convexity of Bessel functions, Axioms, 11 (2022), 380. https://doi.org/10.3390/axioms11080380 doi: 10.3390/axioms11080380
![]() |
[23] |
H. M. Zayed, T. Bulboacă, Normalized generalized Bessel function and its geometric properties, J. Inequal. Appl., 2022 (2022), 158. https://doi.org/10.1186/s13660-022-02891-0 doi: 10.1186/s13660-022-02891-0
![]() |
[24] |
A. Cătaş, A. A. Lupaş, Some subordination results for Atangana-Baleanu fractional integral operator involving Bessel functions, Symmetry, 14 (2022), 358. https://doi.org/10.3390/sym14020358 doi: 10.3390/sym14020358
![]() |
[25] | B. A. Frasin, F. Yousef, T. Al-Hawary, I. Aldawish, Application of generalized Bessel functions to classes of analytic functions, Afr. Mat., 32 (2021), 431–439. |
[26] | T. Al-Hawary, A. Amourah, M. K. Aouf, B. A. Frasin, Certain subclasses of analytic functions with complex order associated with generalized Bessel functions, Bull. Transilv. Univ. Braşov, Ser. III, Math. Comput. Sci., 3 (2023), 27–40. https://doi.org/10.31926/but.mif.2023.3.65.1.3 |
[27] |
G. I. Oros, G. Oros, D. A. Bardac-Vlada, Study on the criteria for starlikeness in integral operators involving Bessel functions, Symmetry, 15 (2023), 1976. https://doi.org/10.3390/sym15111976 doi: 10.3390/sym15111976
![]() |
[28] | P. T. Mocanu, T. Bulboacă, S. G. Sălăgean, Geometric theory of analytic functions, Cluj-Napoca: Casa Cărţii de Ştiinţă, 1999. |
[29] | C. Pommerenke, Univalent functions, Göttingen: Vandenhoeck and Ruprecht, 1975. |
[30] |
A. A. Lupaş, Fuzzy differential subordination and superordination results for fractional integral associated with Dziok-Srivastava operator, Mathematics, 11 (2023), 3129. https://doi.org/10.3390/math11143129 doi: 10.3390/math11143129
![]() |
[31] |
A. A. Lupaş, New results on a fractional integral of extended Dziok-Srivastava operator regarding strong subordinations and superordinations, Symmetry, 15 (2023), 1544. https://doi.org/10.3390/sym15081544 doi: 10.3390/sym15081544
![]() |
1. |
Guirong Jiang, Qigui Yang,
Periodic solutions and bifurcation in an |
|
2. | Soodeh Hosseini, Mohammad Abdollahi Azgomi, Adel Torkaman Rahmani, Malware propagation modeling considering software diversity and immunization, 2016, 13, 18777503, 49, 10.1016/j.jocs.2016.01.002 | |
3. | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability for a discrete SIS epidemic model with immigration of infectives, 2012, 18, 1023-6198, 1913, 10.1080/10236198.2011.602973 | |
4. | Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada, Asier Ibeas, 2014, A nonlinear SEIR epidemic model with feedback vaccination control, 978-3-9524269-1-3, 158, 10.1109/ECC.2014.6862291 | |
5. | Jinhu Xu, Yan Geng, Stability preserving NSFD scheme for a delayed viral infection model with cell-to-cell transmission and general nonlinear incidence, 2017, 23, 1023-6198, 893, 10.1080/10236198.2017.1304933 | |
6. | Yuhua Long, Lin Wang, Global dynamics of a delayed two-patch discrete SIR disease model, 2020, 83, 10075704, 105117, 10.1016/j.cnsns.2019.105117 | |
7. | Xiaolin Fan, Lei Wang, Zhidong Teng, Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence, 2016, 2016, 1687-1847, 10.1186/s13662-016-0846-y | |
8. | Jinhu Xu, Jiangyong Hou, Yan Geng, Suxia Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, 2018, 2018, 1687-1847, 10.1186/s13662-018-1560-8 | |
9. | Zohreh Eskandari, Javad Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, 2020, 357, 00160032, 10937, 10.1016/j.jfranklin.2020.08.040 | |
10. | Jinhu Xu, Yan Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, 2017, 2017, 1687-1847, 10.1186/s13662-017-1415-8 | |
11. | Zengyun Hu, Zhidong Teng, Chaojun Jia, Chi Zhang, Long Zhang, Dynamical analysis and chaos control of a discrete SIS epidemic model, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-58 | |
12. | Yueli Luo, Shujing Gao, Dehui Xie, Yanfei Dai, A discrete plant disease model with roguing and replanting, 2015, 2015, 1687-1847, 10.1186/s13662-014-0332-3 | |
13. | Qamar Din, Qualitative behavior of a discrete SIR epidemic model, 2016, 09, 1793-5245, 1650092, 10.1142/S1793524516500923 | |
14. | Tailei Zhang, Junli Liu, Zhidong Teng, Threshold conditions for a discrete nonautonomous SIRS model, 2015, 38, 01704214, 1781, 10.1002/mma.3186 | |
15. | Zengyun Hu, Zhidong Teng, Long Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, 2014, 97, 03784754, 80, 10.1016/j.matcom.2013.08.008 | |
16. | Zhidong Teng, Lei Wang, Linfei Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence, 2015, 38, 01704214, 4741, 10.1002/mma.3389 | |
17. | Zengyun Hu, Zhidong Teng, Haijun Jiang, Stability analysis in a class of discrete SIRS epidemic models, 2012, 13, 14681218, 2017, 10.1016/j.nonrwa.2011.12.024 | |
18. | Jahangir Chowdhury, Sourav Rana, Sabyasachi Bhattacharya, Priti Kumar Roy, 2017, Chapter 23, 978-981-10-3757-3, 319, 10.1007/978-981-10-3758-0_23 | |
19. | Lei Wang, Zhidong Teng, Haijun Jiang, Global attractivity of a discrete SIRS epidemic model with standard incidence rate, 2013, 36, 01704214, 601, 10.1002/mma.2734 | |
20. | Tailei Zhang, Permanence and extinction in a nonautonomous discrete SIRVS epidemic model with vaccination, 2015, 271, 00963003, 716, 10.1016/j.amc.2015.09.071 | |
21. | Zengyun Hu, Linlin Chang, Zhidong Teng, Xi Chen, Bifurcation analysis of a discrete S I R S epidemic model with standard incidence rate, 2016, 2016, 1687-1847, 10.1186/s13662-016-0874-7 | |
22. | JUPING ZHANG, ZHEN JIN, DISCRETE TIME SI AND SIS EPIDEMIC MODELS WITH VERTICAL TRANSMISSION, 2009, 17, 0218-3390, 201, 10.1142/S0218339009002788 | |
23. | Junhong Li, Ning Cui, Bifurcation and Chaotic Behavior of a Discrete-Time SIS Model, 2013, 2013, 1026-0226, 1, 10.1155/2013/705601 | |
24. | Qiaoling Chen, Zhidong Teng, Lei Wang, Haijun Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, 2013, 71, 0924-090X, 55, 10.1007/s11071-012-0641-6 | |
25. | S.M. Salman, E. Ahmed, A mathematical model for Creutzfeldt Jacob Disease (CJD), 2018, 116, 09600779, 249, 10.1016/j.chaos.2018.09.041 | |
26. | Pengfei Wu, Jingshun Duanmu, Jiyong Du, 2012, Analysis of an SIS Epidemic Model with Disease-Induced Mortality, 978-0-7695-4647-6, 596, 10.1109/ICCSEE.2012.17 | |
27. | Yan Geng, Jinhu Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, 2017, 01704214, 10.1002/mma.4357 | |
28. | Lei Wang, Qianqian Cui, Zhidong Teng, Global dynamics in a class of discrete-time epidemic models with disease courses, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-57 | |
29. | J. Hallberg Szabadváry, Y. Zhou, On qualitative analysis of a discrete time SIR epidemical model, 2021, 7, 25900544, 100067, 10.1016/j.csfx.2021.100067 | |
30. | Fang Zheng, 2022, Chapter 12, 978-981-19-2447-7, 121, 10.1007/978-981-19-2448-4_12 | |
31. | Zhidong Teng, Linfei Nie, Jiabo Xu, Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-87 | |
32. | Javier Cifuentes-Faura, Ursula Faura-Martínez, Matilde Lafuente-Lechuga, Mathematical Modeling and the Use of Network Models as Epidemiological Tools, 2022, 10, 2227-7390, 3347, 10.3390/math10183347 | |
33. | Limin Zhang, Jiaxin Gu, Guangyuan Liao, Bifurcations and model fitting of a discrete epidemic system with incubation period and saturated contact rate, 2025, 1023-6198, 1, 10.1080/10236198.2025.2457987 | |
34. | Jahangir Chowdhury, Fahad Al Basir, Anirban Mukherjee, Priti Kumar Roy, A theta logistic model for the dynamics of whitefly borne mosaic disease in Cassava: impact of roguing and insecticide spraying, 2025, 1598-5865, 10.1007/s12190-025-02419-x |