Processing math: 100%
Research article

Mathematical modeling of a binary ORC operated with solar collectors. Case study—Ecuador

  • Received: 01 August 2023 Revised: 24 October 2023 Accepted: 01 November 2023 Published: 17 November 2023
  • The present study is significant because it can contribute to developing sustainable energy strategies and expanding knowledge about renewable energies in Ecuador, specifically by modeling two modules: the thermal module (parabolic solar collectors and energy storage tank) and the Organic Rankine Cycle (ORC) module. The objective was to determine a region in Ecuador where the thermal module exhibits the highest efficiency for solar collectors. Subsequently, a detailed analysis of the ORC module was conducted, considering the working fluid, boiling temperature, condensation temperature, pinch point temperature, solar collector area, and the collector area-to-energy storage volume ratio (Ac/V). Finally, an economic analysis was performed based on the Net Present Value (NPV), Internal Rate of Return (IRR), and payback period of implementing this type of system. After conducting all the respective analyses in the thermal module, while considering the yearly average meteorological data of ten years (2012–2022), it was determined that due to its meteorological conditions, ambient temperature (14.7 ℃) and solar beam radiation (184.5 W/m2), the efficiency of the collectors in the Andean region of Ecuador is higher. This efficiency is further enhanced by using Therminol VP-1 as the thermal fluid, as it possesses better thermodynamic properties than the other fluids analyzed. Similarly, the ORC module analysis results determined that cyclohexane is the working fluid for the ORC, thereby leading to a higher ORC efficiency (25%) and overall system efficiency (20%). Finally, the system was optimized to maximize the IRR and minimize the Ac/V of the collector for a nominal power of 92 kW. As a result, the optimal operating conditions of the system include a solar collector area of 1600 m2, an energy storage tank volume of 54 m3, an electricity production of 23757 MW/year, a total system efficiency of 22%, an IRR of 15.65% and a payback period of 9.81 years.

    Citation: Daniel Chuquin-Vasco, Cristina Calderón-Tapia, Nelson Chuquin-Vasco, María Núñez-Moreno, Diana Aguirre-Ruiz, Vanesa G. Lo-Iacono-Ferreira. Mathematical modeling of a binary ORC operated with solar collectors. Case study—Ecuador[J]. AIMS Energy, 2023, 11(6): 1153-1178. doi: 10.3934/energy.2023053

    Related Papers:

    [1] Cameron J. Browne, Chang-Yuan Cheng . Age-structured viral dynamics in a host with multiple compartments. Mathematical Biosciences and Engineering, 2020, 17(1): 538-574. doi: 10.3934/mbe.2020029
    [2] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [3] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [4] Ran Zhang, Shengqiang Liu . Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. Mathematical Biosciences and Engineering, 2020, 17(2): 1450-1478. doi: 10.3934/mbe.2020075
    [5] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
    [6] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
    [7] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [8] Jinhu Xu . Dynamic analysis of a cytokine-enhanced viral infection model with infection age. Mathematical Biosciences and Engineering, 2023, 20(5): 8666-8684. doi: 10.3934/mbe.2023380
    [9] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [10] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
  • The present study is significant because it can contribute to developing sustainable energy strategies and expanding knowledge about renewable energies in Ecuador, specifically by modeling two modules: the thermal module (parabolic solar collectors and energy storage tank) and the Organic Rankine Cycle (ORC) module. The objective was to determine a region in Ecuador where the thermal module exhibits the highest efficiency for solar collectors. Subsequently, a detailed analysis of the ORC module was conducted, considering the working fluid, boiling temperature, condensation temperature, pinch point temperature, solar collector area, and the collector area-to-energy storage volume ratio (Ac/V). Finally, an economic analysis was performed based on the Net Present Value (NPV), Internal Rate of Return (IRR), and payback period of implementing this type of system. After conducting all the respective analyses in the thermal module, while considering the yearly average meteorological data of ten years (2012–2022), it was determined that due to its meteorological conditions, ambient temperature (14.7 ℃) and solar beam radiation (184.5 W/m2), the efficiency of the collectors in the Andean region of Ecuador is higher. This efficiency is further enhanced by using Therminol VP-1 as the thermal fluid, as it possesses better thermodynamic properties than the other fluids analyzed. Similarly, the ORC module analysis results determined that cyclohexane is the working fluid for the ORC, thereby leading to a higher ORC efficiency (25%) and overall system efficiency (20%). Finally, the system was optimized to maximize the IRR and minimize the Ac/V of the collector for a nominal power of 92 kW. As a result, the optimal operating conditions of the system include a solar collector area of 1600 m2, an energy storage tank volume of 54 m3, an electricity production of 23757 MW/year, a total system efficiency of 22%, an IRR of 15.65% and a payback period of 9.81 years.



    In the early 1930s, in order to generalize the formula of quantum mechanics, Jordan et al. introduced an important commutative non-associative algebra [1], which was initially called "r-order digital system". In 1947, Albert renamed this kind of algebra Jordan algebra and studied their structural theory [2]. Since then, Jordan algebras have attracted extensive attention. Particularly, Jacobson developed the representation theory of Jordan algebras [3,4]. Jordan superalgebras were first studied by Kac, who classified simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic zero [5]. Jordan superalgebras also have significant applications in quantum mechanics [6,7]. More results on Jordan superalgebras are available in [8,9].

    Hom-type algebras were first introduced to study the q-deformation of Witt and Virasoro algebras [10,11], which played an important role in physics, mainly in conformal field theory. Bihom-type algebras are generalizations of Hom-type algebras, which were presented by Graziani et al. from the categorical point and applied to study certain deformations of quantum groups [12]. Up to now, the (Bi)hom-structures of various algebras have been intensively investigated. The construction relationship between Hom-type algebras and the module structure on them can be found in the literature [13,14,15,16,17]. Naturally, the construction between Bihom-type algebras is studied in the literature [18,19], and the results of representation and deformation can be found in [20,21,22]. In this paper, we first generalize bimodules and representations of Bihom-Jordan algebras [23,24] to Bihom-Jordan superalgebras and then develop the theory of representations and O-operators on Bihom-Jordan superalgebras.

    The outline of the paper is presented as follows: In Section 2, we review some basics about Bihom-superalgebras, Bihom-Jordan superalgebras; we study Bihom-super modules and give some easy constructions of Bihom-Jordan superalgebras. In Section 3, we mainly study super-bimodules on Bihom-Jordan superalgebras and obtain some new constructions under the view of module. In Section 4, we study the representation of Bihom-Jordan superalgebra and give the definitions of O-operator and Rota–Baxter operator. At the same time, we also give the definition of Bihom-pre-Jordan superalgebra. Finally, the relationship between O-operator and Bihom-pre-Jordan superalgebra is studied. Actually, on the basis of this section, we can also continue to study cohomology theory.

    Throughout the paper, all algebraic systems are supposed to be over a field of characteristic 0. Let A be a linear superspace over K that is a Z2-graded linear space with a direct sum A=A¯0A¯1. The elements of Aj,j=0,1, are said to be homogenous and of parity j. The parity of a homogeneous element x is denoted by |x|. In the sequel, we will denote by H(A) the set of all homogeneous elements of A. In this paper, we need to use the elements, all of which are not specified, are homogeneous.

    In this section, we recall some basic definitions about Bihom-Jordan superalgebras, provide some construction results. A Bihom-superalgebra is a quadruple (J,μ,α,β), where μ:JJJ is an even bilinear map and α,β:JJ are even linear maps such that αμ=μα and βμ=μβ (multiplicativity).

    Definition 2.1. [25] Let (J,μ,α,β) be a Bihom-superalgebra.

    The Bihom-associator of J is an even trilinear map asα,β:J3J defined by

    asα,β=μ(μβαμ). (2.1)

    For any ε,γ,δH(J), asα,β(ε,γ,δ)=μ(μ(ε,γ),β(δ))μ(α(ε),μ(γ,δ)).

    In particular, when α=β=Id, Bihom-superalgebra is to degenerate to the superalgebra, so is Bihom-associator degenerates to the original associator. If α=β, Bihom-associator degenerates to the Hom-associator.

    Definition 2.2. Let (J,μ,α,β) be a Bihom-superalgebra. Then

    A Bihom-sub-superalgebra of J is a Z2-graded linear subspace BJ, which satisfies μ(ε,γ)B,α(ε)B and β(ε)B, for all ε,γH(J). Furthermore, if μ(ε,γ),μ(γ,ε)B, for all (ε,γ)J×B, then B is called a two-sided Bihom-ideal of J.

    J is regular if α and β are algebra automorphisms.

    J is involutive if α and β are two involutions, that is α2=β2=Id.

    Definition 2.3. Let (J,μ,α,β) and (J,μ,αβ) be two Bihom-superalgebras. If a homomorphism f:JJ satisfies the following conditions:

    fμ=μ(ff),fα=αfandfβ=βf.

    Then f is called Bihom-superalgebra morphism. And we call the set Γf={ε+f(ε)|εH(J)}JJ the graph of f.

    Proposition 2.1. Let (J,μJ,αJ,βJ) and (B,μB,αB,βB) be two Bihom-Jordan superalgebras. Then an even linear map f:JB is a morphism if and only if its graph Γf is a Bihom-subalgebra of (JB,μ=μJ+μB,α=αJ+αB,β=βJ+βB).

    Proof. Suppose that f is a morphism of Bihom-Jordan superalgebras. Clearly, Γf is a subspace of JB, we only need to prove the Γf is closed under the μ,α,β. For all ε,γH(J),

    μ(ε+f(ε),γ+f(γ))=μJ(ε,γ)+μB(f(ε),f(γ))=μJ(ε,γ)+fμJ(ε,γ).

    Moreover, by fαJ=αBf and fβJ=βBf,

    α(ε+f(ε))=αJ(ε)+αB(f(ε))=αJ(ε)+fαJ(ε),β(ε+f(ε))=βJ(ε)+βB(f(ε))=βJ(ε)+fβJ(ε).

    It follows that Γf is a Bihom-subalgebra of JB.

    Conversely, Γf is a Bihom-subalgebra of JB, so

    μ(ε+f(ε),γ+f(γ))=μJ(ε,γ)+μB(f(ε),f(γ))Γf,

    which implies that μB(f(ε),f(γ))=fμJ(ε,γ). Similarly, we also obtain αBf=fαJ and βBf=fβJ from α(Γf)Γf and β(Γf)Γf, respectively. Thus, f is a morphism of Bihom-Jordan superalgebras.

    Definition 2.4. [25] A Bihom-associative superalgebra is a quadruple (J,μ,α,β), where α,β:JJ are even linear maps and μ:J×JJ is an even bilinear map such that αβ=βα,αμ=μα2, βμ=μβ2 and satisfying Bihom-associator is zero:

    asα,β(ε,γ,δ)=0,forallε,γ,δH(J). (Bihom-associativity condition)

    Clearly, when α=β, we obtain a Hom-associative superalgebra.

    Definition 2.5. [19] A BiHom superalgebra (J,μ,α,β) is called a Bihom-Jordan superalgebra if for all ε,γ,δ,tH(J):

    (i) αβ=βα,(ii) μ(β(ε),α(γ))=(1)|ε||γ|μ(β(γ),α(ε)),(Bihom-super commutativity condition)(iii) ε,γ,t(1)|t|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(t))=0.(Bihom-Jordan super-identity)

    In particular, it is reduced to a Jordan superalgebra when α=β=Id.

    Next, we give some common construction methods. Let (J,μ,α,β) be a Bihom-superalgebra. Define its plus Bihom-superalgebra as the Bihom-superalgebra J+=(J,,α,β), where

    εγ=12(μ(ε,γ)+(1)|ε||γ|μ(α1β(γ),αβ1(ε))).

    Note that product is Bihom-supercommutative. In fact, for all ε,γH(J),

    β(ε)α(γ)=12(β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε))=(1)|ε||γ|12(β(γ)α(ε)+β(ε)α(γ))=(1)|ε||γ|β(γ)α(ε).

    Moreover, the plus Bihom-superalgebra J+=(J,,α,β) is a Bihom-Jordan superalgebra. Naturally, we define

    εγ=μ(ε,γ)+(1)|ε||γ|μ(α1β(γ),αβ1(ε)),

    the is also Bihom-supercommutative. Then J=(J,,α,β) is also a Bihom-Jordan superlagebra.

    Besides that, Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) can be obtained from Jordan superalgebra (J,μ). We also consider the quotient algebra obtained by modulo Bihom-ideal, given a Bihom-Jordan superalgebra (J,μ,α,β) and I is a Bihom-ideal. Define ˉμ,ˉα,ˉβ on J/I as follows:

    ˉμ(ˉε,ˉγ)=¯μ(ε,γ),ˉα(ˉε)=¯α(ε),ˉβ(ˉε)=¯β(ε).

    Then (J/I,ˉμ,ˉα,ˉβ) is also a Bihom-Jordan superalgebra.

    Example 2.1. Given a 3-dimensional Jordan superalgebra (J=Jˉ0Jˉ1,μ) in [5], the bases of Jˉ0 and Jˉ1 are {ε} and {u,v}, respectively. The nontrivial multiplication is defined as follows:

    μ(ε,ε)=ε,μ(ε,u)=12u,μ(ε,v)=12v,μ(u,v)=ε.

    We consider two even endomorphisms α and β, which satisfy α(ε)=ε,α(u)=u,α(v)=v, and β(ε)=ε,β(u)=u,β(v)=v. Then we obtain a Bihom-Jordan superalgebra (J,μ=μ(αβ),α,β).

    Example 2.2. In [5], let (J=Jˉ0Jˉ1,μ) be a Jordan superalgebra with the nontrivial multiplication as follows:

    μ(ε,ε)=2ε,μ(ε,u)=u,μ(ε,v)=v,μ(u,v)=1+kx,

    kK and k12, where {1,ε} and {u,v} are bases of Jˉ0 and Jˉ1, respectively. We define two even endomorphisms α and β satisfies α(1)=1,α(ε)=ε,α(u)=u,α(v)=v and β(1)=1,β(ε)=ε,β(u)=u,β(v)=v. Then we obtain a Bihom-Jordan superalgebra (J,μ=μ(αβ),α,β).

    Definition 2.6. Let (J,μ,α,β) be a Bihom-superalgebra.

    1) A Bihom-super-module (V,ϕ,ψ) is called an J-super-bimodule if it is equipped with an even left structure ρl and an even right structure map ρr on Z2-graded vector space V, ρl and ρr are given by

    ρl:(JV,αϕ,βψ)(V,ϕ,ψ),ρl(a,v)=av,

    ρr:(VJ,ϕα,ψβ)(V,ϕ,ψ),ρr(v,a)=va.

    2) An even linear map f:(V,ϕ,ψ,ρl,ρr)(V,ϕ,ψ,ρl,ρr) is a morphism of the Bihom-super-modules such that the following commutative diagrams

    3) Let (V,ϕ,ψ,ρl,ρr) be an J-super-bimodule. Then the module Bihom-associator asVϕ,ψ of V is defined as:

    asVϕ,ψIdVJJ=ρr(ρrβ)ρr(ϕμ), (2.2)
    asVϕ,ψIdJVJ=ρr(ρlβ)ρl(αρr), (2.3)
    asVϕ,ψIdJJV=ρl(μψ)ρl(αρl). (2.4)

    Definition 2.7. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ) be a Bihom-super-module. Then

    1) A left Bihom-associative J-super-module structure consists of an even morphism ρl:JVV satisfies asVϕ,ψ=0 in (2.4).

    2) A right Bihom-associative J-super-module structure consists of an even morphism ρr:VJV satisfies asVϕ,ψ=0 in (2.2).

    3) A Bihom-associative J-super-bimodule structure consists of an even morphism ρl:JVV and an even morphism ρr:VJV such that (V,ϕ,ψ,ρl) is a left Bihom-associative J-super-module, (V,ϕ,ψ,ρr) is a right Bihom-associative J-super-module, and satisfies asVϕ,ψ=0 in (2.3).

    In this section, we introduce super-bimodules of Bihom-Jordan superalgebras and give some of their constructions. Finally, we define an abelian extension in order to give an application in the next section. For convenience, the sign will subsequently be omitted from the product operation of elements in J.

    Definition 3.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. For all ε,γ,δH(J),vH(V),

    A left Bihom-Jordan J-super-module is a Bihom-super-module (V,ϕ,ψ) that is equipped with an even left structure map ρl:JVV,ρl(av)=av such that ψ is invertible and the following conditions hold:

    ε,γ,δ(1)|γ||δ|β2α2(δ)(αβ(ε)α2(γ)ϕ3(v))=ε,γ,δ(1)|ε||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v)), (3.1)
    β2α2(δ)(βα2(γ)(α2(ε)ψ1ϕ3(v)))+(1)|ε||γ|+|ε||δ|+|γ||δ|β2α2(ε)(βα2(γ)(α2(δ)ψ1ϕ3(v)))+(1)|ε||δ|+|ε||γ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)=(1)|γ||δ|β2α(γ)βα2(δ)(βα2(ε)ϕ3(v))+(1)|γ||δ|+|ε||δ|β2α(γ)βα2(ε)(βα2(δ)ϕ3(v))+(1)|ε||δ|+|ε||γ|β2α(ε)βα2(δ)(βα2(γ)ϕ3(v)). (3.2)

    A right Bihom-Jordan J-super-module is a Bihom-super-module (V,ϕ,ψ) that is equipped with an even right structure map ρr:VJV,ρr(va)=va such that the following conditions hold:

    ε,γ,δ(1)|ε||δ|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)=ε,γ,δ(1)|γ||δ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ). (3.3)
    ((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|ε||γ|+|ε||δ|+|γ||δ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(γ)=(ϕψ2(v)βα2(ε))α2β(γ)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|(ϕψ2(v)βα2(δ))α2β(γ)α3(ε)+(1)|ε||γ|(ϕψ2(v)βα2(γ))α2β(ε)α3(δ). (3.4)

    Theorem 3.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ϕ,ψ) be a Bihom-super-module and ρr:VJV,ρr(va)=va be an even linear map, which satisfies the following conditions: for all ε,γH(J),vH(V),

    ϕρr=ρr(ϕα),ψρr=ρr(ψβ), (3.5)
    ϕ(v)β(ε)α(γ)=(vβ(ε))βα(γ)+(1)|ε||γ|(vβ(γ))αβ(ε). (3.6)

    Then (V,ϕ,ψ,ρr) is a right Bihom-Jordan J-super-module, called a right special Bihom-Jordan J-super-module.

    Proof. For any ε,γ,δH(J),vH(V),

    ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ)=ε,γ,δ(1)|δ||γ|ϕ(ψ2(v)βα(δ))α2β(ε)α3(γ)(by(3.5))=ε,γ,δ(1)|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+ε,γ,δ(1)|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6))=ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα(δ)α2(ε))βα2(γ)ε,γ,δ(1)|δ||γ|+|δ||ε|((ψ2(v)βα(ε))βα2(δ))βα3(γ)+ε,γ,δ(1)|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6))=ε,γ,δ(1)|ε||δ|(ϕψ2(v)βα(ε)α2(γ))βα2(δ).

    So Eq (3.3) holds. On the other hand,

    (ϕψ2(v)βα2(ε))βα2(γ)α3(δ)+(1)|ε||γ|(ϕψ2(v)βα2(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|(ϕψ2(v)βα2(δ))βα2(γ)α3(ε)=ϕ(ψ2(v)βα(ε))βα2(γ)α3(δ)+(1)|ε||γ|ϕ(ψ2(v)βα(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|ϕ(ψ2(v)βα(δ))βα2(γ)α3(ε)(by(3.5))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ψ2(v)βα(ε))βα2(δ))βα3(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|δ||ε|+|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ϕψ2(v)βα(ε)α2(δ))α3β(γ)(1)|γ||δ|+|ε||δ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|δ||ε|+|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ϕψ2(v)βα(ε)α2(δ))α3β(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(δ)(1)|ε||γ|(ϕψ2(v)βα2(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6)).

    It follows Eq (3.4).

    Similarly, we have the following result.

    Theorem 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ϕ,ψ) be a Bihom-super-module such that ψ is invertible, and ρl:JVV be an even linear map given by ρl(av)=av such that the following conditions hold:

    ϕρl=ρl(αϕ),ψρl=ρl(βψ), (3.7)
    β(ε)α(γ)ψ(v)=βα(ε)(α(γ)v)+(1)|ε||γ|βα(γ)(α(ε)v). (3.8)

    Then (V,ϕ,,ψ,ρl) is a left Bihom-Jordan J-super-module called a left special super-module.

    Proof. Similar to the proof of Theorem 3.1, the conclusion can be proved by repeatedly using Eqs (3.7) and (3.8).

    Now, we give the definition super-bimodule of a BiHom-Jordan superalgebra.

    Definition 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. A Bihom-Jordan J-super-bimodule is a Bihom-super-module (V,ϕ,ψ) with an even left structure map ρl:JVV,ρl(av)=av and an even right structure map ρr:VJV,ρr(va)=va satisfying three conditions:

    ρl(βϕ)=ρr(ψα)τ1, (3.9)
    ε,γ,δ(1)|δ|(|ε|+|v|)asVϕ,ψ(μ(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=0, (3.10)
    (1)|γ||δ|asVϕ,ψ(ψ2(v)αβ(ε),βα2(γ),α3(δ))+(1)|ε||γ|+|ε||δ|asVϕ,ψ(ψ2(v)αβ(δ),βα2(γ),α3(ε))+(1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(μ(β2(ε),αβ(δ)),βα2(γ),ϕ3(v))=0. (3.11)

    Remark 3.1. 1) If α=β=IdJ and ϕ=ψ=IdV then V is reduced to the so-called Jordan supermodule of the Jordan superalgebra (J,μ).

    2) Clearly, a Bihom-Jordan A-super-bimodule is a right Bihom-Jordan super-module. Furthermore, it is a left Bihom-Jordan super-module if ψ is invertible.

    Example 3.1. Here are some examples of Bihom-Jordan super-bimodules.

    1) Let (J,μ,α,β) be a Bihom-Jordan superalgebra. Then (J,α,β) is a Bihom-Jordan J-super-bimodule where the structure maps are ρl=ρr=μ. More generally, if B is a Bihom-ideal of (J,μ,α,β), then (B,α,β) is a Bihom-Jordan J-super-bimodule where the structure maps are ρl(a,ε)=μ(a,ε)=μ(ε,a)=ρr(ε,a), for all (a,ε)H(J)×H(B).

    2) If (J,μ) is a Jordan superalgebra and M is a Jordan J-super-bimodule in the usual sense, then (M,IdM,IdM) is a BiHom-Jordan J-super-bimodule where (J,μ,IdJ,IdJ) is a Bihom-Jordan superalgebra.

    Theorem 3.3. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and (V,ϕ,ψ,ρl,ρr) be a Bihom-Jordan J-super-bimodule. Define even linear maps ˜μ,˜α and ˜β on JV,

    ˜μ:(JV)2JV,˜μ(ε+u,γ+v):=μ(ε,γ)+εv+uγ,

    ˜α,˜β:(JV)JV,

    ˜α(ε+u):=α(ε)+ϕ(v) and ˜β(ε+u):=β(ε)+ψ(v).

    Then (JV,˜μ,˜α,˜β) is a Bihom-Jordan superalgebra.

    Proof. We omitted the calculation process; it is straightforward to see Bihom-super commutativity condition and Bihom-Jordan super-identity by Definition 3.2.

    The next result shows that a special left and right Bihom-Jordan super-module has a Bihom-Jordan super-bimodule structure under a specific condition.

    Theorem 3.4. Let (J,μ,α,β) be a regular Bihom-Jordan superalgebra, (V,ϕ,ψ) be both a left and a right special BiHom-Jordan J-module with the structure maps ρ1 and ρ2 respectively, such that ϕ is invertible, and the Bihom-associativity condition holds

    ρ2(ρ1β)=ρ1(αρ2). (3.12)

    Define two even bilinear maps ρl:JVV and ρr:VJV by

    ρl=ρ1+ρ2(ψϕ1αβ1)τ1andρr=ρ1(βα1ϕψ1)τ2+ρ2. (3.13)

    Then (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule.

    Proof. ρl and ρr are even structure maps from ρ1 and ρ2. We need to check out (3.9)–(3.11). First, for any (ε,v)H(J)×H(V),

    ρl(β(ε),ϕ(v))=β(ε)ϕ(v)+(1)|a||v|ψϕ1(ϕ(v))αβ1(β(ε))=β(ε)ϕ(v)+(1)|a||v|ψ(v)α(ε),
    ρr(ψα)τ1(εv)=(1)|a||v|ρr(ψ(v),α(ε))=(1)|a||v|ψ(v)α(ε)+βα1(α(ε))ϕψ1(ϕ(v))=β(ε)ϕ(v)+(1)|a||v|ψ(v)α(ε).

    So ρl(βϕ)=ρr(ψα)τ1. Next, for any ε,γ,δH(J),vH(V)

    asVϕ,ψ(μ(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=ρr(ρl(μ(β2(ε),αβ(γ)),ϕ2ψ(v)),βα3(δ))ρl(αβ2(ε)α2β(γ),ρr(ϕ2ψ(v),α3(δ)))=ρr(β2(ε)αβ(γ)ϕ2ψ(v),βα3(δ))+(1)|ε||v|+|γ||v|ρr(ϕψ2(v)αβ(ε)α2(γ),βα3(δ))(1)|v||δ|ρl(αβ2(ε)α2β(γ),βα2(δ)ϕ3(v))ρl(αβ2(ε)α2β(γ),ϕ2ψ(v)α3(δ))(by(3.13))=(β2(ε)αβ(γ)ϕ2ψ(v))βα3(δ)+(1)|δ||ε|+|δ||γ|+|δ||v|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))+(1)|ε||v|+|γ||v|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)+(1)|ε||v|+|γ||v|+|δ||v|+|δ||ε|+|δ||γ|α2β2(δ)(ϕ2ψ(v)α2(ε)α3β1(γ))(1)|v||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))(1)|v||δ|+|δ||ε|+|δ||γ|+|v||ε|+|v||γ|(β2α(δ)ψϕ2(v))α2β(ε)α3(γ)αβ2(ε)α2β(γ)(ϕ2ψ(v)α3(δ))(1)|v||ε|+|v||γ|+|δ||ε|+|δ||γ|(ϕψ2(v)α2β(δ))α2β(ε)α3(γ)(by(3.13))=(1)|ε||v|+|γ||v|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)(1)|v||ε|+|v||γ|+|δ||ε|+|δ||γ|(ϕψ2(v)α2β(δ))α2β(ε)α3(γ)+(1)|δ||ε|+|δ||γ|+|δ||v|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))(1)|v||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))(by(3.12)).

    So

    ε,γ,δ(1)|δ|(|ε|+|v|)asVϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=(1)|v|(|ε|+|γ|+|δ|){ε,γ,δ(1)|ε||δ|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ)}+ε,γ,δ(1)|δ||γ|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))ε,γ,δ(1)|δ||ε|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))=(1)|v|(|ε|+|γ|+|δ|)0+0=0.

    Finally, to prove (3.11), let us compute each of its three terms.

    (1)|γ||δ|asVϕ,ψ(ρr(ψ2(v),βα(ε)),βα2(γ),α3(δ))=(1)|γ||δ|asVϕ,ψ(ψ2(v)βα(ε),βα2(γ),α3(δ))+(1)|γ||δ|+|ε||v|asVϕ,ψ(β2(ε)ϕψ(v),βα2(γ),α3(δ))(by(3.13))=(1)|γ||δ|ρr(ρr(ψ2(v)βα(ε),βα2(γ)),α3β(δ))(1)|γ||δ|ρr(ϕψ2(v)βα2(ε),βα2(γ)α3(δ))+(1)|γ||δ|+|ε||v|ρr(ρr(β2(ε)ϕψ(v),βα2(γ)),α3β(δ))(1)|γ||δ|+|ε||v|ρr(αβ2(ε)ϕ2ψ(v),βα2(γ)α3(δ))=(1)|γ||δ|ρr((ψ2(v)βα(ε))βα2(γ),α3β(δ))+(1)|γ||δ|+|γ||v|+|ε||γ|ρr(β2α(γ)(ϕψ(v)α2(ε)),α3β(δ)(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β2α(γ)βα2(δ)(ϕ2ψ(v)α3(ε))+(1)|γ||δ|+|ε||v|ρr((β2(ε)ϕψ(v))βα2(γ),α3β(δ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|ρr(β2α(γ)(αβ(ε)ϕ2(v)),α3β(δ))(1)|γ||δ|+|ε||v|(αβ2(ε)ϕ2ψ(v))βα2(γ)α3(δ)(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v))(by(3.13))=(1)|γ||δ|((ψ2(v)βα(ε))βα2(γ))α3β(δ)+(1)|δ||ε|+|δ||v|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))+(1)|γ||δ|+|γ||v|+|ε||γ|(β2α(γ)(ϕψ(v)α2(ε)))α3β(δ)+(1)|γ||v|+|ε||γ|+|δ||v|+|δ||ε|α2β2(δ)(βα2(γ)(ϕ2(v)α3β1(ε)))+(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))α3β(δ)+(1)|ε||v|+|δ||ε|+|δ||v|α2β2(δ)((αβ(ε)ϕ2(v))α3(γ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|(β2α(γ)(αβ(ε)ϕ2(v)))α3β(δ)+(1)|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|α2β2(δ)(α2β(γ)(α2(ε)ϕ3ψ1(v)))(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β2α(γ)βα2(δ)(ϕ2ψ(v)α3(ε))B(1)|γ||δ|+|ε||v|(αβ2(ε)ϕ2ψ(v))βα2(γ)α3(δ)J(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v)).(by(3.13)andrearranging)

    Observe that

    J=(1)|γ||δ|+|ε||v|ϕ(β2(ε)ϕψ(v))β(α2(γ))α(α2(δ))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)+(1)|ε||v|((β2(ε)ϕψ(v))βα2(δ))βα3(γ)(by(3.6))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)+(1)|ε||v|(αβ2(ε)(ϕψ(v)α2(δ)))βα3(γ)(by(3.12))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)J1+(1)|ε||v|α2β2(ε)((ϕψ(v)α2(δ))α3(γ))J2.(by(3.12))
    B=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β(αβ(γ))α(αβ(δ))ψ(ϕ2(v)α3β1(ε))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(γ)(α2β(δ)(ϕ2(v)α3β1(ε)))+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))(by(3.8))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(γ)((αβ(δ)ϕ2(v))α3(ε))+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))(by(3.12))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|(αβ2(γ)(αβ(δ)ϕ2(v)))α3β(ε)B1+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))B2.(by(3.12))

    We substitute J1+J2 and B1+B2 for J and B to obtain

    (1)|γ||δ|asVϕ,ψ(ρr(ψ2(v),βα(ε)),βα2(γ),α3(δ))=(1)|γ||δ|((ψ2(v)βα(ε))βα2(γ))α3β(δ)+(1)|δ||ε|+|δ||v|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))+(1)|γ||δ|+|γ||v|+|ε||γ|(β2α(γ)(ϕψ(v)α2(ε)))α3β(δ)+(1)|ε||v|+|δ||ε|+|δ||v|α2β2(δ)((αβ(ε)ϕ2(v))α3(γ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|(β2α(γ)(αβ(ε)ϕ2(v)))α3β(δ)+(1)|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|α2β2(δ)(α2β(γ)(α2(ε)ϕ3ψ1(v)))(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)B1J2(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v)).

    Similarly, we have

    (1)|ε||γ|+|ε||δ|asVϕ,ψ(ρr(ψ2(v)βα(δ)),βα2(γ),α3(ε))=(1)|ε||γ|+|ε||δ|((ψ2(v)βα(δ))βα2(γ))α3β(ε)+(1)|ε||v|α2β2(ε)((ϕψ(v)α2(δ))α3(γ))+(1)|γ||v|+|δ||γ|+|ε||γ|+|ε||δ|(β2α(γ)(ϕψ(v)α2(δ)))α3β(ε)+(1)|δ||v|+|ε||v|α2β2(ε)((αβ(δ)ϕ2(v))α3(γ))+(1)|δ||v|+|γ||δ|+|γ||v|+|ε||δ|+|ε||γ|(β2α(γ)(αβ(δ)ϕ2(v)))α3β(ε)+(1)|δ||v|+|γ||δ|+|γ||v|+|ε||v|α2β2(ε)(α2β(γ)(α2(δ)ϕ3ψ1(v)))(1)|ε||γ|+|ε||δ|(ϕψ2(v)βα2(δ))βα2(γ)α3(ε)(1)|ε||v|+|δ||v|+|ε||γ|+|ε||δ|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))(1)|γ||v|+|γ||δ|+|ε||v|+|ε||γ|(αβ2(γ)(αβ(ε)ϕ2(v)))α3β(δ)(1)|ε||v|+|δ||v|+|γ||δ|+|γ||v|+|ε||γ|β2α(γ)α2β(ε)(α2β(δ)ϕ3(v)).

    In addition,

    (1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(β2(ε)βα(δ),βα2(γ),ϕ3(v))=(1)|v||ε|+|v||γ|+|v||δ|ρl((β2(ε)βα(δ))βα2(γ),ϕ3ψ(v))(1)|v||ε|+|v||γ|+|v||δ|ρl(β2α(ε)βα2(δ),ρl(βα2(γ),ϕ3(v))=(1)|v||ε|+|v||γ|+|v||δ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)+ϕ2ψ2(v)((αβ(ε)α2(δ))α3(γ))(1)|v||ε|+|v||γ|+|v||δ|ρl(β2α(ε)βα2(δ),βα2(γ)ϕ3(v))(1)|v||ε|+|v||δ|ρl(β2α(ε)βα2(δ),ψϕ2(v)α3(γ))(by(3.13))=(1)|v||ε|+|v||γ|+|v||δ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)+ϕ2ψ2(v)((αβ(ε)α2(δ))α3(γ))(1)|v||ε|+|v||γ|+|v||δ|(β2α(ε)βα2(δ))(βα2(γ)ϕ3(v))(1)|v||γ|+|γ||ε|+|γ||δ|(β2α(γ)ϕ2ψ(v))βα2(ε)α3(δ)D(1)|v||ε|+|v||δ|β2α(ε)βα2(δ)(ψϕ2(v)α3(γ))C(1)|γ||ε|+|γ||δ|(ψ2ϕ(v)α2β(γ))α2β(ε)α3(δ).(by(3.13))

    The same way, we replace C and D as follows

    C=(1)|v||ε|+|v||δ|β(αβ(ε))α(αβ(δ))ψ(ϕ2(v)α3β1(γ))=(1)|v||ε|+|v||δ|β2α2(ε)(α2β(δ)(ϕ2(v)α3β1(γ)))+(1)|v||ε|+|v||δ|+|ε||δ|β2α2(δ)(α2β(ε)(ϕ2(v)α3β1(γ)))(by3.8)=(1)|v||ε|+|v||δ|β2α2(ε)((αβ(δ)ϕ2(v))α3(γ))C1+(1)|v||ε|+|v||δ|+|ε||δ|β2α2(δ)((αβ(ε)ϕ2(v))α3(γ))C2,(by3.12)
    D=(1)|v||γ|+|γ||ε|+|γ||δ|ϕ(β2(γ)ϕψ(v))β(α2(ε))α(α2(δ))=(1)|v||γ|+|γ||ε|+|γ||δ|((β2(γ)ϕψ(v))α2β(ε))βα3(δ)+(1)|v||γ|+|γ||ε|+|γ||δ|+|ε||δ|((β2(γ)ϕψ(v))α2β(δ))βα3(ε)(by3.6)=(1)|v||γ|+|γ||ε|+|γ||δ|(αβ2(γ)(ϕψ(v)α2(ε)))βα3(δ)D1+(1)|v||γ|+|γ||ε|+|γ||δ|+|ε||δ|(αβ2(γ)(ϕψ(v)α2(δ)))βα3(ε)D2.(by3.12)

    Finally, we have

    (1)|γ||δ|asVϕ,ψ(ψ2(v)αβ(ε),βα2(γ),α3(δ))+(1)|ε||γ|+|ε||δ|asVϕ,ψ(ψ2(v)αβ(δ),βα2(γ),α3(ε))+(1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(μ(β2(ε),αβ(δ)),βα2(γ),ϕ3(v))=(1)|γ||δ|(3.2)+(1)|v||ε|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|(3.4)=0.

    Hence, we prove that (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule.

    Lemma 3.1. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ) be a Bihom-super-module.

    1) If (V,ϕ,ψ) is a right Bihom-associative J-super-module with the structure map ρr, then (V,ϕ,ψ) is a right special Bihom-Jordan J-super-module with the same structure map ρr.

    2) If (V,ϕ,ψ) is a left Bihom-associative J-super-module with the structure map ρl such that ψ is invertible, then (V,ϕ,ψ) is a left special Bihom-Jordan J-super-module with the same structure map ρl.

    Proof. It also suffices to prove Eqs (3.6) and (3.8).

    1) If (V,ϕ,ψ) is a right Bihom-associative J-super-module with the structure map ρr then for all (ε,γ,v)H(J)×H(J)×H(V). ϕ(v)(β(ε)α(γ))=ϕ(v)(β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε))=(vβ(ε))αβ(γ)+(1)|ε||γ|(vβ(γ))αβ(ε). Then (V,ϕ,ψ) is a right special Bihom-Jordan J-super-module by Theorem 3.1.

    2) Similarly, it is easy to obtain by Theorem 3.2.

    End of lemma proof.

    By Lemma 3.1 and Theorem 3.4, we obtain the following conclusion.

    Proposition 3.1. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ,ρ1,ρ2) be a Bihom-associative J-super-bimodule such that ϕ and ψ are inversible. Then (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule where ρl and ρr are defined as in Eq (3.13).

    That is, a Bihom-associative J-super-bimodule gives rise to a Bihom-Jordan super-bimodule for J.

    Proposition 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and Vϕ,ψ=(V,ϕ,ψ,ρl,ρr) be a Bihom-Jordan J-super-bimodule. Then for each nN such that ϕn=ψn=IdV, the maps

    ρ(n)l=ρl(αnψn), (3.14)

    and

    ρ(n)r=ρr(ϕnβn). (3.15)

    as structure maps, (V,ϕ,ψ,ρ(n)l,ρ(n)r) is given to be a Bihom-Jordan J-super-bimodule. Denoted it by V(n)ϕ,ψ.

    Proof. ρl and ρn are easy to prove special left and right super-modules, respectively, which are also left and right super-modules, and Eq (3.9) holds in V(n)ϕ,ψ. By direct calculation, we can convert asV(n)ϕ,ψ in V(n)ϕ,ψ to asVϕ,ψ in Vϕ,ψ, that is

    asV(n)ϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=asVϕ,ψ(β2(αn(ε))αβ(αn(γ)),ϕ2ψ(v),α3(βn(δ)))

    , furthermore, we have

    ε,γ,δ(1)|δ|(|ε|+|v|)asV(n)ϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=αn(ε),αn(γ),βn(δ)(1)|δ|(|ε|+|v|)asVϕ,ψ(β2(αn(ε))αβ(αn(γ)),ϕ2ψ(v),α3(βn(δ)))=0.

    Then we obtain Eq (3.10) in V(n)ϕ,ψ. Similarly, Eq (3.11) also holds in V(n)ϕ,ψ, which implies that V(n)ϕ,ψ is a Bihom-Jordan J-super-bimodule.

    In the sequel, we present some results of Bihom-Jordan super-bimodules constructed by Jordan super-bimodules via endomorphisms.

    Theorem 3.5. Let (J,μ) be a Jordan superalgebra, (V,ρl,ρr) be a Jordan J-super-bimodule, α,β be endomorphisms of J, which satisfies αβ=βα and ϕ,ψ be even linear self-maps of V such that ϕρl=ρl(αϕ), ϕρr=ρr(ϕα), ψρl=ρl(βψ) and ψρr=ρr(ψβ). Denote Jα,β for the Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) and Vϕ,ψ for the Bihom-super-module (V,ϕ,ψ). Define two structure maps as follows:

    ~ρl=ρl(αψ)and~ρr=ρr(ϕβ). (3.16)

    Then Vϕ,ψ=(V,ϕ,ψ,~ρl,~ρr) is a Bihom-Jordan Jα,β-super-bimodule.

    Proof. By direct calculation, it is easy to get asVϕ,ψ(μα,β(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=asV(α3β2(ε)α3β2(γ),ϕ3ψ2(v),α3β2(δ)), So it is clear Eqs (3.10) and (3.11) hold in Vϕ,ψ. Thus, (V,ϕ,ψ,~ρl,~ρr) is a Bihom-Jordan Jα,β-super-bimodule.

    From Proposition 3.2 and Theorem 3.5, we have the following

    Corollary 3.1. Let (J,μ) be a Jordan superalgebra, (V,ρl,ρr) be a Jordan J-super-bimodule, α,β be endomorphisms of J, which satify αβ=βα and ϕ,ψ be even linear self-maps of V such that ϕρl=ρl(αϕ), ϕρr=ρr(ϕα), ψρl=ρl(βψ) and ψρr=ρr(ψβ). Denote Jα,β for the Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) and Vϕ,ψ for the Bihom-super-module (V,ϕ,ψ). Define two structure maps as follows:

    ~ρl(n)=ρl(αn+1ψ)and~ρr(n)=ρr(ϕβn+1). (3.17)

    Then Vϕ,ψ=(V,ϕ,ψ,~ρl(n),~ρr(n)) is a Bihom-Jordan Jα,β-super-bimodule for each nN.

    Definition 3.3. An abelian extension of Bihom-Jordan superalgebra is a short exact sequence of Bihom-Jordan superalgebra:

    0(V,ϕ,ψ)i(J,μJ,αJ,βJ)π(B,μB,αB,βB)0.

    where (V,ϕ,ψ) is a trivial Bihom-Jordan superalgebra, i and π are even morphisms of Bihom-superalgebras. If there exists an even morphism s:(B,μB,αB,βB)(J,μJ,αJ,βJ) satisfies πs=IdB. Then the abelian extension is said to be split and s is called a section of π.

    In this section, we study the representation and O-operator. Meanwhile, we characterize Bihom-pre-Jordan superalgebras by using O-operator.

    Definition 4.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, V be a Z2-graded vector spaces, ρ:JEnd(V), ϕ,ψAug(V). Then (V,ρ,ϕ,ψ) is a representation of (J,μ,α,β), if the following conditions hold:

    ϕψ=ψϕ, (4.1)
    ρ(μ(μ(β2(ε),αβ(γ)),α2β(δ)))ϕ3ψ+(1)|δ||γ|ρ(α2β2(ε))ϕψ1ρ(αβ2(δ))ϕψ1ρ(β2(γ))ϕψ+(1)|γ||ε|+|δ||ε|ρ(α2β2(γ))ϕψ1ρ(αβ2(δ))ϕψ1ρ(β2(ε))ϕψρ(μ(αβ2(ε),α2β(γ)))ρ(α2β(δ))ϕ3(1)|ε||δ|+|δ||γ|ρ(μ(αβ2(δ),α2β(ε)))ϕ2ψ1ρ(β2(γ))ϕψ(1)|ε||δ|+|δ||γ|+|ε||γ|ρ(μ(αβ2(δ),α2β(γ)))ϕ2ψ1ρ(β2(ε))ϕψ=0. (4.2)
    ε,γ,δ(1)|ε||δ|ρ(α2β2(ε))ϕψ1ρ(μ(β2(γ),αβ(δ)))ϕ2ψ=ε,γ,δ(1)|ε||δ|ρ(μ(αβ2(ε),α2β(γ)))ρ(α2β(δ))ϕ3. (4.3)

    Example 4.1. Let (J,μ,α,β) be a regular Bihom-Jordan superalgebra. Define ad:JEnd(J), for any ε,γH(J), ad(ε)γ=μ(ε,γ). Then (J,ad,α,β) is a representation of (J,μ,α,β), which is called adjoint representation.

    Proposition 4.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. (V,ρ,ϕ,ψ) be a representation, define an even bilinear map μ and two even linear maps α and β on JV as follows: for any ε,γH(J),a,bH(V),

    μ(ε+a,γ+b)=μ(ε,γ)+ρ(ε)b+ρ(α1β(γ))ϕψ1(a),
    (α+ϕ)(ε+a)=α(ε)+ϕ(a),(β+ψ)(ε+a)=β(a)+ψ(a).

    Then (JV,μ,α+ϕ,β+ψ) is a Bihom-Jordan superalgebra, denoted by JV and called semidirect product.

    Proof. It can be verified directly by Definition 4.1.

    We also consider the split null extension on JV in Proposition 4.1.

    Remark 4.1. Write elements a+v of JV as (a,v). There is an injective homomorphism and a surjective homomorphism of Bihom-modules, respectively, as follows:

    i:VJV, i(v)=(0,v),

    π:JV, π(a,v)=a.

    Moreover, i(V) is a Bihom-ideal of JV such that JV/i(V)J. On the other hand, there is an even morphisms σ:JJV given by σ(a)=(a,0), which is clearly a section of π. Therefore, we obtain the abelian split exact sequence:

    Definition 4.2. A BiHom superalgebra (J,,α,β) is called a Bihom-pre-Jordan superalgebra if for all ε,γ,δ,tH(J):

    1) αβ=βα, both α and β are reversible,

    1)

    ((β2(ε)αβ(γ))α2β(δ))α3β(w)+(1)|ε||γ|((β2(γ)αβ(ε))α2β(δ))α3β(w)+(1)|δ|(|ε|+|γ|)(αβ2(δ)(αβ(ε)α2(γ)))α3β(w)+(1)|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)(αβ(γ)α2(ε)))α3β(w)+(1)|δ||γ|α2β2(ε)(α2β(δ)(α2(γ)α3β1(w)))+(1)|δ||ε|+|γ||ε|α2β2(γ)(α2β(δ)(α2(ε)α3β1(w)))(αβ2(ε)α2β(γ))(α2β(δ)α3(w))(1)|ε||γ|(αβ2(γ)α2β(ε))(α2β(δ)α3(w))(1)|ε||δ|+|δ||γ|(αβ2(δ)α2β(ε))(α2β(γ)α3(w))(1)|δ||γ|(αβ2(ε)α2β(δ))(α2β(γ)α3(w))(1)|γ||δ|+|δ||ε|+|γ||ε|(αβ2(δ)α2β(γ))(α2β(ε)α3(w))(1)|δ||ε|+|γ||ε|(αβ2(γ)α2β(δ))(α2β(ε)α3(w))=0, (4.4)

    3)

    (1)|w||γ|α2β2(w)((αβ(ε)α2(γ))α3(δ))+(1)|ε||γ|+|w||γ|α2β2(w)((αβ(γ)α2(ε))α3(δ))+(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))+(1)|γ||ε|α2β2(γ)((αβ(w)α2(ε))α3(δ))+(1)|γ||ε|+|w||ε|α2β2(γ)((αβ(ε)α2(w))α3(δ))(1)|w||ε|(αβ2(ε)α2β(γ))(α2β(w)α3(δ))(1)|ε||γ|+|w||ε|(αβ2(γ)α2β(ε))(α2β(w)α3(δ))(1)|ε||γ|(αβ2(γ)α2β(w))(α2β(ε)α3(δ))(1)|γ||w|+|ε||γ|(αβ2(w)α2β(γ))(α2β(ε)α3(δ))(1)|γ||w|(αβ2(w)α2β(ε))(α2β(γ)α3(δ))(1)|w||ε|+|γ||w|(αβ2(ε)α2β(w))(α2β(γ)α3(δ)). (4.5)

    Actually, condition 3 is equivalent to

    ε,γ,w{(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))}=ε,γ,w{(1)|ε||w|(αβ2(ε)α2β(γ))(α2β(w)(δ))+(1)|ε||w|+|ε||γ|(αβ2(γ)α2β(ε))(α2β(w)(δ))}.

    Theorem 4.1. Let (J,,α,β) be a Bihom-pre-Jordan superalgebra, define an even bilinear operator μ: for all ε,γH(J)

    μ(ε,γ)=εγ+(1)|ε||γ|α1β(γ)αβ1(ε), (4.6)

    then (J,,α,β) is a Bihom-Jordan superalgebra.

    Proof. By Eq (4.6), we get

    μ(β(ε),α(γ))=β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε)=(1)|ε||γ|μ(β(γ),α(ε)).

    That is to say the Bihom-super commutativity condition holds. Next, by direct calculation,

    (1)|w|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(w))=(1)|w|(|ε|+|δ|)((β2(ε)αβ(γ))α2β(δ))α3β(w)_+(1)|w||γ|α2β2(w)((αβ(ε)α2(γ))α3(δ))1+(1)|w|(|ε|+|δ|)+|δ|(|ε|+|γ|)(αβ2(δ)(αβ(ε)α2(γ)))α3β(w)_+(1)|w||γ|+|δ|(|ε|+|γ|)α2β2(w)(α2β(δ)(α2(ε)α3β1(γ)))(1)|w|(|ε|+|δ|)(αβ2(ε)α2β(γ))(α2β(δ)α3(w))_(1)|w|(|δ|+|γ|)+|δ|(|ε|+|γ|)(αβ2(δ)α2β(w))(α2β(ε)α3(γ))(1)|w||ε|(αβ2(ε)α2β(γ))(α2β(w)α3(δ))2(1)|w||γ|+|δ|(|ε|+|γ|)(αβ2(w)α2β(δ))(α2β(ε)α3(γ))+(1)|w|(|ε|+|δ|)+|ε||γ|((β2(γ)αβ(ε))α2β(δ))α3β(w)_+(1)|w||γ|+|ε||γ|α2β2(w)((αβ(γ)α2(ε))α3(δ))3+(1)|w|(|ε|+|δ|)+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)(αβ(γ)α2(ε)))α3β(w)_+(1)|w||γ|+|δ|(|ε|+|γ|)+|ε||γ|α2β2(w)(α2β(δ)(α2(γ)α3β1(ε)))(1)|w|(|ε|+|δ|)+|ε||γ|(αβ2(γ)α2β(ε))(α2β(δ)α3(w))_(1)|w|(|δ|+|γ|)+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)α2β(w))(α2β(γ)α3(ε))(1)|w||ε|+|ε||γ|(αβ2(γ)α2β(ε))(α2β(w)α3(δ))4(1)|w||γ|+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(w)α2β(δ))(α2β(γ)α3(ε)),
    (1)|ε|(|γ|+|δ|)~asα,β(μ(β2(γ),αβ(w)),α2β(δ),α3(ε))=(1)|ε|(|γ|+|δ|)((β2(γ)αβ(w))α2β(δ))α3β(ε)+(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))5+(1)|ε|(|γ|+|δ|)+|δ|(|w|+|γ|)(αβ2(δ)(αβ(γ)α2(w)))α3β(ε)+(1)|ε||w|+|δ|(|γ|+|w|)α2β2(ε)(α2β(δ)(α2(γ)α3β1(w)))_(1)|ε|(|γ|+|δ|)(αβ2(γ)α2β(w))(α2β(δ)α3(ε))(1)|ε|(|δ|+|w|)+|δ|(|γ|+|w|)(αβ2(δ)α2β(ε))(α2β(γ)α3(w))_(1)|ε||γ|(αβ2(γ)α2β(w))(α2β(ε)α3(δ))6(1)|ε||w|+|δ|(|γ|+|w|)(αβ2(ε)α2β(δ))(α2β(γ)α3(w))_+(1)|ε|(|γ|+|δ|)+|γ||w|((β2(w)αβ(γ))α2β(δ))α3β(ε)+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))7+(1)|ε|(|γ|+|δ|)+|δ|(|γ|+|w|)+|γ||w|(αβ2(δ)(αβ(w)α2(γ)))α3β(ε)+(1)|w||γ|+|δ|(|γ|+|w|)+|ε||w|α2β2(ε)(α2β(δ)(α2(w)α3β1(γ)))(1)|ε|(|γ|+|δ|)+|γ||w|(αβ2(w)α2β(γ))(α2β(δ)α3(ε))(1)|ε|(|δ|+|w|)+|δ|(|γ|+|w|)+|γ||w|(αβ2(δ)α2β(ε))(α2β(w)α3(γ))(1)|w||γ|+|ε||γ|(αβ2(w)α2β(γ))(α2β(ε)α3(δ))8(1)|w||γ|+|δ|(|γ|+|w|)+|ε||w|(αβ2(ε)α2β(δ))(α2β(w)α3(γ)),
    (1)|γ|(|w|+|δ|)~asα,β(μ(β2(w),αβ(ε)),α2β(δ),α3(γ))=(1)|γ|(|w|+|δ|)((β2(w)αβ(ε))α2β(δ))α3β(γ)+(1)|γ||ε|α2β2(γ)((αβ(w)α2(ε))α3(δ))9+(1)|γ|(|w|+|δ|)+|δ|(|w|+|ε|)(αβ2(δ)(αβ(w)α2(ε)))α3β(γ)+(1)|γ||ε|+|δ|(|w|+|ε|)α2β2(γ)(α2β(δ)(α2(w)α3β1(ε)))(1)|γ|(|w|+|δ|)(αβ2(w)α2β(ε))(α2β(δ)α3(γ))(1)|γ|(|δ|+|ε|)+|δ|(|w|+|ε|)(αβ2(δ)α2β(γ))(α2β(w)α3(ε))(1)|γ||w|(αβ2(w)α2β(ε))(α2β(γ)α3(δ))10(1)|γ||ε|+|δ|(|w|+|ε|)(αβ2(γ)α2β(δ))(α2β(w)α3(ε))+(1)|γ|(|w|+|δ|)+|w||ε|((β2(ε)αβ(w))α2β(δ))α3β(γ)+(1)|w||ε|+|ε||γ|α2β2(γ)((αβ(ε)α2(w))α3(δ))11+(1)|γ|(|w|+|δ|)+|δ|(|w|+|ε|)+|w||ε|(αβ2(δ)(αβ(ε)α2(w)))α3β(γ)+(1)|w||ε|+|δ|(|w|+|ε|)+|ε||γ|α2β2(γ)(α2β(δ)(α2(ε)α3β1(w)))_(1)|γ|(|w|+|δ|)+|w||ε|(αβ2(ε)α2β(w))(α2β(δ)α3(γ))(1)|γ|(|δ|+|ε|)+|δ|(|w|+|ε|)+|w||ε|(αβ2(δ)α2β(γ))(α2β(ε)α3(w))_(1)|w||ε|+|γ||w|(αβ2(ε)α2β(w))(α2β(γ)α3(δ))12(1)|w||ε|+|δ|(|w|+|ε|)+|ε||γ|(αβ2(γ)α2β(δ))(α2β(ε)α3(w))_,

    By Eq (4.4), we have ++=0, and by Eq (4.5), 1++12=0, Analogously, the conclusion that the sum is zero can be obtained by recombining the remaining unmarked formulas, which implies

    ε,γ,w(1)|w|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(w))=0.

    This completes the proof.

    Definition 4.3. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, and (V,ρ,ϕ,ψ) be its representation. If even the linear map T:JV satisfies the following conditions: for all a,bH(V),

    μ(T(a),T(b))=T(ρ(T(a))b+(1)|a||b|ρ(T(ϕ1ψ(b)))ϕψ1(a)),
    Tϕ=αT,Tψ=βT,

    then T is called O-operator with respect to representation.

    Definition 4.4. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and α,β be reversible, Rgl(J), R is called Rota–Baxter operator on J, if for all ε,γH(J), the following conditions hold:

    μ(R(ε),R(γ))=R(μ(R(ε),γ)+(1)|ε||γ|μ(R(α1β(γ)),αβ1(ε))),
    Rα=αR,Rβ=βR.

    Theorem 4.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ρ,ϕ,ψ) be its representation, and T be an O-operator with respect to representation. Define bilinear operation on V:

    ab=ρ(T(a))b,a,bH(V).

    Then (V,,ϕ,ψ) is a Bihom-pre-Jordan superalgebra.

    Proof. Actually, it can be calculated directly from Definition 4.1.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by NNSF of China (Nos. 12271085 and 12071405). The authors would like to thank the reviewers for valuable suggestions to improve the paper.

    The authors declare there are no conflicts of interest.



    [1] Davidy A (2021) Thermodynamic design of Organic Rankine Cycle (ORC) based on petroleum coke combustion. ChemEngineering 5: 37. https://doi.org/10.3390/chemengineering5030037 doi: 10.3390/chemengineering5030037
    [2] ARCONEL, National Electrical Energy Balance—Photovoltaic Energy Production. Available from: https://www.controlrecursosyenergia.gob.ec/balance-nacional-de-energia-electrica/.
    [3] Qu D, Cheng L, Bao Y, et al. (2022) Enhanced optical absorption and solar steam generation of CB-ATO hybrid nanofluids. Renewable Energy 199: 509–516. https://doi.org/10.1016/j.renene.2022.08.150 doi: 10.1016/j.renene.2022.08.150
    [4] Bao Y, Huang A, Zheng X, et al. (2023) Enhanced photothermal conversion performance of MWCNT/SiC hybrid aqueous nanofluids in direct absorption solar collectors. J Mol Liq 387: 122577. https://doi.org/10.1016/j.molliq.2023.122577 doi: 10.1016/j.molliq.2023.122577
    [5] Ministry of Electricity and Renewable Energy (2017) National Energy Efficiency Plan 2016–2035. Available from: https://www.acreditacion.gob.ec/sae-en-el-plan-de-eficiencia-energetica-2016-2035/.
    [6] Hung TC, Shai TY, Wang SK (1997) A review of Organic Rankine Cycles (ORCs) for the recovery of low-grade waste heat. Energy 22: 661–667. https://doi.org/10.1016/S0360-5442(96)00165-X doi: 10.1016/S0360-5442(96)00165-X
    [7] Bao J, Zhao L (2013) A review of working fluid and expander selections for Organic Rankine Cycle. Renewable Sustainable Energy Rev 24: 325–342. https://doi.org/10.1016/j.rser.2013.03.040 doi: 10.1016/j.rser.2013.03.040
    [8] Lecompte S, Huisseune H, Van Den Broek M, et al. (2015) Review of Organic Rankine Cycle (ORC) architectures for waste heat recovery. Renewable Sustainable Energy Rev 47: 448–461. https://doi.org/10.1016/j.rser.2015.03.089 doi: 10.1016/j.rser.2015.03.089
    [9] Vélez F, Segovia JJ, Martín MC, et al. (2012) A technical, economical and market review of Organic Rankine Cycles for the conversion of low-grade heat for power generation. Renewable Sustainable Energy Rev 16: 4175–4189. https://doi.org/10.1016/j.rser.2012.03.022 doi: 10.1016/j.rser.2012.03.022
    [10] Zhai H, An Q, Shi L, et al. (2016) Categorization and analysis of heat sources for Organic Rankine Cycle systems. Renewable Sustainable Energy Rev 64: 790–805. https://doi.org/10.1016/j.rser.2016.06.076 doi: 10.1016/j.rser.2016.06.076
    [11] Karellas S, Leontaritis AD, Panousis G, et al. (2013) Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 58: 147–156. https://doi.org/10.1016/j.energy.2013.03.097 doi: 10.1016/j.energy.2013.03.097
    [12] Tzivanidis C, Bellos E, Antonopoulos KA (2016) Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant. Energy Convers Manage 126: 421–433. https://doi.org/10.1016/j.enconman.2016.08.033 doi: 10.1016/j.enconman.2016.08.033
    [13] Delgado-Torres AM, García-Rodríguez L (2012) Design recommendations for solar Organic Rankine Cycle (ORC)—Powered reverse osmosis (RO) desalination. Renewable Sustainable Energy Rev 16: 44–53. https://doi.org/10.1016/j.rser.2011.07.135 doi: 10.1016/j.rser.2011.07.135
    [14] Ferrara F, Gimelli A, Luongo A (2014) Small-scale concentrated solar power (CSP) plant: ORCs comparison for different organic fluids. Energy Procedia 45: 217–226. https://doi.org/10.1016/j.egypro.2014.01.024 doi: 10.1016/j.egypro.2014.01.024
    [15] Bianchi M, De Pascale A (2011) Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl Energy 88: 1500–1509. https://doi.org/10.1016/j.apenergy.2010.11.013 doi: 10.1016/j.apenergy.2010.11.013
    [16] Sampedro Redondo JL (2017) Application of low-temperature Organic Rankine Cycles to microgeneration systems. University of Oviedo. Available from: http://hdl.handle.net/10651/44967.
    [17] Borsukiewicz-Gozdur A, Nowak W (2007) Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle. Energy 32: 344–352. https://doi.org/10.1016/j.energy.2006.07.012 doi: 10.1016/j.energy.2006.07.012
    [18] Schuster A, Karellas S, Kakaras E, et al. (2009) Energetic and economic investigation of Organic Rankine Cycle applications. Appl Therm Eng 29: 1809–1817. https://doi.org/10.1016/j.applthermaleng.2008.08.016 doi: 10.1016/j.applthermaleng.2008.08.016
    [19] Chacartegui R, Vigna L, Becerra JA, et al. (2016) Analysis of two heat storage integrations for an Organic Rankine Cycle Parabolic trough solar power plant. Energy Convers Manage 125: 353–367. https://doi.org/10.1016/j.enconman.2016.03.067 doi: 10.1016/j.enconman.2016.03.067
    [20] Chen Y, Pridasawas W, Lundqvist P (2007) Low-grade heat source utilization by carbon dioxide transcritical power cycle. Heat Transfer Summer Conf 42746: 519–525. https://doi.org/10.1115/HT2007-32774 doi: 10.1115/HT2007-32774
    [21] Kaneko S (2016) Integrated coal gasification combined cycle: A reality, not a dream. J Energy Eng 142: E4015018. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000312 doi: 10.1061/(ASCE)EY.1943-7897.0000312
    [22] Wang XD, Zhao L, Wang JL, et al. (2010) Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Sol Energy 84: 353–364. https://doi.org/10.1016/j.solener.2009.11.004 doi: 10.1016/j.solener.2009.11.004
    [23] Bellos E, Tzivanidis C, Antonopoulos KA (2016) Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Appl Therm Eng 102: 749–759. https://doi.org/10.1016/j.applthermaleng.2016.04.032 doi: 10.1016/j.applthermaleng.2016.04.032
    [24] Bišćan D, Filipan V (2012) Potential of waste heat in Croatian industrial sector. Therm Sci 16: 747–758. https://doi.org/10.2298/TSCI120124123B doi: 10.2298/TSCI120124123B
    [25] Tchanche BF, Lambrinos G, Frangoudakis A, et al. (2011) Low-grade heat conversion into power using Organic Rankine Cycles—A review of various applications. Renewable Sustainable Energy Rev 15: 3963–3979. https://doi.org/10.1016/j.rser.2011.07.024 doi: 10.1016/j.rser.2011.07.024
    [26] Sprouse Ⅲ C, Depcik C (2013) Review of Organic Rankine Cycles for internal combustion engine exhaust waste heat recovery. Appl Therm Eng 51: 711–722. https://doi.org/10.1016/j.applthermaleng.2012.10.017 doi: 10.1016/j.applthermaleng.2012.10.017
    [27] Xie H, Yang C (2013) Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle. Appl Energy 112: 130–141. https://doi.org/10.1016/j.apenergy.2013.05.071 doi: 10.1016/j.apenergy.2013.05.071
    [28] Zhang HG, Wang EH, Fan BY (2013) A performance analysis of a novel system of a dual loop bottoming Organic Rankine Cycle (ORC) with a light-duty diesel engine. Appl Energy 102: 1504–1513. https://doi.org/10.1016/j.apenergy.2012.09.018 doi: 10.1016/j.apenergy.2012.09.018
    [29] Franco A, Villani M (2009) Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal fields. Geothermics 38: 379–391. https://doi.org/10.1016/j.geothermics.2009.08.001 doi: 10.1016/j.geothermics.2009.08.001
    [30] Zhai H, Shi L, An Q (2014) Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (Organic Rankine Cycle) system. Energy 74: 2–11. https://doi.org/10.1016/j.energy.2013.12.030 doi: 10.1016/j.energy.2013.12.030
    [31] García-Rodríguez L, Blanco-Gálvez J (2007) Solar-heated Rankine cycles for water and electricity production : POWERSOL project. Desalination 212: 311–318. https://doi.org/10.1016/j.desal.2006.08.015 doi: 10.1016/j.desal.2006.08.015
    [32] Algieri A, Morrone P (2014) Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Appl Therm Eng 71: 751–759. https://doi.org/10.1016/j.applthermaleng.2013.11.024 doi: 10.1016/j.applthermaleng.2013.11.024
    [33] Algieri A, Morrone P (2014) Techno-economic analysis of biomass-fired ORC systems for single-family combined heat and power (CHP) applications. Energy Procedia 45: 1285–1294. https://doi.org/10.1016/j.egypro.2014.01.134 doi: 10.1016/j.egypro.2014.01.134
    [34] Drescher U, Brüggemann D (2007) Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl Therm Eng 27: 223–228. https://doi.org/10.1016/j.applthermaleng.2006.04.024 doi: 10.1016/j.applthermaleng.2006.04.024
    [35] Naranjo-Silva S, Punina-Guerrero D, Rivera-Gonzalez L, et al. (2023) Hydropower scenarios in the face of climate change in Ecuador. Sustainability 15: 10160. https://doi.org/10.3390/su151310160 doi: 10.3390/su151310160
    [36] Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30: 231–295. https://doi.org/10.1016/j.pecs.2004.02.001 doi: 10.1016/j.pecs.2004.02.001
    [37] Tzivanidis C, Bellos E, Antonopoulos KA (2016) Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant. Energy Convers Manage 126: 421–433. https://doi.org/10.1016/j.enconman.2016.08.033 doi: 10.1016/j.enconman.2016.08.033
    [38] Bellos E, Tzivanidis C (2020) Parametric investigation of a trigeneration system with an Organic Rankine Cycle and absorption heat pump driven by parabolic trough collectors for the building sector. Energies 13: 1800. https://doi.org/10.3390/en13071800 doi: 10.3390/en13071800
    [39] Cabrera FJ, Fernández-García A, Silva RMP, et al. (2013) Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications. Renewable Sustainable Energy Rev 20: 103–118. https://doi.org/10.1016/j.rser.2012.11.081 doi: 10.1016/j.rser.2012.11.081
    [40] Pei G, Li J, Ji J (2010) Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle. Appl Therm Eng 30: 998–1004. https://doi.org/10.1016/j.applthermaleng.2010.01.011 doi: 10.1016/j.applthermaleng.2010.01.011
    [41] Sadeghi M, Nemati A, Yari M (2016) Thermodynamic analysis and multi-objective optimization of various ORC (Organic Rankine Cycle) configurations using zeotropic mixtures. Energy 109: 791–802. https://doi.org/10.1016/j.energy.2016.05.022 doi: 10.1016/j.energy.2016.05.022
    [42] Wang R, Jiang L, Ma Z, et al. (2019) Comparative analysis of small-scale Organic Rankine Cycle systems for solar energy utilisation. Energies 12: 829. https://doi.org/10.3390/en12050829 doi: 10.3390/en12050829
    [43] Cao Y, Gao Y, Zheng Y, et al. (2016) Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators. Energy Convers Manage 116: 32–41. https://doi.org/10.1016/j.enconman.2016.02.073 doi: 10.1016/j.enconman.2016.02.073
    [44] Yu H, Helland H, Yu X, et al. (2021) Optimal design and operation of an Organic Rankine Cycle (ORC) system driven by solar energy with sensible thermal energy storage. Energy Convers Manage 244: 114494. https://doi.org/10.1016/j.enconman.2021.114494 doi: 10.1016/j.enconman.2021.114494
    [45] Karim SHT, Tofiq TA, Shariati M, et al. (2021) 4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications. Energy Rep 7: 1780–1797. https://doi.org/10.1016/j.egyr.2021.03.020 doi: 10.1016/j.egyr.2021.03.020
    [46] Ochoa GV, Ortiz EV, Forero JD (2023) Thermo-economic and environmental optimization using PSO of solar Organic Rankine Cycle with flat plate solar collector. Heliyon 9: e13697. https://doi.org/10.1016/j.heliyon.2023.e13697 doi: 10.1016/j.heliyon.2023.e13697
    [47] Alshammari S, Kadam ST, Yu Z (2023) Assessment of single rotor expander-compressor device in combined Organic Rankine Cycle (ORC) and vapor compression refrigeration cycle (VCR). Energy 282: 128763. https://doi.org/10.1016/j.energy.2023.128763 doi: 10.1016/j.energy.2023.128763
    [48] Maccari A, Bissi D, Casubolo G, et al. (2015) Archimede solar energy molten salt parabolic trough demo plant: A step ahead towards the new krontiers of CSP. Energy Procedia 69: 1643–1651. https://doi.org/10.1016/j.egypro.2015.03.122 doi: 10.1016/j.egypro.2015.03.122
    [49] Krishna Y, Faizal M, Saidur R, et al. (2020) State-of-the-art heat transfer fluids for parabolic trough collector. Int J Heat Mass Transfer 152: 119541. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119541 doi: 10.1016/j.ijheatmasstransfer.2020.119541
    [50] Işık S, Yıldız C (2020) Improving thermal energy storage efficiency of solar collector tanks by placing phase change materials in novel finned-type cells. Therm Sci Eng Prog 19: 100618. https://doi.org/10.1016/j.tsep.2020.100618 doi: 10.1016/j.tsep.2020.100618
    [51] Fasquelle T, Falcoz Q, Neveu P, et al. (2017) Operating results of a thermocline thermal energy storage included in a parabolic trough mini power plant. AIP Conf Proc 1850. https://doi.org/10.1063/1.4984431 doi: 10.1063/1.4984431
    [52] Haunreiter Echeverría B (2017) Study of technical and economic alternatives for the recovery of waste heat at the Quevedo Ⅱ thermoelectric plant, taking into account climate change mitigation aspects. Available from: http://bibdigital.epn.edu.ec/handle/15000/17498.
  • This article has been cited by:

    1. Eric Avila-Vales, Ángel G. C. Pérez, Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate, 2021, 27, 1405-213X, 10.1007/s40590-021-00315-5
    2. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, 2020, 0003-6811, 1, 10.1080/00036811.2020.1721471
    3. Huaqiao Zhang, Hong Chen, Cuicui Jiang, Kaifa Wang, Effect of explicit dynamics of free virus and intracellular delay, 2017, 104, 09600779, 827, 10.1016/j.chaos.2017.09.038
    4. Shaoli Wang, Tengfei Wang, Yuming Chen, Bifurcations and Bistability of an Age-Structured Viral Infection Model with a Nonmonotonic Immune Response, 2022, 32, 0218-1274, 10.1142/S0218127422501516
    5. Peng Wu, Hongyong Zhao, Mathematical analysis of multi-target cells and multi-strain age-structured model with two HIV infection routes, 2021, 14, 1793-5245, 10.1142/S1793524521500571
    6. Junmei Liu, Yonggang Ma, Global stability of a HIV-1 CCR5 gene therapy with suicide gene, 2024, 12, 2164-2583, 10.1080/21642583.2023.2291407
    7. A. Yu. Shcheglov, S. V. Netessov, An Inverse Problem for an Age-Structured Population Dynamics Model with Migration Flows, 2024, 17, 1995-4239, 93, 10.1134/S1995423924010099
    8. S. V. Netesov, A. Yu. Shcheglov, Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation, 2024, 48, 0278-6419, 20, 10.3103/S0278641924010072
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1617) PDF downloads(94) Cited by(2)

Figures and Tables

Figures(18)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog