Processing math: 41%
Research article Special Issues

Machine learning-based approach for efficient prediction of diagnosis, prognosis and lymph node metastasis of papillary thyroid carcinoma using adhesion signature selection

  • Received: 04 August 2023 Revised: 04 October 2023 Accepted: 07 November 2023 Published: 15 November 2023
  • The association between adhesion function and papillary thyroid carcinoma (PTC) is increasingly recognized; however, the precise role of adhesion function in the pathogenesis and prognosis of PTC remains unclear. In this study, we employed the robust rank aggregation algorithm to identify 64 stable adhesion-related differentially expressed genes (ARDGs). Subsequently, using univariate Cox regression analysis, we identified 16 prognostic ARDGs. To construct PTC survival risk scoring models, we employed Lasso Cox and multivariate + stepwise Cox regression methods. Comparative analysis of these models revealed that the Lasso Cox regression model (LPSRSM) displayed superior performance. Further analyses identified age and LPSRSM as independent prognostic factors for PTC. Notably, patients classified as low-risk by LPSRSM exhibited significantly better prognosis, as demonstrated by Kaplan-Meier survival analyses. Additionally, we investigated the potential impact of adhesion feature on energy metabolism and inflammatory responses. Furthermore, leveraging the CMAP database, we screened 10 drugs that may improve prognosis. Finally, using Lasso regression analysis, we identified four genes for a diagnostic model of lymph node metastasis and three genes for a diagnostic model of tumor. These gene models hold promise for prognosis and disease diagnosis in PTC.

    Citation: Shuo Sun, Xiaoni Cai, Jinhai Shao, Guimei Zhang, Shan Liu, Hongsheng Wang. Machine learning-based approach for efficient prediction of diagnosis, prognosis and lymph node metastasis of papillary thyroid carcinoma using adhesion signature selection[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20599-20623. doi: 10.3934/mbe.2023911

    Related Papers:

    [1] Sumera Naz, Muhammad Akram, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf, Gohar Yousaf . A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators. Mathematical Biosciences and Engineering, 2022, 19(4): 3843-3878. doi: 10.3934/mbe.2022177
    [2] Muhammad Akram, Usman Ali, Gustavo Santos-García, Zohra Niaz . 2-tuple linguistic Fermatean fuzzy MAGDM based on the WASPAS method for selection of solid waste disposal location. Mathematical Biosciences and Engineering, 2023, 20(2): 3811-3837. doi: 10.3934/mbe.2023179
    [3] Ayesha Khan, Muhammad Akram, Uzma Ahmad, Mohammed M. Ali Al-Shamiri . A new multi-objective optimization ratio analysis plus full multiplication form method for the selection of an appropriate mining method based on 2-tuple spherical fuzzy linguistic sets. Mathematical Biosciences and Engineering, 2023, 20(1): 456-488. doi: 10.3934/mbe.2023021
    [4] Muhammad Akram, Adeel Farooq, Maria Shabir, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf . Group decision-making analysis with complex spherical fuzzy N-soft sets. Mathematical Biosciences and Engineering, 2022, 19(5): 4991-5030. doi: 10.3934/mbe.2022234
    [5] Muhammad Akram, G. Muhiuddin, Gustavo Santos-García . An enhanced VIKOR method for multi-criteria group decision-making with complex Fermatean fuzzy sets. Mathematical Biosciences and Engineering, 2022, 19(7): 7201-7231. doi: 10.3934/mbe.2022340
    [6] Han Wu, Junwu Wang, Sen Liu, Tingyou Yang . Research on decision-making of emergency plan for waterlogging disaster in subway station project based on linguistic intuitionistic fuzzy set and TOPSIS. Mathematical Biosciences and Engineering, 2020, 17(5): 4825-4851. doi: 10.3934/mbe.2020263
    [7] Ghous Ali, Adeel Farooq, Mohammed M. Ali Al-Shamiri . Novel multiple criteria decision-making analysis under m-polar fuzzy aggregation operators with application. Mathematical Biosciences and Engineering, 2023, 20(2): 3566-3593. doi: 10.3934/mbe.2023166
    [8] Yuting Zhu, Wenyu Zhang, Junjie Hou, Hainan Wang, Tingting Wang, Haining Wang . The large-scale group consensus multi-attribute decision-making method based on probabilistic dual hesitant fuzzy sets. Mathematical Biosciences and Engineering, 2024, 21(3): 3944-3966. doi: 10.3934/mbe.2024175
    [9] Shahzaib Ashraf, Noor Rehman, Saleem Abdullah, Bushra Batool, Mingwei Lin, Muhammad Aslam . Decision support model for the patient admission scheduling problem based on picture fuzzy aggregation information and TOPSIS methodology. Mathematical Biosciences and Engineering, 2022, 19(3): 3147-3176. doi: 10.3934/mbe.2022146
    [10] Yongfeng Yin, Routing Zhang, Qingran Su . Threat assessment of aerial targets based on improved GRA-TOPSIS method and three-way decisions. Mathematical Biosciences and Engineering, 2023, 20(7): 13250-13266. doi: 10.3934/mbe.2023591
  • The association between adhesion function and papillary thyroid carcinoma (PTC) is increasingly recognized; however, the precise role of adhesion function in the pathogenesis and prognosis of PTC remains unclear. In this study, we employed the robust rank aggregation algorithm to identify 64 stable adhesion-related differentially expressed genes (ARDGs). Subsequently, using univariate Cox regression analysis, we identified 16 prognostic ARDGs. To construct PTC survival risk scoring models, we employed Lasso Cox and multivariate + stepwise Cox regression methods. Comparative analysis of these models revealed that the Lasso Cox regression model (LPSRSM) displayed superior performance. Further analyses identified age and LPSRSM as independent prognostic factors for PTC. Notably, patients classified as low-risk by LPSRSM exhibited significantly better prognosis, as demonstrated by Kaplan-Meier survival analyses. Additionally, we investigated the potential impact of adhesion feature on energy metabolism and inflammatory responses. Furthermore, leveraging the CMAP database, we screened 10 drugs that may improve prognosis. Finally, using Lasso regression analysis, we identified four genes for a diagnostic model of lymph node metastasis and three genes for a diagnostic model of tumor. These gene models hold promise for prognosis and disease diagnosis in PTC.



    Multi-attribute decision-making (MADM) is a procedure in which an alternative fulfilling all requirements is chosen from a set of available alternatives. Researchers have studied MADM problems in different areas and provided their solutions. Originally it was concerned with perfectly determined alternatives (crisp formulation) and many competing approaches have been formulated under that assumption. However, after Zadeh [1] presented the idea of a robust theory, fuzzy set (FS) theory, to tackle the vagueness and uncertainties in data during decision-making (DM). In FS theory, a membership function was formed to manage the ambiguities in data. The idea of FS is in fact the main building block as the researchers studied its features theoretically and applied it to solve MADM problems in the fuzzy framework. Researchers studied the interval-valued FSs [2,3]. Chen and Jong [4] studied the fuzzy query translation for relational database systems. Chen and Niou [5] presented fuzzy multiple-attributes group decision-making based on fuzzy preference relations. FS theory proves to be a foundational stone as it paved the way to scholars and researchers to establish many more general and remarkable extensions, such as intuitionistic fuzzy sets (IFSs) [6,7,8], Pythagorean fuzzy sets (PyFSs) [9,10], Fermatean fuzzy sets [11], hesitant fuzzy sets [12,13], and q-rung orthopair fuzzy sets (q-ROFSs) [14]. All these models consider separate a membership degree (MD) and a non-membership degree (NMD) of each object a, namely, γ(a) (MD of a) and δ(a) (NMD of a), and they respectively operate under the assumptions 0γ(a)+δ(a)1, 0(γ(a))2+(δ(a))21, 0(γ(a))3+(δ(a))31 and 0(γ(a))q+(δ(a))q1(q1).

    The import of these models grew with the production of elements for analysis like aggregation operators, and decision-making applications in multiple scenarios. In view of these motivations, our main goal in this article is to present a new model (that will be abbreviated as 2TLCq-RPFS), which is designed to contain the interesting features and properties of several models beyond the fuzzy set spirit. By doing so we shall establish a broad generalization of fuzzy sets and related extensions. We shall also investigate aggregation operators and applications to group decision-making for the new model. We proceed to expand the presentation of background and explain the motivation for these targets.

    A natural improvement of fuzzy sets consisted of the introduction of a neutral or abstinence degree (AD). To incorporate the idea of a distinct AD, Cuong and Kreinovich [15] presented picture fuzzy sets (PFSs) as an extended version of IFSs. In a PFS we assume that the sum of MD, NMD and AD should not exceed 1 at any object. Inspired by this idea, Li et al. [16] introduced the concept of q-rung PFS (q-RPFS), which incorporates the spirit of Yager's q-ROFS and relax the restriction to assume that the sum of qth power of MD, NMD and AD should be equal or less than 1. Akram et al. [17] studied the energy of q-ROF graphs. Khan et al. [18] studied axiomatically supported divergence measures for q-rung orthopair fuzzy sets. In DM, sometimes it becomes quite difficult to present the judgements quantitatively. To overcome this difficulty, Zadeh [19] pointed out a difference between numerical and linguistic data. He set up the notion of linguistic variables and presented the idea that qualitative information can be described by means of linguistic terms (LTs). Zhang [20] presented the concept of linguistic IFSs in which the membership functions are represented by the LTs. Garg [21] and Lin et al. [22] introduced the idea of linguistic PyFSs. Lin et al. [23] presented the idea of linguistic q-ROFS (Lq-ROFS). Akram et al. [24] provided the solution of a group DM problem based on Lq-ROF Einstein models. Herrera and Martínez [25,26] proposed a new model, namely 2-tuple linguistic representation model (2TLRM) to represent the qualitative information in MADM problems through LTs more clearly. Further research work can be studied from [27,28,29,30,31]. Notably, some researchers have presented different optimization models and applied them to solve various types of problems [32,33,34,35]. Additional algorithmic solutions and their utilizations can be studied from [36,37] among others.

    The 2TLRM has become a very popular approach for researchers to deal with the MADM problems with linguistic data and gives a freedom to the experts to express their judgements qualitatively, i.e., through LTs. Aggregation operators (AOs) are indispensable tools during DM as they combine the data to produce results. More precisely, AOs play a very crucial role to transform the data in a single outcome. In the last years, researchers investigated, developed and applied many AOs in DM [38,39,40,41,42,43]. Liu et al. [44] proposed the Lq-ROF generalized point weighted AOs. Particularly inspirational operators were proposed by Hamacher [45]. The Hamacher sum and product on more generalized t-norm and t-conorm have generated extensions to many frameworks. Faizi et al. [46] proposed some Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. For further study, one may refer to [47,48,49,50,51,52]. Ju et al. [53] presented the q-ROF 2TL Muirhead mean and the dual Muirhead mean operators. Deng et al. [54,55] introduced 2-tuple linguistic Pythagorean fuzzy Hamy mean and Heronian mean AOs. Wei [56] introduced the 2TIF linguistic AOs and Lu et al. [57] presented the bipolar 2TL AOs. Zhang et al. [58] proposed a DM method using 2TLPyFSs. Recently, Akram et al. [59] presented the 2-tuple linguistic Fermatean fuzzy Hamy mean operators and Akram et al. [60] proposed a DM technique using 2TLPyFSs. However, they were not designed to cope with two-dimensional or periodic information. To handle this matter, Ramot et al. [61,62] originated the complex FS (CFS) by enlarging the range of MD of a FS, from [0,1] to the unit circle in the complex plane. Researchers have thoroughly investigated, applied and improved CFS by suitable extensions [63,64]. Rong et al. [65] presented complex q-ROF 2TL Maclaurin symmetric mean operators. The most necessary tools for their manipulation have been given, and so for example, Bi et al. [66,67] proposed geometric and arithmetic AOs in the CF environment. Liu et al. [68] presented complex q-rung orthopair fuzzy AOs. Luqman et al. [69] studied the hypergraph representations of complex fuzzy information. Naz et al. [70,71] established DM methods based on 2TL information. For some additional discussion on AOs in complex settings, the readers are referred to [72,73,74,75,76,77,78,79,80]. In this paper, we have considered a selection problem [39] which is related to choosing the best machine from a set of available machines. These machines are to be evaluated on the basis of criteria such as flexibility, reliability, etc. The following considerations have motivated us to produce this paper:

    ● In 2TLRM, the evaluation information is represented by a pair of elements, i.e., by (si,α), and this pair is called a 2T. In this 2T, si represents the ordinary LT from a LTS and the value α indicates the symbolic translation (ST). The 2TLRM proves to be an efficient model and a novel computational approach to represent the linguistic information. This model helps to overcome the drawbacks of the classical linguistic representation model (LRM). In addition, the 2TL model enables us to select the alternative, when different alternatives have the same LTs. These prominent features of the 2TLRM stimulated our work in a 2TL environment.

    ● The notion of Cq-RPFS is a generalized form of many existing extensions of fuzzy sets, thus it has enormous ability to capture quantitative uncertain information. For example, by fixing the neutral degree to zero and q to 1, the model turns into complex intuitionistic FS (CIFS). When the neutral degree is zero and q equals 2, the model becomes complex Pythagorean FS (CPyFS). And by considering all the membership degrees with q equal to 1, it changes into complex picture FS (CPFS). The 2TLCq-RPFS contains the qualities of both 2TL set and complex q-rung picture FS (Cq-RPFS), therefore, it is quite helpful to overcome complexities in data without loss of information, linguistic or otherwise.

    ● AOs have great importance during the DM process, as they transform a large number of values into a single value. The Hamacher AOs are a parameterized general type of AOs, which produce the averaging and Einstein operators by suitable choices of the value of a parameter. In addition, they consider the interrelationship between the input arguments. Therefore, the adaptability of the Hamacher operators is a good asset for our purposes.

    To summarize, from the analysis above, we observe that there is no work on 2TLCq-RPFS in the existing literature. Apart from this, the Hamacher AOs have not been studied in the present environment. In this article, we have extended the Hamacher AOs to operate on 2TLCq-RPFSs and we have applied them for DM. We now list the major contributions of this article:

    ● We introduce the concept of 2TLCq-RPFS which is the generalization of 2TL term set and Cq-RPFS. Then we establish the fundamental operational laws between two 2TLCq-RPFNs. Furthermore, we present the 2TLCq-RPFWA and 2TLCq-RPFWG operators.

    ● We establish Hamacher laws between two 2TLCq-RPFNs. Moreover, we introduce certain AOs for the 2TLCq-RPF environment, namely, the 2TLCq-RPFHWA, 2TLCq-RPFHOWA, 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators. We study their fundamental properties.

    ● We state a step-by-step algorithm for decision making and discuss its utilization with a case study that finds the most feasible alternative from available alternatives. Further, we perform a comparative study with some existing operators.

    The remaining of the article is structured as follows: In Section 2, we recall some auxiliary notions related to the q-RPFS, Cq-RPFS, 2TL representation model and Hamacher operators. Section 3 discusses the idea of 2TL complex q-rung picture fuzzy sets along with its related ideas, operational laws, and the 2TLCq-RPFWA and 2TLCq-RPFWG operators. Section 4 introduces Hamacher operations between two 2TLCq-RPFNs and a series of AOs including the 2TLCq-RPFHWA, 2TLCq-RPFHWG, 2TLCq-RPFHOWA and 2TLCq-RPFHOWG operators, along with their fundamental properties. In Section 5, we establish a MADM strategy based on the 2TLCq-RPFHWA operator and the 2TLCq-RPFHWG operator. To demonstrate the applicability of our proposed method, we provide a numerical instance in Section 5, the influence of parameters on decision results, conducted a comparative study and discussion. Finally in Section 6, we present conclusions. The abbreviations and notations are presented in Table 1.

    Table 1.  Nomenclature of the research work.
    Acronyms and Notations Description
    DM Decision-making
    MADM Multi-attribute DM
    FS Fuzzy set
    IFS Intuitionistic FS
    PyFS Pythagorean FS
    q-ROFS q-Rung orthopair FS
    PFS Picture FS
    q-RPFS q-Rung PFS
    MD Membership degree
    NMD Non-membership degree
    AD Abstinence degree
    AOs Aggregation operators
    2TLPyF 2-tuple linguistic PyF
    2TL 2-tuple linguistic
    LRM Linguistic representation model
    CFS Complex FS
    CIFS Complex intuitionistic FS
    CPyFS Complex Pythagorean FS
    CPFS Complex picture FS
    Cq-RPFS Complex q-rung picture FS
    2TLCq-RPFS 2-tuple linguistic complex q-rung picture fuzzy set
    2TLRM 2-tuple linguistic representation model
    LTS Linguistic term set
    ST Symbolic translation
    2TLCq-RPFWA 2TLCq-RPF weighted averaging (WA)
    2TLCq-RPFWG 2TLCq-RPF weighted geometric (WG)
    2TLCq-RPFHWA 2TLCq-RPF Hamacher WA
    2TLCq-RPFHWG 2TLCq-RPF Hamacher WG
    2TLCq-RPFHOWA 2TLCq-RPFH ordered WA
    2TLCq-RPFHOWG 2TLCq-RPFH ordered WG
    ˜S={˜sk:k=0,1,,Υ} 2-tuple linguistic term set
    Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) 2TLCq-RPF number
    (˜sαk,Ak) Amplitude term of membership grade of 2TLCq-RPFN
    (˜sβk,Bk) Amplitude term of abstinence grade of 2TLCq-RPFN
    (˜sγk,Ck) Amplitude term of non-membership grade of 2TLCq-RPFN
    (˜sζk,Dk) Phase term of membership grade of 2TLCq-RPFN
    (˜sηk,Ek) Phase term of abstinence grade of 2TLCq-RPFN
    (˜sθk,Fk) Phase term of non-membership grade of 2TLCq-RPFN
    x Parameter of Hamacher operator
    If and only if
    S Score function of 2TLCq-RPFN
    A Accuracy function of 2TLCq-RPFN
    A Alternative
    C Criteria

     | Show Table
    DownLoad: CSV

    There are a considerable number of auxiliary concepts which are very important to understand the forthcoming sections. We have included some fundamental concepts for better understanding. Let us recall them before going to the next section.

    Definition 2.1. [16] On a universe H, a q-RPFS ξ (with q1) can be defined as:

    ξ={(z,α(z),β(z),γ(z)):zH}, (2.1)

    where α,β,γ:H[0,1] denotes the MD, AD and NMD, respectively, of the element z in ξ satisfying the constraint (α(z))q+(β(z))q+(γ(z))q1. The degree of refusal membership of a q-RPFS is given by the formula (1(α(z))q+(β(z))q+(γ(z))q)1q, zH.

    Definition 2.2. [73] On a universe H, a Cq-RPFS ξ (with q1) can be defined as:

    ξ={(z,α(z)eiζ(z),β(z)eiη(z),γ(z)eiθ(z)):zH}, (2.2)

    where α,β,γ:H[0,1] denotes the amplitude terms of MD, AD and NMD, respectively, of the element z in ξ satisfying the constraint (α(z))q+(β(z))q+(γ(z))q1. ζ,η,θ[0,2π] denotes the phase terms of MD, AD and NMD, respectively, of the element z in ξ, which satisfy the constraint (ζ(z)2π)q+(η(z)2π)q+(θ(z)2π)q1.

    Definition 2.3. [25,26] Given a LTS ˜S={˜sk:k=0,1,2,,Υ} having odd cardinality where Υ+1 is the cardinality of ˜S and ˜sk depicts a possible linguistic term for a LTS ˜S. Let us take an example of a LTS ˜S for Υ=5 as follows:

    ˜S={˜s0=Verylow,˜s1=Low,˜s2=Medium,˜s3=High,˜s4=VeryHigh}.

    Following are some initial and basic operations on a LTS:

    ˜sk>˜sl, k>l (ordering)

    max(˜sk,˜sl)=˜sk kl (max operator)

    min(˜sk,˜sl)=˜sk kl (min operator)

    Neg(˜sk)=˜sl such that l=Υk (Negative operator)

    The 2TL model originated by Herrera and Martínez [25,26] is very convenient and effective for representing the qualitative evaluation information through a 2-tuple (˜sk,μk). Here, ˜sk is the ordinary LT taken from a LTS and μk is the value of ST with μk[0.5,0.5).

    Definition 2.4. [25,26] Given a LTS ˜S={˜sk:k=0,1,2,,Υ} and suppose λ be the numerical value obtained after applying an aggregation operation on the indices of LTs taken from a LTS ˜S with λ[0,Υ]. Suppose two values k and μ, where, k=round(λ), μ=λk, k[1,Υ], and μ[0.5,0.5), then μ is called ST.

    The numerical value λ is converted into a 2T by means of the function Λ, and a 2T is transformed into a numerical value with the help of a function Λ1, which are defined in the next definitions.

    Definition 2.5. [25,26] Given a LTS ˜S={˜sk:k=0,1,2,,Υ} and λ[0,Υ]. Then the function Λ:[0,Υ]˜S×[0.5,0.5) is defined as:

    Λ(λ)={˜sk,k=round(λ)μ=λk,μ[0.5,0.5).

    Definition 2.6. [25,26] Given a LTS ˜S={˜sk:k=0,1,2,,Υ} and a 2-tuple (˜sk,μk). Then the function Λ1:˜S×[0.5,0.5)[0,Υ] is defined as:

    Λ1(˜sk,μ)=k+μ=λ,λ[0,Υ].

    Definition 2.7. A binary function T:[0,1]×[0,1][0,1] is said to be a t-conorm if there is a t-norm T such that

    T(m,z)=1T(1m,1z)

    for all (m,z)[0,1]2. Recall that a t-norm is T:[0,1]×[0,1][0,1] which is commutative, associative, monotonic, and for which 1 acts as an identity element.

    Hamacher [45] presented the Hamacher operations, namely, the Hamacher sum and product, which are respectively defined as follows:

    TH(m,z)=mzx+(1x)(m+zmz),x>0.TH(m,z)=m+zmz(1x)mz1(1x)(mz),x>0.

    For x=1, these expressions return the algebraic t-norm and t-conorm.

    TH(m,z)=mz.TH(m,z)=m+zmz.

    For x=2, we get the Einstein t-norm and t-conorm.

    TH(m,z)=mz1+(1m)(1z).TH(m,z)=m+z1+mz.

    This section is devoted to the novel concept of 2-tuple linguistic complex q-rung picture fuzzy set. Moreover, we establish the operational laws between two 2TLCq-RPFNs along a brief description of both the 2TLCq-RPFWA and 2TLCq-RPFWG operators.

    Definition 3.1. We define a 2TLCq-RPFS L as

    L={(z,((˜sα(z),A(z))ei2π(˜sζ(z),D(z)),(˜sβ(z),B(z))ei2π(˜sη(z),E(z)),(˜sγ(z),C(z))ei2π(˜sθ(z),F(z)))):zK}, (3.1)

    where (˜sα(z),A(z)), (˜sβ(z),B(z)) and (˜sγ(z),C(z)) are the amplitude terms of MD, AD and NMD, respectively. This they meet the following restrictions: ˜sα(z),˜sβ(z),˜sγ(z)L, A(z),B(z),C(z)[0.5,0.5), 0Λ1(˜sα(z),A(z))Υ,0Λ1(˜sβ(z),B(z))Υ,0Λ1(˜sγ(z),C(z))Υ and 0(Λ1(˜sα(z),A(z)))q+(Λ1(˜sβ(z),B(z)))q+(Λ1(˜sγ(z),C(z)))qΥq with q1.

    (˜sζ,D(z)), (˜sη,E(z)) and (˜sθ,F(z)) are the phase terms of MD, AD and NMD, respectively, having the restrictions ˜sζ(z),˜sη(z),˜sθ(z)L, D(z),E(z),F(z)[0.5,0.5), 0Λ1(˜sζ(z),D(z))Υ,0Λ1(˜sη(z),E(z))Υ,0Λ1(˜sθ(z),F(z))Υ and 0(Λ1(˜sζ(z),D(z)))q+(Λ1(˜sη(z),E(z)))q+(Λ1(˜sθ(z),F(z)))qΥq.

    Remark 3.1. For simplicity, we call L=((˜sα,A)ei2π(˜sζ,D),(˜sβ,B)ei2π(˜sη,E),(˜sγ,C)ei2π(˜sθ,F)), a 2TLq-RPFN with 0Λ1(˜sα,A)Υ,0Λ1(˜sβ,B)Υ,0Λ1(˜sγ,C)Υ,0Λ1(˜sζ,D)Υ,0Λ1(˜sη,E)Υ,0Λ1(˜sθ,F)Υ, 0(Λ1(˜sα,A))q+(Λ1(˜sβ,B))q+(Λ1(˜sγ,C))qΥq, and 0(Λ1(˜sζ,A))q+(Λ1(˜sη,B))q+(Λ1(˜sθ,C))qΥq.

    Definition 3.2. Given a LTS ˜S={˜sk:k=0,1,2,,Υ} and suppose a,b,c are the numerical values obtained after applying an aggregation operation on the indices of LTs taken from a LTS ˜S with a,b,c[0,Υ]. In addition, suppose there are six values α=round(a),β=round(b),γ=round(c), A=aα,B=bβ,C=cγ with A,B,C[0.5,0.5), then A,B,C are the values of the ST for amplitude terms. Similarly, suppose d,e,f are the numerical values obtained after applying an aggregation operation on the indices of LTs taken from a LTS ˜S with d,e,f[0,Υ]. In addition, suppose there are six values ζ=round(d),η=round(e),θ=round(f), D=dζ,E=eη,F=fθ with D,E,F[0.5,0.5), then D,E,F are the values of the ST for phase terms.

    Definition 3.3. Given a LTS ˜S={˜sk:k=0,1,2,,Υ} and a,b,c,d,e,f[0,Υ]. Then the function Λ:[0,Υ]˜S×[0.5,0.5) is defined as:

    Λ(a)={˜sα,α=round(a)A=aα,A[0.5,0.5),
    Λ(b)={˜sβ,β=round(b)B=bβ,B[0.5,0.5),
    Λ(c)={˜sγ,γ=round(c)C=cγ,C[0.5,0.5),
    Λ(d)={˜sζ,ζ=round(d)D=dζ,D[0.5,0.5),
    Λ(e)={˜sη,η=round(e)E=eη,E[0.5,0.5),
    Λ(f)={˜sθ,θ=round(f)F=fθ,F[0.5,0.5),

    where round(.) indicates the usual round operation.

    Definition 3.4. Given a LTS ˜S={˜sk:k=0,1,2,,Υ} and a 2TLCq-RPFN

    L=((˜sα,A)ei2π(˜sζ,D),(˜sβ,B)ei2π(˜sη,E),(˜sγ,C)ei2π(˜sθ,F)),

    then there exists a function Λ1:˜S×[0.5,0.5)[0,Υ], that restores each 2TLCq-RPFN to its equivalent numerical value a,b,c,d,e,f[0,Υ], where

    Λ1(˜sα,A)=α+A=a,Λ1(˜sβ,B)=β+B=b,Λ1(˜sγ,C)=γ+C=c,Λ1(˜sζ,D)=ζ+D=d,Λ1(˜sη,E)=η+E=d,Λ1(˜sθ,F)=θ+F=f.

    Example 3.1. Consider a LTS ˜S={˜s0,˜s1,˜s2,˜s3,˜s4,˜s5,˜s6} with Υ=7 and a 2TLCq-RPFN

    L=((˜s3,0)ei2π(˜s4,0),(˜s1,0)ei2π(˜s2,0),(˜s5,0)ei2π(˜s4,0)), (3.2)

    where α=3, β=1, γ=5, ζ=4, η=2, θ=4, and A=B=C=D=E=F=0. For q=3, we see that 0Λ1(˜s3,0)7,0Λ1(˜s1,0)7,0Λ1(˜s5,0)7 and 0(Λ1(˜s3,0))3+(Λ1(˜s1,0))3+(Λ1(˜s5,0))3=153<(7)3=343. Similarly, 0Λ1(˜s4,0)7,0Λ1(˜s2,0)7,0Λ1(˜s4,0)7 and 0(Λ1(˜s4,0))3+(Λ1(˜s2,0))3+(Λ1(˜s4,0))3=136<(7)3=343. Clearly, Equation (3.2) is a 2TLCq-RPFN.

    The next tools are designed to enable us to compare two 2TLCq-RPFNs:

    Definition 3.5. Consider a 2TLCq-RPFN L=((˜sα,A)ei2π(˜sζ,D),(˜sβ,B)ei2π(˜sη,E),(˜sγ,C)ei2π(˜sθ,F)). The score function for 2TLCq-RPFNs can be defined as follows:

    S(L)=Λ(13(2Υq+(Λ1(˜sα,A)Υ)q(Λ1(˜sβ,B)Υ)q(Λ1(˜sγ,C)Υ)q+(Λ1(˜sζ,D)Υ)q(Λ1(˜sη,E)Υ)q(Λ1(˜sθ,F)Υ)q))1q (3.3)

    and the accuracy function A can be defined by the expression:

    A(L)=Λ(Υ((Λ1(˜sα,A)Υ)q+(Λ1(˜sβ,B)Υ)q+(Λ1(˜sγ,C)Υ)q+(Λ1(˜sζ,D)Υ)q+(Λ1(˜sη,E)Υ)q+(Λ1(˜sθ,F)Υ)q)). (3.4)

    Definition 3.6. Consider two 2TLCq-RPFNs L1=((˜sα1,A1)ei2π(˜sζ1,D1),(˜sβ1,B1)ei2π(˜sη1,E1),(˜sγ1,C1)ei2π(˜sθ1,F1)) and L2=((˜sα2,A2)ei2π(˜sζ2,D2),(˜sβ2,B2)ei2π(˜sη2,E2),(˜sγ2,C2)ei2π(˜sθ2,F2)). We can compare these two 2TLCq-RPFNs by the following method:

    1) If S(L1)>S(L2), then L1>L2;

    2) If S(L1)=S(L2), then

    ● If A(L1)>A(L2), then L1>L2;

    ● If A(L1)=A(L2), then L1L2.

    We next define some operational laws on 2TLCq-RPFNs:

    Definition 3.7. Consider three 2TLCq-RPFNs L=((˜sα,A)ei2π(˜sζ,D),(˜sβ,B)ei2π(˜sη,E),(˜sγ,C)ei2π(˜sθ,F)), L1=((˜sα1,A1)ei2π(˜sζ1,D1), (˜sβ1,B1)ei2π(˜sη1,E1), (˜sγ1,C1)ei2π(˜sθ1,F1)) and L2=((˜sα2,A2)ei2π(˜sζ2,D2),(˜sβ2,B2)ei2π(˜sη2,E2), (˜sγ2,C2)ei2π(˜sθ2,F2)) with q1 and ρ>0, then

    1) L1L2=(Λ(Υ(1(1(Λ1(˜sα1,A1)Υ)q)(1(Λ1(˜sα2,A2)Υ)q))1q)ei2πΛ(Υ(1(1(Λ1(˜sζ1,D1)Υ)q)(1(Λ1(˜sζ2,D2)Υ)q))1q),Λ(Υ(Λ1(˜sβ1,B1)Υ)(Λ1(˜sβ2,B2)Υ))ei2πΛ(Υ(Λ1(˜sη1,E1)Υ)(Λ1(˜sη2,E2)Υ)),Λ(Υ(Λ1(˜sγ1,C1)Υ)(Λ1(˜sγ2,C2)Υ))ei2πΛ(Υ(Λ1(˜sθ1,F1)Υ)(Λ1(˜sθ2,F2)Υ))).

    2) L1L2=(Λ(Υ(Λ1(˜sα1,A1)Υ)(Λ1(˜sα2,A2)Υ))ei2πΛ(Υ(Λ1(˜sζ1,D1)Υ)(Λ1(˜sζ2,D2)Υ)),Λ(Υ(1(1(Λ1(˜sβ1,B1)Υ)q)(1(Λ1(˜sβ2,B2)Υ)q))1q)ei2πΛ(Υ(1(1(Λ1(˜sη1,E1)Υ)q)(1(Λ1(˜sη2,E2)Υ)q))1q),Λ(Υ(1(1(Λ1(˜sγ1,C1)Υ)q)(1(Λ1(˜sγ2,C2)Υ)q))1q)ei2πΛ(Υ(1(1(Λ1(˜sθ1,F1)Υ)q)(1(Λ1(˜sθ2,F2)Υ)q))1q)).

    3) ρL=(Λ(Υ(1(1(Λ1(˜sα,A)Υ)q)ρ)1q)ei2πΛ(Υ(1(1(Λ1(˜sζ,D)Υ)q)ρ)1q),Λ(Υ(Λ1(˜sβ,B)Υ)ρ)ei2πΛ(Υ(Λ1(˜sη,E)Υ)ρ),Λ(Υ(Λ1(˜sγ,C)Υ)ρ)ei2πΛ(Υ(Λ1(˜sθ,F)Υ)ρ)).

    4) Lρ=(Λ(Υ(Λ1(˜sα,A)Υ)ρ)ei2πΛ(Υ(Λ1(˜sζ,D)Υ)ρ),Λ(Υ(1(1(Λ1(˜sβ,B)Υ)q)ρ)1q)ei2πΛ(Υ(1(1(Λ1(˜sη,E)Υ)q)ρ)1q),Λ(Υ(1(1(Λ1(˜sγ,C)Υ)q)ρ)1q)ei2πΛ(Υ(1(1(Λ1(˜sθ,F)Υ)q)ρ)1q)).

    This subsection presents two AOs, namely, the 2TLCq-RPFWA and 2TLCq-RPFWG operators, and establish their fundamental properties.

    The first operator is defined as follows:

    Definition 3.8. The 2TLCq-RPFWA operator is the mapping HnH such that: for each collection of 2TLCq-RPFNs Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n),

    2TLCqRPFWA(L1,L2,,Ln)=nk=1WkLk, (3.5)

    where W=(W1,W2,,Wn)T is the weight vector of Lk(k=1,2,,n) with Wk[0,1] and nk=1Wk=1.

    Our next result computes the expression of the 2TLCq-RPFWA operator:

    Theorem 3.1. Consider a collection of 2TLCq-RPFNs Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk, Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n) having weight vector W=(W1,W2,,Wn)T with Wk[0,1] and nk=1Wk=1. Then

    2TLCqRPFWA(L1,L2,,Ln)(Λ(Υ(1nk=1(1(Λ1(˜sαk,Ak)Υ)q)Wk)1q)ei2πΛ(Υ(1nk=1(1(Λ1(˜sζk,Dk)Υ)q)Wk)1q),Λ(Υnk=1(Λ1(˜sβk,Bk)Υ)Wk)ei2πΛ(Υnk=1(Λ1(˜sηk,Ek)Υ)Wk),Λ(Υnk=1(Λ1(˜sγk,Ck)Υ)Wk)ei2πΛ(Υnk=1(Λ1(˜sθk,Fk)Υ)Wk)). (3.6)

    The proof of this Theorem is given in Appendix A.

    We proceed to explore the behavior of our first operator:

    Proposition 3.1. Consider two collections of 2TLCq-RPFNs Lak=((˜sαak,Aak)ei2π(˜sζak,Dak), (˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak)) (k=1,2,,n) and Lbk=((˜sαbk,Abk)ei2π(˜sζbk,Dbk),(˜sβbk, Bbk)ei2π(˜sηbk,Ebk),(˜sγbk,Cbk)ei2π(˜sθbk,Fbk)) (k=1,2,,n). Then the 2TLCq-RPFWA operator has the following properties:

    1) (Idempotency) If Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk))=L for all (k=1,2,,n), then

    2TLCqRPFWA(L1,L2,,Ln)=L. (3.7)

    2) (Monotonicity) If LakLbk, for all (k=1,2,,n), then

    2TLCqRPFWA(La1,La2,,Lan)2TLCqRPFWA(Lb1,Lb2,,Lbn). (3.8)

    3) (Boundedness) Consider a collection of 2TLCq-RPFNs

    Lak=((˜sαak,Aak)ei2π(˜sζak,Dak),(˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak))(k=1,2,,n)

    with

    L+ak=(maxak(˜sαak,Aak)ei2π(maxak(˜sζak,Dak)),minak(˜sβak,Bak)ei2π(minak(˜sηak,Eak)),minak(˜sγak,Cak)ei2π(minak(˜sθak,Fak)))

    and

    Lak=(minak(˜sαak,Aak)ei2π(minak(˜sζak,Dak)),maxak(˜sβak,Bak)ei2π(maxak(˜sηak,Eak)),maxak(˜sγak,Cak)ei2π(maxak(˜sθak,Fak))),

    then

    L2TLCqRPFWA(L1,L2,,Ln)L+. (3.9)

    The second operator is defined as follows:

    Definition 3.9. The 2TLCq-RPFWG operator is the mapping HnH such that: for each collection of 2TLCq-RPFNs Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n),

    2TLCqRPFWG(L1,L2,,Ln)=nk=1(Lk)Wk, (3.10)

    where W=(W1,W2,,Wn)T is the weight vector of Lk(k=1,2,,n) with Wk[0,1] and nk=1Wk=1.

    Our next result computes the expression of the 2TLCq-RPFWG operator:

    Theorem 3.2. Consider a collection of 2TLCq-RPFNs Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk, Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n) having weight vector W=(W1,W2,,Wn)T with Wk[0,1] and nk=1Wk=1. Then{

    2TLCqRPFWG(L1,L2,,Ln)=(Λ(Υnk=1(Λ1(˜sαk,Ak)Υ)Wk)ei2πΛ(Υnk=1(Λ1(˜sζk,Dk)Υ)Wk)Λ(Υ(1nk=1(1(Λ1(˜sβk,Bk)Υ)q)Wk)1q)ei2πΛ(Υ(1nk=1(1(Λ1(˜sηk,Ek)Υ)q)Wk)1q)Λ(Υ(1nk=1(1(Λ1(˜sγk,Ck)Υ)q)Wk)1q)ei2πΛ(Υ(1nk=1(1(Λ1(˜sθk,Fk)Υ)q)Wk)1q)). (3.11)

    Proof. This proof is similar to the proof of Theorem 3.1.

    To conclude this section, we explore the behavior of our second operator:

    Proposition 3.2. Consider two collections of 2TLCq-RPFNs Lak=((˜sαak,Aak)ei2π(˜sζak,Dak), (˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak)) (k=1,2,,n) and Lbk=((˜sαbk,Abk)ei2π(˜sζbk,Dbk), (˜sβbk,Bbk)ei2π(˜sηbk,Ebk),(˜sγbk,Cbk)ei2π(˜sθbk,Fbk)) (k=1,2,,n). Then the 2TLCq-RPFWG operator has the following properties:

    1) (Idempotency) If Lk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk))=L for all (k=1,2,,n), then

    2TLCqRPFWG(L1,L2,,Ln)=L. (3.12)

    2) (Monotonicity) If LakLak, for all (k=1,2,,n), then

    2TLCqRPFWG(La1,La2,,Lan)2TLCqRPFWG(Lb1,Lb2,,Lbn). (3.13)

    3) (Boundedness) Consider a collection of 2TLCq-RPFNs

    Lak=((˜sαak,Aak)ei2π(˜sζak,Dak),(˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak))(k=1,2,,n)

    with

    L+ak=(maxak(˜sαak,Aak)ei2π(maxak(˜sζak,Dak)),minak(˜sβak,Bak)ei2π(minak(˜sηak,Eak)),minak(˜sγak,Cak)ei2π(minak(˜sθak,Fak)))

    and

    Lak=(minak(˜sαak,Aak)ei2π(minak(˜sζak,Dak)),maxak(˜sβak,Bak)ei2π(maxak(˜sηak,Eak)),maxak(˜sγak,Cak)ei2π(maxak(˜sθak,Fak))),

    then

    L2TLCqRPFWG(L1,L2,,Ln)L+. (3.14)

    In this section, we present Hamacher laws between 2TLCq-RPFNs, and also certain AOs, including the 2TLCq-RPFHWA, 2TLCq-RPFHOWA, 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators with their properties.

    Definition 4.1. Consider three 2TLCq-RPFNs L=((˜sα,A)ei2π(˜sζ,D), (˜sβ,B)ei2π(˜sη,E),(˜sγ,C)ei2π(˜sθ,F)) L1=((˜sα1,A1)ei2π(˜sζ1,D1),(˜sβ1, B1)ei2π(˜sη1,E1),(˜sγ1,C1)ei2π(˜sθ1,F1)) and L2=((˜sα2,A2)ei2π(˜sζ2,D2), (˜sβ2,B2)ei2π(˜sη2,E2),(˜sγ2,C2)ei2π(˜sθ2,F2)) with q1 and x,ρ>0.

    Then the 2TLCq-RPF Hamacher operation between L1 and L2 are:

    1) L1L2=(Λ(Υ(qAq1+Aq2Aq1Aq2(1x)Aq1Aq21(1x)Aq1Aq2))ei2πΛ(Υ(qXq1+Xq2Xq1Xq2(1x)Xq1Xq21(1x)Xq1Xq2)),Λ(Υ(B1B2qx+(1x)(Bq1+Bq2Bq1Bq2)))ei2πΛ(Υ(Y1Y2qx+(1x)(Yq1+Yq2Yq1Yq2))),Λ(Υ(C1C2qx+(1x)(Cq1+Cq2Cq1C2)q))ei2πΛ(Υ(Z1Z2qx+(1x)(Zq1+Zq2Zq1Zq2)))).

    2) L1L2=(Λ(Υ(A1A2qx+(1x)(Aq1+Aq2Aq1Aq2)))ei2πΛ(Υ(X1X2qx+(1x)(Xq1+Xq2Xq1Xq2))),Λ(Υ(qBq1+Bq2Bq1Bq2(1x)Bq1Bq21(1x)Bq1Bq2))ei2πΛ(Υ(qYq1+Yq2Yq1Yq2(1x)Yq1Yq21(1x)Yq1Yq2)),Λ(Υ(qCq1+Cq2Cq1Cq2(1x)Cq1Cq21(1x)Cq1Cq2))ei2πΛ(Υ(qZq1+Zq2Zq1Zq2(1x)Zq1Zq21(1x)Zq1Zq2))).

    3) ρL=(Λ(Υ(q(1+(x1)Aq)ρ(1Aq)ρ(1+(x1)Aq)ρ+(x1)(1Aq)ρ))ei2πΛ(Υ(q(1+(x1)Xq)ρ(1Xq)ρ(1+(x1)Xq)ρ+(x1)(1Xq)ρ)),Λ(Υ(qxBρq(1+(x1)(1Bq))ρ+(x1)(Bq)ρ))ei2πΛ(Υ(qxYρq(1+(x1)(1Yq))ρ+(x1)(Yq)ρ)),Λ(Υ(qxCρq(1+(x1)(1Cq))ρ+(x1)(Cq)ρ))ei2πΛ(Υ(qxZρq(1+(x1)(1Zq))ρ+(x1)(Zq)ρ))).

    4) Lρ=(Λ(Υ(qxAρq(1+(x1)(1Aq))ρ+(x1)(Aq)ρ))ei2πΛ(Υ(qxXρq(1+(x1)(1Xq))ρ+(x1)(Xq)ρ)),Λ(Υ(q(1+(x1)Bq)ρ(1Bq)ρ(1+(x1)Bq)ρ+(x1)(1Bq)ρ))ei2πΛ(Υ(q(1+(x1)Yq)ρ(1Yq)ρ(1+(x1)Yq)ρ+(x1)(1Yq)ρ))Λ(Υ(q(1+(x1)Cq)ρ(1Cq)ρ(1+(x1)Cq)ρ+(x1)(1Cq)ρ)),ei2πΛ(Υ(q(1+(x1)Zq)ρ(1Zq)ρ(1+(x1)Zq)ρ+(x1)(1Zq)ρ))).}

    Here, A1=Λ1(˜sα1,A1)Υ, B1=Λ1(˜sβ1,B1)Υ, C1=Λ1(˜sγ1,C1)Υ, X1=Λ1(˜sζ1,D1)Υ, Y1=Λ1(˜sη1,E1)Υ and Z1=Λ1(˜sθ1,F1)Υ. Similar notations are for L and L2.

    Remark 4.1. For q=2, the 2TLCq-RPF Hamacher operations transform into the 2TLCSF Hamacher operations and for q=1, the 2TLCq-RPF Hamacher operations transform into the 2TLCPF Hamacher operations.

    This subsection presents two Hamacher AOs under the 2TLCq-RPF environment, namely, the 2TLCq-RPFHWA and 2TLCq-RPFHOWA operators.

    Definition 4.2. The 2TLCq-RPFHWA operator is a mapping HnH such that: for each collection of 2TLCq-RPFNs Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n),

    2TLCqRPFHWA(M1,M2,,Mn)=nk=1WkMk, (4.1)

    where W=(W1,W2,,Wn)T is the weight vector of Mk (k=1,2,,n) with Wk[0,1] and nk=1Wk=1.

    We now present a compact expression for the definition above:

    Theorem 4.1. Consider a collection of 2TLCq-RPFNs Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk, Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n) having weight vector W=(W1,W2,,Wn)T with Wk[0,1] and nk=1Wk=1. Then

    2TLCqRPFHWA(M1,M2,,Mn)=(Λ(Υ(qnk=1(1+(x1)Aqk)Wknk=1(1Aqk)Wknk=1(1+(x1)Aqk)Wk+(x1)nk=1(1Aqk)Wk))ei2πΛ(Υ(qnk=1(1+(x1)Xqk)Wknk=1(1Xqk)Wknk=1(1+(x1)Xqk)Wk+(x1)nk=1(1Xqk)Wk)),Λ(Υ(qxnk=1BWkkqnk=1(1+(x1)(1Bqk))Wk+(x1)nk=1(Bqk)Wk))ei2πΛ(Υ(qxnk=1YWkkqnk=1(1+(x1)(1Yqk))Wk+(x1)nk=1(Yqk)Wk)),Λ(Υ(qxnk=1CWkkqnk=1(1+(x1)(1Cqk))Wk+(x1)nk=1(Cqk)Wk))ei2πΛ(Υ(qxnk=1ZWkkqnk=1(1+(x1)(1Zqk))Wk+(x1)nk=1(Zqk)Wk))). (4.2)

    The proof of this Theorem is given in Appendix B.

    We illustrate the application of this operator with a numerical example:

    Example 4.1. Consider three 2TLCq-RPFNs M1={(˜s1,0)ei2π(˜s3,0),(˜s3,0)ei2π(˜s2,0), (˜s2,0)ei2π(˜s4,0)}, M2={(˜s4,0)ei2π(˜s1,0),(˜s5,0)ei2π(˜s3,0), (˜s1,0)ei2π(˜s1,0)} and M3={(˜s2,0)ei2π(˜s3,0),(˜s4,0)ei2π(˜s5,0), (˜s3,0)ei2π(˜s1,0)}. Assume that x=2, q=3, Υ=7 and W={0.4,0.3,0.3}. From Eq (4.2), we have

    2TLCqRPFHWA(M1,M2,M3)=(Λ(Υ(q3k=1(1+(x1)Aqk)Wk3k=1(1Aqk)Wk3k=1(1+(x1)Aqk)Wk+(x1)3k=1(1Aqk)Wk))ei2πΛ(Υ(q3k=1(1+(x1)Xqk)Wk3k=1(1Xqk)Wk3k=1(1+(x1)Xqk)Wk+(x1)3k=1(1Xqk)Wk)),Λ(Υ(qx3k=1BWkkq3k=1(1+(x1)(1Bqk))Wk+(x1)3k=1(Bqk)Wk))ei2πΛ(Υ(qx3k=1YWkkq3k=1(1+(x1)(1Yqk))Wk+(x1)3k=1(Yqk)Wk)),Λ(Υ(qx3k=1CWkkq3k=1(1+(x1)(1Cqk))Wk+(x1)mk=1(Cqk)Wk))ei2πΛ(Υ(qx3k=1ZWkkq3k=1(1+(x1)(1Zqk))Wk+(x1)3k=1(Zqk)Wk))).=((˜s3,0.1764)ei2π(˜s3,0.3199),(˜s4,0.1444)ei2π(˜s3,0.0357),(˜s2,0.1577)ei2π(˜s2,0.2281)).

    The next Proposition explores some properties of our 2TLCq-RPFHWA aggregation operator:

    Proposition 4.1. Consider two collections of 2TLCq-RPFNs Mak=((˜sαak,Aak)ei2π(˜sζak,Dak), (˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak)) (k=1,2,,n) and Mbk=((˜sαbk,Abk)ei2π(˜sζbk,Dbk), (˜sβbk,Bbk)ei2π(˜sηbk,Ebk),(˜sγbk,Cbk)ei2π(˜sθbk,Fbk)) (k=1,2,,n). Then the 2TLCq-RPFHWA operator has the following properties:

    1) (Idempotency) If Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk))=M for all (k=1,2,,n), then

    2TLCqRPFHWA(M1,M2,,Mn)=M. (4.3)

    Proof. Suppose Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) is a collection of 2TLCq-RPFNs such that Mk=M for all (k=1,2,,n), Wk[0,1] and nk=1Wk=1. Moreover, Ak=Λ1(˜sαk,Ak)Υ=A, Bk=Λ1(˜sβk,Bk)Υ=B,Ck=Λ1(˜sγk,Ck)Υ=C, Xk=Λ1(˜sζk,Dk)Υ=X, Yk=Λ1(˜sηk,Ek)Υ=Y and Zk=Λ1(˜sθk,Fk)Υ=Z for all (k=1,2,,n).From Eq (4.2), we get

    2TLCqRPFHWA(M1,M2,,Mn)=(Λ(Υ(qnk=1(1+(x1)Aq)Wknk=1(1Aq)Wknk=1(1+(x1)Aq)Wk+(x1)nk=1(1Aq)Wk))ei2πΛ(Υ(qnk=1(1+(x1)Xq)Wknk=1(1Xq)Wknk=1(1+(x1)Xq)Wk+(x1)nk=1(1Xq)Wk)),Λ(Υ(qxnk=1BWkqnk=1(1+(x1)(1Bq))Wk+(x1)nk=1(Bq)Wk))ei2πΛ(Υ(qxnk=1YWkqnk=1(1+(x1)(1Yq))Wk+(x1)nk=1(Yq)Wk)),Λ(Υ(qxnk=1CWkqnk=1(1+(x1)(1Cq))Wk+(x1)nk=1(Cq)Wk))ei2πΛ(Υ(qxnk=1ZWkqnk=1(1+(x1)(1Zq))Wk+(x1)nk=1(Zq)Wk)))
    =(Λ(Υ(q(1+(x1)Aq)(1Aq)(1+(x1)Aq)+(x1)(1Aq)))ei2πΛ(Υ(q(1+(x1)Xq)(1Xq)(1+(x1)Xq)+(x1)(1Xq))),Λ(Υ(qxBq(1+(x1)(1Bq))+(x1)(Bq)))ei2πΛ(Υ(qxYq(1+(x1)(1Yq))+(x1)(Yq))),Λ(Υ(qxCq(1+(x1)(1Cq))+(x1)(Cq)))ei2πΛ(Υ(qxZq(1+(x1)(1Zq))+(x1)(Zq))))=(Λ(Υ(A))ei2πΛ(Υ(X)),Λ(Υ(B))ei2πΛ(Υ(Y)),Λ(Υ(C))ei2πΛ(Υ(Z)))=(Λ(Υ(Λ1(˜sα,A)Υ))ei2πΛ(Υ(Λ1(˜sζ,D)Υ)),Λ(Υ(Λ1(˜sβ,B)Υ))ei2πΛ(Υ(Λ1(˜sη,E)Υ)),Λ(Υ(Λ1(˜sγ,C)Υ))ei2πΛ(Υ(Λ1(˜sθ,F)Υ)))=((˜sα,A)ei2π(˜sζ,D),(˜sβ,B)ei2π(˜sη,E),(˜sγ,C)ei2π(˜sθ,F))=M.

    2) (Monotonicity) If MakMbk, for all (k=1,2,,n), then

    2TLCqRPFHWA(Ma1,Ma2,,Man)2TLCqRPFHWA(Mb1,Mb2,,Mbn). (4.4)

    3) (Boundedness) Consider a collection of 2TLCq-RPFNs

    Mak=((˜sαak,Aak)ei2π(˜sζak,Dak),(˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak))(k=1,2,,n)

    with

    M+ak=(maxak(˜sαak,Aak)ei2π(maxak(˜sζak,Dak)),minak(˜sβak,Bak)ei2π(minak(˜sηak,Eak)),minak(˜sγak,Cak)ei2π(minak(˜sθak,Fak)))

    and

    Mak=(minak(˜sαak,Aak)ei2π(minak(˜sζak,Dak)),maxak(˜sβak,Bak)ei2π(maxak(˜sηak,Eak)),maxak(˜sγak,Cak)ei2π(maxak(˜sθak,Fak))),

    then

    M2TLCqRPFHWA(M1,M2,,Mn)M+. (4.5)

    An alternative operator that is born from a different principle follows:

    Definition 4.3. The 2TLCq-RPFHOWA operator is a mapping HnH such that: for each collection of 2TLCq-RPFNs Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n),

    2TLCqRPFHOWA(M1,M2,,Mn)=nk=1WkMμ(k), (4.6)

    where μ(k) is such that Mμ(k1)Mμ(k) for all k, W=(W1,W2,,Wn)T is the weight vector of Mk(k=1,2,,n) with Wk[0,1] and nk=1Wk=1.

    Its compact expression is computed in our next theorem:

    Theorem 4.2. Consider a collection of 2TLCq-RPFNs Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk, Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n) having weight vector W=(W1,W2,,Wn)T with Wk[0,1] and nk=1Wk=1. Then

    2TLCqRPFHOWA(M1,M2,,Mn)=(Λ(Υ(qnk=1(1+(x1)Aqμ(k))Wknk=1(1Aqμ(k))Wknk=1(1+(x1)Aqμ(k))Wk+(x1)nk=1(1Aqμ(k))Wk))ei2πΛ(Υ(qnk=1(1+(x1)Xqμ(k))Wknk=1(1Xqμ(k))Wknk=1(1+(x1)Xqμ(k))Wk+(x1)nk=1(1Xqμ(k))Wk)),Λ(Υ(qxnk=1BWkμ(k)qnk=1(1+(x1)(1Bqμ(k)))Wk+(x1)nk=1(Bqμ(k))Wk))ei2πΛ(Υ(qxnk=1YWkμ(k)qnk=1(1+(x1)(1Yqμ(k)))Wk+(x1)nk=1(Yqμ(k))Wk)),Λ(Υ(qxnk=1CWkμ(k)qnk=1(1+(x1)(1Cqμ(k)))Wk+(x1)nk=1(Cqμ(k))Wk))ei2πΛ(Υ(qxnk=1ZWkμ(k)qnk=1(1+(x1)(1Zqμ(k)))Wk+(x1)nk=1(Zqμ(k))Wk))). (4.7)

    Proof. This proof is similar to the proof of Theorem 4.1.

    For illustration, let us apply the formula above in a numerical case:

    Example 4.2. Consider three 2TLCq-RPFNs M1={(˜s1,0)ei2π(˜s3,0),(˜s3,0)ei2π(˜s2,0),(˜s2,0)ei2π(˜s4,0)}, M2={(˜s4,0)ei2π(˜s1,0),(˜s5,0)ei2π(˜s3,0),(˜s1,0)ei2π(˜s1,0)} and M3={(˜s2,0)ei2π(˜s3,0),(˜s4,0)ei2π(˜s5,0),(˜s3,0)ei2π(˜s1,0)}. Assume that x=2, q=3, Υ=7 and W={0.4,0.3,0.3}. Now, S(M1)=2.5191, S(M2)=2.5190, S(M3)=2.5182. Therefore, S(M1)<S(M2)<S(M3). From Eq (4.7), we have

    2TLCqRPFHOWA(M1,M2,M3)=
    (Λ(Υ(q3k=1(1+(x1)Aqμ(k))Wk3k=1(1Aqμ(k))Wk3k=1(1+(x1)Aqμ(k))Wk+(x1)3k=1(1Aqμ(k))Wk))ei2πΛ(Υ(q3k=1(1+(x1)Xqμ(k))Wk3k=1(1Xqμ(k))Wk3k=1(1+(x1)Xqμ(k))Wk+(x1)3k=1(1Xqμ(k))Wk)),Λ(Υ(qx3k=1BWkμ(k)q3k=1(1+(x1)(1Bqμ(k)))Wk+(x1)3k=1(Bqμ(k))Wk))ei2πΛ(Υ(qx3k=1YWkμ(k)q3k=1(1+(x1)(1Yqμ(k)))Wk+(x1)3k=1(Yqμ(k))Wk)),Λ(Υ(qx3k=1CWkμ(k)q3k=1(1+(x1)(1Cqμ(k)))Wk+(x1)3k=1(Cqμ(k))Wk))ei2πΛ(Υ(qx3k=1ZWkμ(k)q3k=1(1+(x1)(1Zqμ(k)))Wk+(x1)3k=1(Zqμ(k))Wk))).=((˜s3,0.1764)ei2π(˜s3,0.3199),(˜s4,0.1444)ei2π(˜s3,0.0357),(˜s2,0.1577)ei2π(˜s2,0.2281)).

    The next Proposition explores some properties of our 2TLCq-RPFHOWA aggregation operator:

    Proposition 4.2. Consider two collections of 2TLCq-RPFNs Mak=((˜sαak,Aak)ei2π(˜sζak,Dak), (˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak)) (k=1,2,,n) and Mbk=((˜sαbk,Abk)ei2π(˜sζbk,Dbk), (˜sβbk,Bbk)ei2π(˜sηbk,Ebk),(˜sγbk,Cbk)ei2π(˜sθbk,Fbk)) (k=1,2,,n).Then the 2TLCq-RPFHOWA operator has the following properties:

    1) (Idempotency) If Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk,Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk))=M for all (k=1,2,,n), then

    2TLCqRPFHOWA(M1,M2,,Mn)=M. (4.8)

    2) (Monotonicity) If MakMbk, for all (k=1,2,,n), then

    2TLCqRPFHOWA(Ma1,Ma2,,Man)2TLCqRPFHOWA(Mb1,Mb2,,Mbn). (4.9)

    3) (Boundedness) Consider a collection of 2TLCq-RPFNs

    Mak=((˜sαak,Aak)ei2π(˜sζak,Dak),(˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak))(k=1,2,,n)

    with

    M+ak=(maxak(˜sαak,Aak)ei2π(maxak(˜sζak,Dak)),minak(˜sβak,Bak)ei2π(minak(˜sηak,Eak)),minak(˜sγak,Cak)ei2π(minak(˜sθak,Fak)))

    and

    Mak=(minak(˜sαak,Aak)ei2π(minak(˜sζak,Dak)),maxak(˜sβak,Bak)ei2π(maxak(˜sηak,Eak)),maxak(˜sγak,Cak)ei2π(maxak(˜sθak,Fak))),

    then

    M2TLCqRPFHOWA(M1,M2,,Mn)M+. (4.10)

    This subsection presents two Hamacher AOs under the 2TLCq-RPF environment, namely, the 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators.

    Definition 4.4. Consider a collection of 2TLCq-RPFNs Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk, Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n). Then the 2TLCq-RPFHWG operator is a mapping HnH such that

    2TLCqRPFHWG(M1,M2,,Mn)=nk=1MWkk, (4.11)

    where W=(W1,W2,,Wn)T is the weight vector of Mk(k=1,2,,n) with Wk[0,1] and nk=1Wk=1.

    Its compact expression is computed in our next theorem:

    Theorem 4.3. Consider a collection of 2TLCq-RPFNs Mk=((˜sαk,Ak)ei2π(˜sζk,Dk),(˜sβk, Bk)ei2π(˜sηk,Ek),(˜sγk,Ck)ei2π(˜sθk,Fk)) (k=1,2,,n) having weight vector W=(W1,W2,,Wn)T with Wk[0,1] and nk=1Wk=1. Then

    2TLCqRPFHWG(M1,M2,,Mn)=(Λ(Υ(qxnk=1AWkkqnk=1(1+(x1)(1Aqk))Wk+(x1)nk=1(Aqk)Wk))ei2πΛ(Υ(qxnk=1XWkkqnk=1(1+(x1)(1Xqk))Wk+(x1)nk=1(Xqk)Wk)),Λ(Υ(qnk=1(1+(x1)Bqk)Wknk=1(1Bqk)Wknk=1(1+(x1)Bqk)Wk+(x1)nk=1(1Bqk)Wk))ei2πΛ(Υ(qnk=1(1+(x1)Yqk)Wknk=1(1Yqk)Wknk=1(1+(x1)Yqk)Wk+(x1)nk=1(1Yqk)Wk)),Λ(Υ(qnk=1(1+(x1)Cqk)Wknk=1(1Cqk)Wknk=1(1+(x1)Cqk)Wk+(x1)nk=1(1Cqk)Wk))ei2πΛ(Υ(qnk=1(1+(x1)Zqk)Wknk=1(1Zqk)Wknk=1(1+(x1)Zqk)Wk+(x1)nk=1(1Zqk)Wk))). (4.12)

    The proof of this Theorem is presented in Appendix C.

    A numerical example illustrates the computation of aggregate values by the 2TLCq-RPFHWG operator:

    Example 4.3. Consider three 2TLCq-RPFNs M1={(˜s1,0)ei2π(˜s3,0),(˜s3,0)ei2π(˜s2,0),(˜s2,0)ei2π(˜s4,0)}, M2={(˜s4,0)ei2π(˜s1,0),(˜s5,0)ei2π(˜s3,0),(˜s1,0)ei2π(˜s1,0)} and M3={(˜s2,0)ei2π(˜s3,0),(˜s4,0)ei2π(˜s5,0), (˜s3,0)ei2π(˜s1,0)}. Assume that x=2, q=3, Υ=7 and W={0.4,0.3,0.3}.

    From Eq (4.12), we have

    2TLCqRPFHWG(M1,M2,M3)=
    (Λ(Υ(qx3k=1AWkkq3k=1(1+(x1)(1Aqk))Wk+(x1)3k=1(Aqk)Wk))ei2πΛ(Υ(qx3k=1XWkkq3k=1(1+(x1)(1Xqk))Wk+(x1)3k=1(Xqk)Wk)),Λ(Υ(q3k=1(1+(x1)Bqk)Wk3k=1(1Bqk)Wk3k=1(1+(x1)Bqk)Wk+(x1)3k=1(1Bqk)Wk))ei2πΛ(Υ(q3k=1(1+(x1)Yqk)Wk3k=1(1Yqk)Wk3k=1(1+(x1)Yqk)Wk+(x1)3k=1(1Yqk)Wk)),Λ(Υ(q3k=1(1+(x1)Cqk)Wk3k=1(1Cqk)Wk3k=1(1+(x1)Cqk)Wk+(x1)3k=1(1Cqk)Wk))ei2πΛ(Υ(q3k=1(1+(x1)Zqk)Wk3k=1(1Zqk)Wk3k=1(1+(x1)Zqk)Wk+(x1)3k=1(1Zqk)Wk)))=((˜s2,0.1098)ei2π(˜s2,0.1735),(˜s4,0.1358)ei2π(˜s4,0.2428),(˜s2,0.2659)ei2π(˜s3,0.0056)).

    Proposition 4.3. Consider two collections of 2TLCq-RPFNs Mak=((˜sαak,Aak)ei2π(˜sζak,Dak), (˜sβak,Bak)ei2π(˜sηak,Eak),(˜sγak,Cak)ei2π(˜sθak,Fak)) (k = 1, 2, \ldots, n) and M_{b_{k}} = \big((\tilde{s}_{\alpha_{b_{k}}}, A_{b_{k}})e^{i2\pi(\tilde{s}_{\zeta_{b_{k}}}, D_{b_{k}})}, (\tilde{s}_{\beta_{b_{k}}}, B_{b_{k}})e^{i2\pi(\tilde{s}_{\eta_{b_{k}}}, E_{b_{k}})}, (\tilde{s}_{\gamma_{b_{k}}}, C_{b_{k}})e^{i2\pi(\tilde{s}_{\theta_{b_{k}}}, F_{b_{k}})}\big) (k = 1, 2, \ldots, n). Then the 2TLC q -RPFHWG operator has the following properties:

    1) (Idempotency) If M_{k} = \big((\tilde{s}_{\alpha_{k}}, A_{k})e^{i2\pi(\tilde{s}_{\zeta_{k}}, D_{k})}, (\tilde{s}_{\beta_{k}}, B_{k})e^{i2\pi(\tilde{s}_{\eta_{k}}, E_{k})}, (\tilde{s}_{\gamma_{k}}, C_{k})e^{i2\pi(\tilde{s}_{\theta_{k}}, F_{k})}\big) = M for all (k = 1, 2, \ldots, n), then

    \begin{equation} 2TLCq-RPFHWG(M_{1}, M_{2}, \ldots, M_{n}) = M. \end{equation} (4.13)

    2) (Monotonicity) If M_{a_{k}}\leq M_{b_{k}}, for all (k = 1, 2, \ldots, n), then

    \begin{equation} 2TLCq-RPFHWG(M_{a_{1}}, M_{a_{2}}, \ldots, M_{a_{n}})\leq 2TLCq-RPFHWG(M_{b_{1}}, M_{b_{2}}, \ldots, M_{b_{n}}). \end{equation} (4.14)

    3) (Boundedness) Consider a collection of 2TLC q -RPFNs

    \begin{equation*} M_{a_{k}} = \big((\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}})}, (\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})\\ e^{i2\pi(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}})} , (\tilde{s}_{\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}})}\big)\; \; (k = 1, 2, \ldots, n) \end{equation*}

    with

    \begin{equation*} M^{+}_{a_{k}} = \big(\max\limits_{a_{k}}(\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\max\limits_{a_{k}}(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}}))}\\ , \min\limits_{a_{k}}(\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})e^{i2\pi(\min\limits_{a_{k}}(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}}))}, \min\limits_{a_{k}}(\tilde{s}_ {\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\min\limits_{a_{k}}(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}}))}\big) \end{equation*}

    and

    \begin{equation*} M^{-}_{a_{k}} = \big(\min\limits_{a_{k}}(\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\min\limits_{a_{k}}(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}}))}\\ , \max\limits_{a_{k}}(\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})e^{i2\pi(\max\limits_{a_{k}}(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}}))}, \max\limits_{a_{k}}(\tilde{s}_ {\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\max\limits_{a_{k}}(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}}))}\big), \end{equation*}

    then

    \begin{equation} M^{-}\leq 2TLCq-RPFHWG(M_{1}, M_{2}, \ldots, M_{n}) \leq M^{+}. \end{equation} (4.15)

    An alternative operator that is born from a different principle follows:

    Definition 4.5. Consider a collection of 2TLC q -RPFNs M_{k} = \big((\tilde{s}_{\alpha_{k}}, A_{k})e^{i2\pi(\tilde{s}_{\zeta_{k}}, D_{k})}, (\tilde{s}_{\beta_{k}}, B_{k})e^{i2\pi(\tilde{s}_{\eta_{k}}, E_{k})}, (\tilde{s}_{\gamma_{k}}, C_{k})e^{i2\pi(\tilde{s}_{\theta_{k}}, F_{k})}\big) (k = 1, 2, \ldots, n). Then the 2TLC q -RPFHOWG operator is a mapping H^{n}\to H such that

    \begin{equation} 2TLCq-RPFHOWG(M_{1}, M_{2}, \ldots, M_{n}) = \mathop {\mathop \oplus \limits^n }\limits_{k = 1} \mathcal{W}_{k}M_{\mu(k)}, \end{equation} (4.16)

    where \mu(k) is such that M_{\mu(k-1)}\geq M_{\mu(k)} for all k, \mathcal{W} = (\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{n})^{T} is the weight vector of M_{k}(k = 1, 2, \ldots, n) with \mathcal{W}_{k}\in[0, 1] and \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1.

    Let us compute a compact expression for this operator:

    Theorem 4.4. Consider a collection of 2TLC q -RPFNs M_{k} = \big((\tilde{s}_{\alpha_{k}}, A_{k})e^{i2\pi(\tilde{s}_{\zeta_{k}}, D_{k})}, (\tilde{s}_{\beta_{k}}, B_{k})e^{i2\pi(\tilde{s}_{\eta_{k}}, E_{k})}, (\tilde{s}_{\gamma_{k}}, C_{k})e^{i2\pi(\tilde{s}_{\theta_{k}}, F_{k})}\big) (k = 1, 2, \ldots, n) having weight vector \mathcal{W} = (\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{n})^{T} with \mathcal{W}_{k}\in[0, 1] and \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1. Then

    \begin{matrix}2TLCq-RPFHOWG(M_{1}, M_{2}, \ldots, M_{n}) = \\ \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} \mathfrak{A}_{\mu(k)}^{\mathcal{W}_{k}}}{\sqrt[q] {\mathop {\mathop \prod \limits^n }\limits_{k = 1} (1+(x-1)(1-\mathfrak{A}_{\mu(k)}^{q}))^{\mathcal{W} _{k}}+(x-1) {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (\mathfrak{A}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} \mathfrak{X}_{\mu(k)}^ {\mathcal{W}_{k}}} {\sqrt[q]{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1)(1-\mathfrak{X}_{\mu(k)} ^{q}))^ {\mathcal{W}_{k}}+(x-1){\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (\mathfrak{X}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1)\mathfrak{B}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^n }\limits_{k = 1} (1-\mathfrak{B}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1) \mathfrak{B}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1-\mathfrak{B}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1)\mathfrak{Y}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^n }\limits_{k = 1} (1-\mathfrak{Y}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1) \mathfrak{Y}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1-\mathfrak{Y}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\\Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{ {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1)\mathfrak{C}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^n }\limits_{k = 1} (1-\mathfrak{C}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1) \mathfrak{C}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1-\mathfrak{C}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1)\mathfrak{Z}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^n }\limits_{k = 1} (1-\mathfrak{Z}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{{\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1+(x-1) \mathfrak{Z}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) {\mathop {\mathop \prod \limits^n }\limits_{k = 1}} (1-\mathfrak{Z}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)} \end{array} \right).\end{matrix} (4.17)

    Proof. This proof is similar to the proof of Theorem 4.1.

    Example 4.4 Consider three 2TLC q -RPFNs M_{1} = \{(\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}\}, M_{2} = \{(\tilde{s}_{4}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{5}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\} and M_{3} = \{(\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}, (\tilde{s}_{4}, 0)e^{i2\pi(\tilde{s}_{5}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\}. Assume that x = 2, q = 3, \Upsilon = 7 and W = \{0.4, 0.3, 0.3\}. Now, \mathcal{S}(M_{1}) = 2.5191, \mathcal{S}(M_{2}) = 2.5190, \mathcal{S}(M_{3}) = 2.5182. Therefore, \mathcal{S}(M_{1}) < \mathcal{S}(M_{2}) < \mathcal{S}(M_{3}). From Eq (4.17), we have

    \begin{equation*} 2TLCq-RPFHOWG(M_{1}, M_{2}, M_{3}) = \end{equation*}
    \begin{align*} & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^3 }\limits_{k = 1} \mathfrak{A}_{\mu(k)}^{\mathcal{W}_{k}}}{\sqrt[q] {\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{A}_{\mu(k)}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (\mathfrak{A}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^3 }\limits_{k = 1} \mathfrak{X}_{\mu(k)}^ {\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{X}_{\mu(k)} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (\mathfrak{X}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1)\mathfrak{B}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{B}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1) \mathfrak{B}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{B}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1)\mathfrak{Y}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{Y}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1) \mathfrak{Y}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{Y}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\\Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac {\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1)\mathfrak{C}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{C}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1) \mathfrak{C}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{C}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1)\mathfrak{Z}_{\mu(k)}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{Z}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1+(x-1) \mathfrak{Z}_{\mu(k)}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^3 }\limits_{k = 1} (1-\mathfrak{Z}_{\mu(k)}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)} \end{array} \right)\\\\ & = \big((\tilde{s}_{2}, -0.1098)e^{i2\pi(\tilde{s}_{2}, 0.1735)}, (\tilde{s}_{4}, 0.1358) e^{i2\pi(\tilde{s}_{4}, -0.2428)} , (\tilde{s}_{2}, 0.2659)e^{i2\pi(\tilde{s}_{3}, -0.0056)}\big). \end{align*}

    Proposition 4.4. Consider two collections of 2TLC q -RPFNs M_{a_{k}} = \big((\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}})}, (\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})e^{i2\pi(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}})}, (\tilde{s}_{\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}})}\big) (k = 1, 2, \ldots, n) and M_{b_{k}} = \big((\tilde{s}_{\alpha_{b_{k}}}, A_{b_{k}})e^{i2\pi(\tilde{s}_{\zeta_{b_{k}}}, D_{b_{k}})}, (\tilde{s}_{\beta_{b_{k}}}, B_{b_{k}})e^{i2\pi(\tilde{s}_{\eta_{b_{k}}}, E_{b_{k}})}, (\tilde{s}_{\gamma_{b_{k}}}, C_{b_{k}})e^{i2\pi(\tilde{s}_{\theta_{b_{k}}}, F_{b_{k}})}\big) (k = 1, 2, \ldots, n). Then the 2TLC q -RPFHOWG operator has the following properties:

    1) (Idempotency) If M_{k} = \big((\tilde{s}_{\alpha_{k}}, A_{k})e^{i2\pi(\tilde{s}_{\zeta_{k}}, D_{k})}, (\tilde{s}_{\beta_{k}}, B_{k})e^{i2\pi(\tilde{s}_{\eta_{k}}, E_{k})}, (\tilde{s}_{\gamma_{k}}, C_{k})e^{i2\pi(\tilde{s}_{\theta_{k}}, F_{k})}\big) = M for all (k = 1, 2, \ldots, n), then

    \begin{equation} 2TLCq-RPFHOWG(M_{1}, M_{2}, \ldots, M_{n}) = M. \end{equation} (4.18)

    2) (Monotonicity) If M_{a_{k}}\leq M_{b_{k}}, for all (k = 1, 2, \ldots, n), then

    \begin{equation} 2TLCq-RPFHOWG(M_{a_{1}}, M_{a_{2}}, \ldots, M_{a_{n}})\leq 2TLCq-RPFHOWG(M_{b_{1}}, M_{b_{2}}, \ldots, M_{b_{n}}). \end{equation} (4.19)

    3) (Boundedness) Consider a collection of 2TLC q -RPFNs

    \begin{equation*} M_{a_{k}} = \big((\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}})}, (\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})\\ e^{i2\pi(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}})} , (\tilde{s}_{\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}})}\big)\; \; (k = 1, 2, \ldots, n) \end{equation*}

    with

    \begin{equation*} M^{+}_{a_{k}} = \big(\max\limits_{a_{k}}(\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\max\limits_{a_{k}}(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}}))}\\ , \min\limits_{a_{k}}(\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})e^{i2\pi(\min\limits_{a_{k}}(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}}))}, \min\limits_{a_{k}}(\tilde{s}_ {\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\min\limits_{a_{k}}(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}}))}\big) \end{equation*}

    and

    \begin{equation*} M^{-}_{a_{k}} = \big(\min\limits_{a_{k}}(\tilde{s}_{\alpha_{a_{k}}}, A_{a_{k}})e^{i2\pi(\min\limits_{a_{k}}(\tilde{s}_{\zeta_{a_{k}}}, D_{a_{k}}))}\\ , \max\limits_{a_{k}}(\tilde{s}_{\beta_{a_{k}}}, B_{a_{k}})e^{i2\pi(\max\limits_{a_{k}}(\tilde{s}_{\eta_{a_{k}}}, E_{a_{k}}))}, \max\limits_{a_{k}}(\tilde{s}_ {\gamma_{a_{k}}}, C_{a_{k}})e^{i2\pi(\max\limits_{a_{k}}(\tilde{s}_{\theta_{a_{k}}}, F_{a_{k}}))}\big), \end{equation*}

    then

    \begin{equation} M^{-}\leq 2TLCq-RPFHOWG(M_{1}, M_{2}, \ldots, M_{n}) \leq M^{+}. \end{equation} (4.20)

    This section is devoted to an MADM algorithm, a flow chart based on the presented operators and a case study related to the selection of a machine from different available models. Furthermore, we shall discuss the impact of the parameter x on results of case study and a comparison with the already existing AOs.

    Consider a set of m alternatives \mathbb{\check{A}} = \{ \mathbb{\check{A}}_{1}, \mathbb{\check{A}}_{2}, \ldots, \mathbb{\check{A}}_{m}\} with n attributes or criteria \mathbb{C} = \{ \mathbb{C}_{1}, \mathbb{C}_{2}, \ldots, \mathbb{C}_{n}\}. Assume that \mathbb{W} = (\mathbb{W}_{1}, \mathbb{W}_{2}, \ldots, \mathbb{W}_{n})^{T} are the weights of attributes having the constraints \mathbb{W}_{j}\in[0, 1], \mathop {\mathop \sum \limits^n }\limits_{j = 1} \mathbb{W}_{j} = 1. The numerical steps are presented in Table 2.

    Table 2.  Algorithm.
    Algorithm Steps to solve MADM problem
    Step 1. Construct the 2TLC q -RPF judgement matrix R=[\mathbb{A}_{ij}]_{m\times n}=((\tilde{s}_{\alpha_{ij}}, A_{ij})e^{i2\pi(\tilde{s}_{\zeta_{ij}}, D_{ij})}, (\tilde{s}_{\beta_{ij}}, B_{ij})e^{i2\pi(\tilde{s}_{\eta_{ij}}, E_{ij})},
    (\tilde{s}_{\gamma_{ij}}, C_{ij})e^{i2\pi(\tilde{s}_{\theta_{ij}}, F_{ij})}) as below:
    R=[\mathbb{A}_{ij}]_{m\times n}=\left[\begin{array}{cccc} \mathbb{A}_{11}& \mathbb{A}_{12} & \ldots & \mathbb{A}_{1n}\\ \mathbb{A}_{21}& \mathbb{A}_{22} & \ldots & \mathbb{A}_{2n}\\ \vdots & \vdots & \vdots & \vdots\\ \mathbb{A}_{m1}& \mathbb{A}_{m2} & \ldots & \mathbb{A}_{mn}\\ \end{array} \right]
    where, \mathbb{A}_{ij}=((\tilde{s}_{\alpha_{ij}}, A_{ij})e^{i2\pi(\tilde{s}_{\zeta_{ij}}, D_{ij})}, (\tilde{s}_{\beta_{ij}}, B_{ij})e^{i2\pi(\tilde{s} _{\eta_{ij}}, E_{ij})}, (\tilde{s}_{\gamma_{ij}}, C_{ij})e^{i2\pi(\tilde{s}_{\theta_{ij}}, F_{ij})}) (i=1, 2, \ldots, m,
    j=1, 2, \ldots, n) indicates the 2TLC q -RPF assessment of the alternative \mathbb{A}_{i}
    corresponding to the criteria \mathbb{C}_{j}.
    Step 2. Utilize either the 2TLC q -RPFHWA (Eq (4.1)) or 2TL q -RPFHWG (Eq (4.12)) operator on the matrix in
    Step 1 and get an aggregate 2TLC q -RPF matrix r=[\mathbb{A}_{ij}]_{m\times n}.
    Step 3. Apply the score function given in Eq (3.3) on the values in Step 2.
    Step 4. Arrange the alternatives in descending order as per the numerical values calculated in Step 3. The alternative with
    the highest numerical value will be regarded the optimal one.

     | Show Table
    DownLoad: CSV

    The flowchart of the developed model is displayed in Figure 1.

    Figure 1.  Flowchart of the presented method.

    We present a case study adapted from [39] which is related to the purchase a new machine from a set of five different models \mathbb{\check{A}} = \{ \mathbb{\check{A}}_{1}, \mathbb{\check{A}}_{2}, \mathbb{\check{A}}_{3}, \mathbb{\check{A}}_{4}, \mathbb{\check{A}}_{5}\}. These five models are to be evaluated on the basis of four criteria \mathbb{C} = \{ \mathbb{C}_{1}, \mathbb{C}_{2}, \mathbb{C}_{3}, \mathbb{C}_{4}\} which are given as follows:

    \mathbb{C}_{1}: Reliability

    \mathbb{C}_{2}: Safety

    \mathbb{C}_{3}: Flexibility

    \mathbb{C}_{4}: Productivity for selecting machine.

    The weight vector of the criteria is \mathcal{W} = (0.4, 0.25, 0.15, 0.2)^{T}. Consider q = 3, x = 3 and nine linguistic terms \{\tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{3}, \tilde{s}_{4}, \tilde{s}_{5}, \tilde{s}_{6}, \tilde{s}_{7}, \tilde{s}_{8}, \tilde{s}_{9}\}. We first solve this example by utilizing the 2TLC q -RPFHWA operator. The steps of the established approach are presented as follows:

    Step 1. The 2TLC q -RPF judgement matrix D of the alternatives \mathbb{\check{A}}_{m} , m = 1, 2, 3, 4, 5 , based on the criteria \mathbb{C}_{j} , j = 1, 2, 3, 4 , is presented in Table 3.

    Table 3.  Judgement matrix.
    \mathbb{C}_{1} \mathbb{C}_{2}
    \mathbb{\check{A}}_{1} \big((\tilde{s}_{7}, 0)e^{i2\pi(\tilde{s}_{8}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\big) \big((\tilde{s}_{8}, 0)e^{i2\pi(\tilde{s}_{5}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}\big)
    \mathbb{\check{A}}_{2} \big((\tilde{s}_{7}, 0)e^{i2\pi(\tilde{s}_{6}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}\big) \big((\tilde{s}_{4}, 0)e^{i2\pi(\tilde{s}_{8}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\big)
    \mathbb{\check{A}}_{3} \big((\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}, (\tilde{s}_{6}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}\big) \big((\tilde{s}_{6}, 0)e^{i2\pi(\tilde{s}_{6}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}\big)
    \mathbb{\check{A}}_{4} \big((\tilde{s}_{4}, 0)e^{i2\pi(\tilde{s}_{8}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{5}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\big) \big((\tilde{s}_{7}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}\big)
    \mathbb{\check{A}}_{5} \big((\tilde{s}_{8}, 0)e^{i2\pi(\tilde{s}_{6}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}\big) \big((\tilde{s}_{5}, 0)e^{i2\pi(\tilde{s}_{5}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\big)
    \mathbb{C}_{3} \mathbb{C}_{4}
    \mathbb{\check{A}}_{1} \big((\tilde{s}_{6}, 0)e^{i2\pi(\tilde{s}_{6}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}\big) \big((\tilde{s}_{7}, 0)e^{i2\pi(\tilde{s}_{7}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}\big)
    \mathbb{\check{A}}_{2} \big((\tilde{s}_{7}, 0)e^{i2\pi(\tilde{s}_{7}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}\big) \big((\tilde{s}_{4}, 0)e^{i2\pi(\tilde{s}_{6}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\big)
    \mathbb{\check{A}}_{3} \big((\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{5}, 0)e^{i2\pi(\tilde{s}_{5}, 0)}\big) \big((\tilde{s}_{7}, 0)e^{i2\pi(\tilde{s}_{7}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}\big)
    \mathbb{\check{A}}_{4} \big((\tilde{s}_{6}, 0)e^{i2\pi(\tilde{s}_{5}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{3}, 0)}\big) \big((\tilde{s}_{5}, 0)e^{i2\pi(\tilde{s}_{5}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{4}, 0)}\big)
    \mathbb{\check{A}}_{5} \big((\tilde{s}_{4}, 0)e^{i2\pi(\tilde{s}_{6}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{2}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}\big) \big((\tilde{s}_{5}, 0)e^{i2\pi(\tilde{s}_{7}, 0)}, (\tilde{s}_{1}, 0)e^{i2\pi(\tilde{s}_{1}, 0)}, (\tilde{s}_{3}, 0)e^{i2\pi(\tilde{s}_{2}, 0)}\big)

     | Show Table
    DownLoad: CSV

    Step 2. The aggregated values (for x = 3 and q = 3 ) of the 2TLC q -RPF matrix D by utilizing 2TLC q -RPFHWA operator are presented in Table 4.

    Table 4.  Aggregated values using 2TLC q -RPFHWA operator when x = 3 and q = 3 .
    Aggregated values
    \mathbb{\check{A}}_{1} \big((\tilde{s}_{7}, 0.20266)e^{i2\pi(\tilde{s}_{7}, 0.06640)}, (\tilde{s}_{1}, 0.32012)e^{i2\pi(\tilde{s}_{1}, 0.10980)}, (\tilde{s}_{1}, 0.35608)e^{i2\pi(\tilde{s}_{2}, -0.18993)}\big)
    \mathbb{\check{A}}_{2} \big((\tilde{s}_{6}, 0.02974)e^{i2\pi(\tilde{s}_{7}, -0.16176)}, (\tilde{s}_{2}, -0.35632)e^{i2\pi(\tilde{s}_{1}, 0.24737)}, (\tilde{s}_{2}, 0.17002)e^{i2\pi(\tilde{s}_{2}, -0.27421)}\big)
    \mathbb{\check{A}}_{3} \big((\tilde{s}_{5}, 0.03376)e^{i2\pi(\tilde{s}_{5}, 0.40340)}, (\tilde{s}_{1}, 0.46485)e^{i2\pi(\tilde{s}_{1}, 0.32012)}, (\tilde{s}_{4}, -0.48574)e^{i2\pi(\tilde{s}_{3}, -0.05829)}\big)
    \mathbb{\check{A}}_{4} \big((\tilde{s}_{6}, -0.46926)e^{i2\pi(\tilde{s}_{6}, 0.49515)}, (\tilde{s}_{1}, 0.27510)e^{i2\pi(\tilde{s}_{2}, -0.42394)}, (\tilde{s}_{3}, -0.14765)e^{i2\pi(\tilde{s}_{2}, 0.05755)}\big)
    \mathbb{\check{A}}_{5} \big((\tilde{s}_{7}, -0.38383)e^{i2\pi(\tilde{s}_{6}, 0.03261)}, (\tilde{s}_{1}, 0.31820)e^{i2\pi(\tilde{s}_{2}, -0.43002)}, (\tilde{s}_{2}, -0.35394)e^{i2\pi(\tilde{s}_{2}, -0.31744)}\big)

     | Show Table
    DownLoad: CSV

    Step 3. The score values are computed by utilizing Eq (3.3) and the results along with the ranking order of alternatives which are executed in Table 5. It is easy to see that the score value of \mathbb{\check{A}}_{1} is highest, therefore its ranking order is 1. Similar interpretations can be given for all the remaining alternatives.

    Table 5.  Scores and ranking of alternatives.
    Score values Ranking order
    \mathbb{\check{A}}_{1} 7.86399 1
    \mathbb{\check{A}}_{2} 7.86350 2
    \mathbb{\check{A}}_{3} 7.86275 5
    \mathbb{\check{A}}_{4} 7.86322 4
    \mathbb{\check{A}}_{5} 7.86344 3

     | Show Table
    DownLoad: CSV

    Step 4. From Step 3 the ranking order is given as follows:

    \begin{equation*} \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}. \end{equation*}

    Clearly, the alternative \mathbb{\check{A}}_{1} is the best one.

    Now we utilize the 2TLC q -RPFHWG operator to solve the same example.

    Step 1. The 2TLC q -RPF decision matrix D of the alternatives \mathbb{\check{A}}_{m} , m = 1, 2, 3, 4, 5 , based on the criteria \mathbb{C}_{j}, j = 1, 2, 3, 4 , is presented in Table 3.

    Step 2. The aggregate values (for x = 3 and q = 3 ) of the 2TLC q -RPF matrix D by utilizing 2TLC q -RPFHWG operator are presented in Table 6.

    Table 6.  Aggregated values using 2TLC q -RPFHWG operator when x = 3 and q = 3 .
    Aggregate values
    \mathbb{\check{A}}_{1} \big((\tilde{s}_{7}, 0.11351)e^{i2\pi(\tilde{s}_{7}, -0.23605)}, (\tilde{s}_{2}, -0.44058)e^{i2\pi(\tilde{s}_{1}, 0.26947)}, (\tilde{s}_{2}, -0.15822)e^{i2\pi(\tilde{s}_{3}, -0.33982)}\big)
    \mathbb{\check{A}}_{2} \big((\tilde{s}_{6}, -0.44217)e^{i2\pi(\tilde{s}_{7}, -0.33431)}, (\tilde{s}_{2}, 0.32670)e^{i2\pi(\tilde{s}_{2}, -0.16966)}, (\tilde{s}_{2}, 0.27436)e^{i2\pi(\tilde{s}_{2}, 0.31202)}\big)
    \mathbb{\check{A}}_{3} \big((\tilde{s}_{4}, -0.29756)e^{i2\pi(\tilde{s}_{5}, 0.01849)}, (\tilde{s}_{2}, -0.30824)e^{i2\pi(\tilde{s}_{2}, -0.44058)}, (\tilde{s}_{5}, -0.20871)e^{i2\pi(\tilde{s}_{4}, -0.30068)}\big)
    \mathbb{\check{A}}_{4} \big((\tilde{s}_{5}, 0.18014)e^{i2\pi(\tilde{s}_{6}, -0.45132)}, (\tilde{s}_{2}, -0..49005)e^{i2\pi(\tilde{s}_{3}, -0.40868)}, (\tilde{s}_{4}, -0.16837)e^{i2\pi(\tilde{s}_{3}, -0.12747)}\big)
    \mathbb{\check{A}}_{5} \big((\tilde{s}_{6}, 0.02063)e^{i2\pi(\tilde{s}_{6}, -0.06035)}, (\tilde{s}_{2}, -0.04952)e^{i2\pi(\tilde{s}_{2}, -0.23028)}, (\tilde{s}_{2}, 0.0757)e^{i2\pi(\tilde{s}_{2}, -0.15858)}\big)

     | Show Table
    DownLoad: CSV

    Step 3. The score values are computed by utilizing Eq (3.3) and the results along with the ranking order of alternatives are displayed in Table 7.

    Table 7.  Scores and ranking of alternatives.
    Score values Ranking order
    \mathbb{\check{A}}_{1} 7.86380 1
    \mathbb{\check{A}}_{2} 7.86327 2
    \mathbb{\check{A}}_{3} 7.86224 5
    \mathbb{\check{A}}_{4} 7.86274 4
    \mathbb{\check{A}}_{5} 7.86321 3

     | Show Table
    DownLoad: CSV

    Step 4. From Step 3 the ranking order is given as follows:

    \begin{equation*} \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}. \end{equation*}

    Clearly, \mathbb{\check{A}}_{1} is the best alternative.

    Figure 2 graphically displays the decision results of alternatives based on 2TLC q -RPFHWA operator and 2TLC q -RPFHWG operator (for x = 3 and q = 3 ). From inspection of Figure 2, we can observe that the score value of alternative \mathbb{\check{A}}_{1} is the highest by using both operators, whereas the score value provided by these operators for alternative \mathbb{\check{A}}_{3} is the lowest. Let us explore the situation when we keep x = 3 and we vary q\in \{1, 2, 3, 4\} . With these figures, Table 8 presents the score values and ranking order of the alternatives when we use the 2TLC q -RPFHWA operator, and Table 9 does the same when we use the 2TLC q -RPFHWG operator. Figures 3 and 4 graphically display the comparison of the alternatives when x = 3 and q\in \{1, 2, 3, 4\} in terms of the scores and rankings provided by the respective operators.

    Figure 2.  Ranking results using 2TLC q -RPFHWA operator and 2TLC q -RPFHWG operator when x = 3 and q = 3 .
    Table 8.  Scores and ranking of alternatives based on 2TLC q -RPFHWA operator when x = 3 and q\in \{1, 2, 3, 4\} .
    \mathcal{S}(\mathbb{\check{A}}_{1}) \mathcal{S}(\mathbb{\check{A}}_{2}) \mathcal{S}(\mathbb{\check{A}}_{3}) \mathcal{S}(\mathbb{\check{A}}_{4}) \mathcal{S}(\mathbb{\check{A}}_{5}) Ranking
    q=1 6.31686 6.21564 6.00669 6.13728 6.23058 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    q=2 7.37451 7.36797 7.35540 7.36335 7.36779 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    q=3 7.86399 7.86350 7.86275 7.86322 7.86344 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    q=4 8.13254 8.13250 8.13245 8.13249 8.13250 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}

     | Show Table
    DownLoad: CSV
    Table 9.  Scores and ranking of alternatives based on 2TLC q -RPFHWG operator when x = 3 and q\in \{1, 2, 3, 4\} .
    \mathcal{S}(\mathbb{\check{A}}_{1}) \mathcal{S}(\mathbb{\check{A}}_{2}) \mathcal{S}(\mathbb{\check{A}}_{3}) \mathcal{S}(\mathbb{\check{A}}_{4}) \mathcal{S}(\mathbb{\check{A}}_{5}) Ranking
    q=1 6.28542 6.17795 5.93863 6.06766 6.19537 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    q=2 7.37204 7.36495 7.34893 7.35723 7.364946 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    q=3 7.86380 7.86327 7.86224 7.86274 7.86321 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    q=4 8.13253 8.13248 8.13242 8.13245 8.13248 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}

     | Show Table
    DownLoad: CSV
    Figure 3.  Ranking results based on 2TLC q -RPFHWA operator when x = 3 and q\in \{1, 2, 3, 4\} .
    Figure 4.  Ranking results based on 2TLC q -RPFHWG operator when x = 3 and q\in \{1, 2, 3, 4\} .

    In this subsection, we discuss the influence of the parameter on the score values and final results. The parameter x play an important role during the selection of alternatives. The experts can maximize their decision assessment space through variation of parameter x based on the 2TLC q -RPFHWA and 2TL q -RPFHWG operators. Apart from this, the effects of parameters on the decision results examine the effectiveness and validity of the developed method. We utilized five different values of the parameter x to examine its influence on decision results. The parameter x represents the optimistic attitude of the decision making expert towards their assessment information and reflects the flexibility during the aggregation process. The ranking results by utilizing 2TLC q -RPFHWA and 2TL q -RPFHWG operators are listed in Tables 10 and 11, respectively. From inspection of these tables, we observe that the ranking order of the five alternatives is the same. The graphical representation of the alternatives' results based on the 2TLC q -RPFHWA and 2TL q -RPFHWG operators (for five different values of the parameter x , and q = 3 ) is shown in Figures 5 and 6, respectively. Here it is apparent that the ranking positions of the alternatives remains the same irrespective of the values of x .

    Table 10.  Scores and ranking of alternatives based on 2TLC q -RPFHWA operator when q = 3 and x\in \{1, 2, 3, 4, 5\} .
    \mathcal{S}(\mathbb{\check{A}}_{1}) \mathcal{S}(\mathbb{\check{A}}_{2}) \mathcal{S}(\mathbb{\check{A}}_{3}) \mathcal{S}(\mathbb{\check{A}}_{4}) \mathcal{S}(\mathbb{\check{A}}_{5}) Ranking
    x=1 7.86405 7.86357 7.86283 7.86335 7.86353 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=2 7.86401 7.86353 7.86278 7.86327 7.86348 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=3 7.86399 7.86350 7.86275 7.86322 7.86344 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=4 7.86397 7.86348 7.86272 7.86319 7.86342 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=5 7.86396 7.86347 7.86270 7.86316 7.86340 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}

     | Show Table
    DownLoad: CSV
    Table 11.  Scores and ranking of alternatives based on 2TLC q -RPFHWG operator when q = 3 and x\in \{1, 2, 3, 4, 5\} .
    \mathcal{S}(\mathbb{\check{A}}_{1}) \mathcal{S}(\mathbb{\check{A}}_{2}) \mathcal{S}(\mathbb{\check{A}}_{3}) \mathcal{S}(\mathbb{\check{A}}_{4}) \mathcal{S}(\mathbb{\check{A}}_{5}) Ranking
    x=1 7.86374 7.86322 7.86219 7.86266 7.86315 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=2 7.86378 7.86326 7.86222 7.86271 7.86323 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=3 7.86380 7.86327 7.86224 7.86274 7.86321 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=4 7.86381 7.86328 7.86226 7.86276 7.86322 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}
    x=5 7.86382 7.86329 7.86227 7.86277 7.86323 \mathbb{\check{A}}_{1} > \mathbb{\check{A}}_{2} > \mathbb{\check{A}}_{5} > \mathbb{\check{A}}_{4} > \mathbb{\check{A}}_{3}

     | Show Table
    DownLoad: CSV
    Figure 5.  Ranking results based on 2TLC q -RPFHWA operator when x\in \{1, 2, 3, 4, 5\} and q = 3 .
    Figure 6.  Ranking results based on 2TLC q -RPFHWG operator when x\in \{1, 2, 3, 4, 5\} and q = 3 .

    This section provides a comparison of the results computed from established AOs with some AOs available in the literature to demonstrate the strength and flexibility of the proposed AOs. The scores and final ranking results of alternatives are executed in Table 12. For comparison, the ranking order of the five machines using those AOs and our proposed AOs are graphically displayed in Figure 7. So this figure basically shows the ranking positions of the alternatives using different AOs. The details are summarized as follows:

    Table 12.  Scores and ranking of alternatives based on existing aggregation operators.
    \mathcal{S}(\mathbb{\check{A}}_{1}) \mathcal{S}(\mathbb{\check{A}}_{2}) \mathcal{S}(\mathbb{\check{A}}_{3}) \mathcal{S}(\mathbb{\check{A}}_{4}) \mathcal{S}(\mathbb{\check{A}}_{5})
    2TLSFWA operator [47] 3.79577 3.50537 3.2002 3.37327 3.68208
    2TLSFWG operator [47] 3.74089 3.34797 2.76741 3.18579 3.46598
    2TLPFWHM operator [55] 7.90447 6.90636 5.52804 6.68829 7.14383
    2TLPFWDHM operator [55] -1.32204 -3.09574 -4.87609 -3.74791 -2.6580
    2TLPFWHM operator [54] 5.07926 3.46813 2.67858 3.03961 4.46286
    2TLPFWDHM operator [54] 1.02415 -0.1023 -2.29473 -1.2036 0.11055
    2TLC q -RPFHWA operator (proposed) 7.86399 7.86350 7.86275 7.86322 7.86344
    2TLC q -RPFHWG operator (proposed) 7.86380 7.86327 7.86224 7.86274 7.86321
    Ranking
    2TLSFWA operator [47] \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLSFWG operator [47] \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLPFWHM operator [55] \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLPFWDHM operator [55] \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLPFWHM operator [54] \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLPFWDHM operator [54] \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLCq-RPFHWA operator (proposed) \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}
    2TLCq-RPFHWG operator (proposed) \mathbb{\check{A}}_{1}>\mathbb{\check{A}}_{2}>\mathbb{\check{A}}_{5}>\mathbb{\check{A}}_{4}>\mathbb{\check{A}}_{3}

     | Show Table
    DownLoad: CSV
    Figure 7.  Comparative outcomes using existing and presented operators.

    ● We utilize the 2TLSFWA and 2TLSFWG operators [47] by taking the phase term equal to zero. It can be easily observed that the final results produced by our AOs and the results using [47] are slightly different, however, the best alternative is the same. The proposed AOs are based on the Hamacher operator. The existing operators are based on 2TLSFSs, which is a special case of 2TLC q -RPFSs (when q = 2 and the phase term is zero). Therefore, our proposed AOs are more general and flexible to solve DM problems, and produce consistent results with existing solutions.

    ● We utilize the 2TLPFWHM and 2TLPFWDHM operators [55] ( x = 2 ) by considering that the abstinence and phase terms equal zero. These AOs are based on the Hamy and dual Hamy mean operators. Clearly, the results are consistent with our presented AOs too.

    ● We utilize the 2TLPFWHM and 2TLPFWDHM operators [54] ( \xi = 1, \psi = 2 ) by considering the abstinence term and phase terms zero. These AOs are based on the Heronian and dual Heronian mean operators. The reader can observe that the ranking results are consistent with our presented AOs too.

    If we consider the overall results of five machines, there is a minor difference among the ranking results produced by our presented AOs and the results computed from existing AOs. However, the optimal alternative is the same, which gives support to the authenticity of presented approach.

    The 2TL representation model has the prominent feature to choose the best alternative when several alternatives have the same LT but a different value of ST. Besides this, the 2TLC q -RPFS model generalizes many existing models base on fuzzy set theory and its extensions. Therefore, the method presented here, being based on the 2TLC q -RPF environment, has broadened the space of effective assessments for the decision makers and is more general and flexible.

    The merits and superiorities of the presented methodology can be summarized as follows: 1) The main advantage of the 2TLC q -RPFS is that it can handle the decision making problems both qualitatively and quantitatively. 2) The developed 2TLC q -RPFS is a new generalization in FS theory as it enables the decision makers to describe their evaluation properly and it has a wide range of applications. 3) The 2TLC q -RPFS has the advantage of adaptability, for it embeds the 2TLC picture fuzzy sets when q = 1 and the 2TLC spherical fuzzy sets when q = 2. 4) We utilize the increasingly popular Hamacher AOs within a more generalized field, i.e, 2TLC q -RPFS. The Hamacher AOs provide more detailed aggregations than other AOs, due to their utilization of a parameter x which makes them significant tools in the presented study.

    To finish this discussion, we proceed to give some highlights of different optimization models:

    ● In the article presented by Zhao et al. [35], an online-learning based reproduction technique is established, which employs a learning algorithm. The authors have designed a reference vector strategy. The presented strategy employs a learning-based technology to increase its generalization ability.

    ● In a study proposed by Pasha et al. [33], the authors have given a mathematical optimization model to determine all tactical linear shipping decisions. Moreover, a decomposition based heuristic algorithm is developed to manage large size problems.

    ● Dulebenets [36] has presented a novel Adaptive Polypoid Memetic Algorithm for the cross-docking trucks. The developed algorithm is evaluated against the new metaheuristics. Dulebenets et al. [32] presented the multiobjective optimization technique for emergency evacuation planning in geographical locations with vulnerable population groups.

    ● In a paper presented by Pasha et al. [34], the authors have proposed a model for the vehicle routing problem during supply chain management. They established a customized nature-inspired Hybrid Multi-Objective Evolutionary Algorithm to solve the vehicle routing problem.

    ● Rabbani et al. [37] established a Mixed-integer Linear Programming model to find the best sequence of routes for ambulances to avoid untimely medical services for patients. They divided the patients into three different groups according to their conditions and utilized the Non-dominated Sorting Genetic Algorithm Ⅱ and Multi-Objective Particular Swarm Optimization to a case study to analyze the model's performance.

    The model defined by C q -RPFS enlarges the range for the MD, NMD and AD, and enables us to represent these three degrees in polar coordinates. In this way the range of degrees is extended from the numerical interval [0, 1] to the unit disk in a complex plane. Besides this, the 2TL terms help the users to better reflect the qualitative attributes. In this article, we have achieved our goal, namely, the successful formulation of the 2TLC q -RPFS framework with fundamental tools to operate with it. The model integrates the traits of the aforementioned frameworks for the representation of uncertain knowledge.

    Concerning its relationships with available models, we have noted that the 2TLC q -RPFS can be transformed into the 2TL complex picture fuzzy set and 2TL complex spherical fuzzy set when q = 1 and q = 2, respectively. Therefore, the proposed approach outperforms other generalized fuzzy models that represent linguistic information. While the 2TLC q -RPFS accommodates the characteristics of both C q -RPFS and 2TLS, it can still manage the information in MADM problems. To that purpose, we have established a number of Hamacher-inspired AOs under the 2TLC q -RPF environment. The family of new AOs includes the 2TLC q -RPFWA, 2TLC q -RPFWG, 2TLC q -RPFHWA, 2TLC q -RPFHOWA, 2TLC q -RPFHWG and 2TLC q -RPFHOWG operators. We have investigated their properties and we have also provided an example of application for each of the proposed AOs. Then we have provided a step-by-step procedure for decision making, which has been applied to a numerical instance in full detail. The presented method has the ability to assign different weights to the attributes according to the decision maker's choice. Furthermore, we have estimated the robustness of the results by taking five different values (x = 1, 2, 3, 4, 5) of the parameter x. Finally, we have conducted a comparative analysis of the presented work with previous operators. The proposed research has some limitations. 2TLC q -RPFS can deal with the information under certain conditions. It may not produce fruitful results for a large collection of attributes. In future research, we will study and investigate more AOs based on 2TLC q -RPFSs. We also aim to present different decision-making methods for 2TLC q -RPFSs.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P.2/48/43). Alcantud is grateful to the Junta de Castilla y León and the European Regional Development Fund (Grant CLU-2019-03) for the financial support to the Research Unit of Excellence "Economic Management for Sustainability" (GECOS).

    The authors declare there is no conflict of interest.

    Proof. We prove Eq (3.6) using the induction method for the positive integer n. For n = 1, we have

    \begin{align*} \mathcal{W}_{1}L_{1} = \left( \begin{array}{c} \Lambda\Bigg (\Upsilon\Bigg(1-\Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\alpha_{k}}, A_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)e^{i2\pi\Lambda\Bigg (\Upsilon\Bigg(1-\Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\zeta_{k}}, D_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)}, \\\\ \Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\beta_{k}}, B_{k})}{\Upsilon}\Bigg)^{\mathcal{W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\eta_{k}}, E_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} , \\\\\Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\gamma_{k}}, C_{k})}{\Upsilon}\Bigg)^{\mathcal {W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\theta_{k}}, F_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} \end{array} \right). \end{align*}

    Thus Eq (3.6) holds for n = 1. Assume that it also holds for n = m,

    \begin{align*} \mathop {\mathop \oplus \limits^m }\limits_{k = 1} \mathcal{W}_{k}L_{k} = \left( \begin{array}{c} \Lambda\Bigg (\Upsilon\Bigg(1-\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\alpha_{k}}, A_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)e^{i2\pi\Lambda\Bigg (\Upsilon\Bigg(1-\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\zeta_{k}}, D_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)}, \\\\ \Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\beta_{k}}, B_{k})}{\Upsilon}\Bigg)^{\mathcal{W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\eta_{k}}, E_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} , \\\\\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\gamma_{k}}, C_{k})}{\Upsilon}\Bigg)^{\mathcal {W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\theta_{k}}, F_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} \end{array} \right). \end{align*}

    For n = m+1, by the induction hypothesis, we have

    \begin{equation*} 2TLCq-RPFWA(L_{1}, L_{2}, \ldots, L_{m+1}, L_{m}) = 2TLCq-RPFWA(L_{1}, L_{2}, \ldots, L_{m})\bigoplus \mathcal{W}_{m+1}L_{m+1} \end{equation*}
    \begin{align*} & = \left( \begin{array}{c} \Lambda\Bigg (\Upsilon\Bigg(1-\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\alpha_{k}}, A_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)e^{i2\pi\Lambda\Bigg (\Upsilon\Bigg(1-\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\zeta_{k}}, D_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)}, \\\\ \Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\beta_{k}}, B_{k})}{\Upsilon}\Bigg)^{\mathcal{W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\eta_{k}}, E_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} , \\\\\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\gamma_{k}}, C_{k})}{\Upsilon}\Bigg)^{\mathcal {W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^m }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\theta_{k}}, F_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} \end{array} \right)\\ &\bigoplus\left( \begin{array}{c} \Lambda\Bigg (\Upsilon\Bigg(1-\Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\alpha_{m+1}}, A_{m+1})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{m+1}}\Bigg)^{\frac{1}{q}}\Bigg)e^{i2\pi\Lambda \Bigg (\Upsilon\Bigg(1-\Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\zeta_{m+1}}, D_{m+1})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{m+1}}\Bigg)^{\frac{1}{q}}\Bigg)}, \\\\ \Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\beta_{m+1}}, B_{m+1})}{\Upsilon}\Bigg)^{\mathcal{W}_{m+1}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\eta_{m+1}}, E_{m+1})}{\Upsilon}\Bigg) ^{\mathcal{W}_{m+1}} \Bigg)} , \\\\\Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\gamma_{m+1}}, C_{m+1})}{\Upsilon}\Bigg)^{\mathcal {W}_{m+1}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\theta_{m+1}}, F_{m+1})}{\Upsilon}\Bigg) ^{\mathcal{W}_{m+1}} \Bigg)} \end{array} \right) \end{align*}
    \begin{align*} & = \left( \begin{array}{c} \Lambda\Bigg (\Upsilon\Bigg(1-\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\alpha_{k}}, A_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)e^{i2\pi\Lambda\Bigg (\Upsilon\Bigg(1-\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \Bigg(1-\Bigg( \dfrac{\Lambda^{-1}(\tilde{s}_{\zeta_{k}}, D_{k})}{\Upsilon}\Bigg)^{q}\Bigg)^{\mathcal{W}_{k}}\Bigg)^{\frac{1}{q}}\Bigg)}, \\\\ \Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\beta_{k}}, B_{k})}{\Upsilon}\Bigg)^{\mathcal{W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\eta_{k}}, E_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} , \\\\\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\gamma_{k}}, C_{k})}{\Upsilon}\Bigg)^{\mathcal {W}_{k}} \Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \Bigg(\dfrac{\Lambda^{-1}(\tilde{s}_{\theta_{k}}, F_{k})}{\Upsilon}\Bigg) ^{\mathcal{W}_{k}} \Bigg)} \end{array} \right). \end{align*}

    Hence, Equation (3.6) holds for all positive integers n\geq1.

    Proof. We use induction method and Definition 17 to prove this theorem. For n = 2, we have

    \begin{equation*} \mathcal{W}_{1}M_{1}\bigoplus\mathcal{W}_{2}M_{2} = \end{equation*}
    \begin{align*} &\left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{A}_{1}^{q})^{\mathcal{W}_{1}}-(1-\mathfrak{A}_{1}^{q})^{\mathcal{W}_{1}}} {(1+(x-1) \mathfrak{A}_{1}^{q}) ^{\mathcal{W}_{1}}+(x-1) (1-\mathfrak{A}_{1}^{q})^{\mathcal{W}_{1}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{X}_{1}^{q})^{\mathcal{W}_{1}}-(1-\mathfrak{X}_{1}^{q})^{\mathcal{W}_{1}}} {(1+(x-1) \mathfrak{X}_{1}^{q}) ^{\mathcal{W}_{1}}+(x-1) (1-\mathfrak{X}_{1}^{q})^{\mathcal{W}_{1}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{B}_{1}^{\mathcal{W}_{1}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{B}_{1}^{q})) ^{\mathcal{W} _{1}}+(x-1)(\mathfrak{B}_{1}^{q})^{\mathcal{W}_{1}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{Y}_{1}^{\mathcal{W}_{1}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{Y}_{1} ^{q}))^ {\mathcal{W}_{1}}+(x-1)(\mathfrak{Y}_{1}^{q})^{\mathcal{W}_{1}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{C}_{1}^{\mathcal{W}_{1}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{C}_{1}^{q}))^ {\mathcal{W }_{1}}+(x-1)(\mathfrak{C}_{1}^{q})^{\mathcal{W}_{1}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{Z}_{1}^{\mathcal{W}_{1}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{Z}_{1} ^{q}))^ {\mathcal{W}_{1}}+(x-1)(\mathfrak{Z}_{1}^{q})^{\mathcal{W}_{1}}}} \Bigg)\Bigg)} \end{array} \right)\bigoplus\\\\ &\left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{A}_{2}^{q})^{\mathcal{W}_{2}}-(1-\mathfrak{A}_{2}^{q})^{\mathcal{W}_{2}}} {(1+(x-1) \mathfrak{A}_{2}^{q}) ^{\mathcal{W}_{2}}+(x-1) (1-\mathfrak{A}_{2}^{q})^{\mathcal{W}_{2}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{X}_{2}^{q})^{\mathcal{W}_{2}}-(1-\mathfrak{X}_{2}^{q})^{\mathcal{W}_{2}}} {(1+(x-1) \mathfrak{X}_{2}^{q}) ^{\mathcal{W}_{2}}+(x-1) (1-\mathfrak{X}_{2}^{q})^{\mathcal{W}_{2}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{B}_{2}^{\mathcal{W}_{2}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{B}_{2}^{q})) ^{\mathcal{W} _{2}}+(x-1)(\mathfrak{B}_{2}^{q})^{\mathcal{W}_{2}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{Y}_{2}^{\mathcal{W}_{2}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{Y}_{2} ^{q}))^ {\mathcal{W}_{2}}+(x-1)(\mathfrak{Y}_{2}^{q})^{\mathcal{W}_{2}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{C}_{2}^{\mathcal{W}_{2}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{C}_{2}^{q}) )^{\mathcal{W }_{2}}+(x-1)(\mathfrak{C}_{2}^{q})^{\mathcal{W}_{2}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{Z}_{2}^{\mathcal{W}_{2}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{Z}_{2} ^{q}))^ {\mathcal{W}_{2}}+(x-1)(\mathfrak{Z}_{2}^{q})^{\mathcal{W}_{2}}}} \Bigg)\Bigg)} \end{array} \right) \end{align*}
    \begin{align*} & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1) \mathfrak{A}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1) \mathfrak{X}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^2 }\limits_{k = 1} \mathfrak{B}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{B}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^2 }\limits_{k = 1} \mathfrak{Y}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Y}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^2 }\limits_{k = 1} \mathfrak{C}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\underset {k = 1}{\overset{2}\prod}(1+(x-1)(1-\mathfrak{C}_{k}^{q}))^{\mathcal{W }_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^2 }\limits_{k = 1} \mathfrak{Z}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Z}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)} \end{array} \right). \end{align*}

    Equation (4.2) holds for n = 2. Assume that Eq (4.2) holds for n = m.

    \begin{equation*} 2TLCq-RPFHWA(M_{1}, M_{2}, \ldots, M_{m}) = \end{equation*}
    \begin{eqnarray} \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{A}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{X}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{B}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{B}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{Y}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Y}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{C}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\underset {k = 1}{\overset{m}\prod}(1+(x-1)(1-\mathfrak{C}_{k}^{q}))^{\mathcal{W }_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{Z}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Z}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)} \end{array} \right). \end{eqnarray}

    For n = m+1 by the induction hypothesis, we have

    \begin{equation*} 2TLCq-RPFHWA(M_{1}, M_{2}, \ldots, M_{m}, M_{m+1}) = 2TLCq-RPFHWA(M_{1}, M_{2}, \ldots, M_{m})\bigoplus \mathcal{W}_{m+1}M_{m+1} \end{equation*}
    \begin{align*} & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{A}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{X}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{B}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{B}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{Y}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Y}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{C}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\underset {k = 1}{\overset{m}\prod}(1+(x-1)(1-\mathfrak{C}_{k}^{q}))^{\mathcal{W }_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{Z}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Z}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)} \end{array} \right)\bigoplus \end{align*}
    \begin{align*} &\left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{A}_{m+1}^{q})^{\mathcal{W}_{m+1}}-(1-\mathfrak{A}_{m+1}^{q})^{\mathcal {W}_{m+1}}} {(1+(x-1) \mathfrak{A}_{m+1}^{q}) ^{\mathcal{W}_{m+1}}+(x-1) (1-\mathfrak{A}_{m+1}^{q})^{\mathcal{W}_{m+1}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{X}_{m+1}^{q})^{\mathcal{W}_{m+1}}-(1-\mathfrak{X}_{m+1}^{q})^{\mathcal {W}_{m+1}}} {(1+(x-1) \mathfrak{X}_{m+1}^{q}) ^{\mathcal{W}_{m+1}}+(x-1) (1-\mathfrak{X}_{m+1}^{q})^{\mathcal{W}_{m+1}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{B}_{m+1}^{\mathcal{W}_{m+1}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{B}_{m+1}^{q})) ^{\mathcal{W} _{m+1}}+(x-1)(\mathfrak{B}_{m+1}^{q})^{\mathcal{W}_{m+1}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{Y}_{m+1}^{\mathcal{W}_{m+1}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{Y}_{m+1} ^{q}))^ {\mathcal{W}_{m+1}}+(x-1)(\mathfrak{Y}_{m+1}^{q})^{\mathcal{W}_{m+1}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{C}_{m+1}^{\mathcal{W}_{m+1}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{C}_{m+1}^{q}))^ {\mathcal{W }_{m+1}}+(x-1)(\mathfrak{C}_{m+1}^{q})^{\mathcal{W}_{m+1}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{Z}_{m+1}^{\mathcal{W}_{m+1}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{Z}_{m+1} ^{q}))^ {\mathcal{W}_{m+1}}+(x-1)(\mathfrak{Z}_{m+1}^{q})^{\mathcal{W}_{m+1}}}} \Bigg)\Bigg)} \end{array} \right)\\\\ & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1) \mathfrak{A}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}-\underset {k = 1} {\overset{m+1}\prod}(1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1) \mathfrak{X}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \mathfrak{B}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\underset {k = 1} {\overset{m+1}\prod}(1+(x-1)(1-\mathfrak{B}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \mathfrak{Y}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Y}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \mathfrak{C}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\underset {k = 1}{\overset{m+1}\prod}(1+(x-1)(1-\mathfrak{C}_{k}^{q}))^{\mathcal{W }_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \mathfrak{Z}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)(1-\mathfrak{Z}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)} \end{array} \right). \end{align*}

    Hence, Equation (4.2) holds for all positive integers n\geq 1.

    Proof. We use induction method and Definition 17 to prove this theorem. For n = 2, we have

    \begin{equation*} M^{\mathcal{W}_{1}}_{1}\bigotimes M^{\mathcal{W}_{2}}_{2} = \end{equation*}
    \begin{align*} &\left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{A}_{1}^{\mathcal{W}_{1}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{A}_{1}^{q}))^ {\mathcal{W }_{1}}+(x-1)(\mathfrak{A}_{1}^{q})^{\mathcal{W}_{1}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{X}_{1}^{\mathcal{W}_{1}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{X}_{1} ^{q}))^ {\mathcal{W}_{1}}+(x-1)(\mathfrak{X}_{1}^{q})^{\mathcal{W}_{1}}}} \Bigg)\Bigg)}, \\\Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{B}_{1}^{q})^{\mathcal{W}_{1}}-(1-\mathfrak{B}_{1}^{q})^{\mathcal {W}_{1}}} {(1+(x-1) \mathfrak{B}_{1}^{q}) ^{\mathcal{W}_{1}}+(x-1) (1-\mathfrak{B}_{1}^{q})^{\mathcal{W}_{1}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{Y}_{1}^{q})^{\mathcal{W}_{1}}-(1-\mathfrak{Y}_{1}^{q})^{\mathcal{W}_{1}}} {(1+(x-1) \mathfrak{Y}_{1}^{q}) ^{\mathcal{W}_{1}}+(x-1) (1-\mathfrak{Y}_{1}^{q})^{\mathcal{W}_{1}}}}\Bigg)\Bigg)}, \\\Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{C}_{1}^{q})^{\mathcal {W}_{1}}-(1-\mathfrak{C}_{1}^{q})^{\mathcal{W}_{1}}} {(1+(x-1) \mathfrak{C}_{1}^{q}) ^{\mathcal{W}_{1}}+(x-1) (1-\mathfrak{C}_{1}^{q})^{\mathcal{W}_{1}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{Z}_{1}^{q})^{\mathcal{W}_{1}}-(1-\mathfrak{Z}_{1}^{q})^{\mathcal{W}_{1}}} {(1+(x-1) \mathfrak{Z}_{1}^{q})^{\mathcal{W}_{1}}+(x-1) (1-\mathfrak{Z}_{1}^{q})^{\mathcal{W}_{1}}}}\Bigg)\Bigg)} \end{array} \right)\bigotimes \end{align*}
    \begin{align*} &\left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{A}_{2}^{\mathcal{W}_{2}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{A}_{2}^{q})) ^{\mathcal{W} _{2}}+(x-1)(\mathfrak{A}_{2}^{q})^{\mathcal{W}_{2}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{X}_{2}^{\mathcal{W}_{2}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{X}_{2} ^{q}))^ {\mathcal{W}_{2}}+(x-1)(\mathfrak{X}_{2}^{q})^{\mathcal{W}_{2}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{B}_{2}^{q})^{\mathcal{W}_{2}}-(1-\mathfrak{B}_{2}^{q})^{\mathcal{W}_{2}}} {(1+(x-1) \mathfrak{B}_{2}^{q}) ^{\mathcal{W}_{2}}+(x-1) (1-\mathfrak{B}_{2}^{q})^{\mathcal{W}_{2}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{Y}_{2}^{q})^{\mathcal{W}_{2}}-(1-\mathfrak{Y}_{2}^{q})^{\mathcal{W}_{2}}} {(1+(x-1) \mathfrak{Y}_{2}^{q}) ^{\mathcal{W}_{2}}+(x-1) (1-\mathfrak{Y}_{2}^{q})^{\mathcal{W}_{2}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{C}_{2}^{q})^{\mathcal{W}_{2}}-(1-\mathfrak{C}_{2}^{q})^{\mathcal{W}_{2}}} {(1+(x-1) \mathfrak{C}_{2}^{q}) ^{\mathcal{W}_{2}}+(x-1) (1-\mathfrak{C}_{2}^{q})^{\mathcal{W}_{2}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{Z}_{2}^{q})^{\mathcal{W}_{2}}-(1-\mathfrak{Z}_{2}^{q})^{\mathcal{W}_{2}}} {(1+(x-1) \mathfrak{Z}_{2}^{q}) ^{\mathcal{W}_{2}}+(x-1) (1-\mathfrak{Z}_{2}^{q})^{\mathcal{W}_{2}}}}\Bigg)\Bigg)} \end{array} \right)\\\\ & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^2 }\limits_{k = 1} \mathfrak{A}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{A}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^2 }\limits_{k = 1} \mathfrak{X}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)(1-\mathfrak{X}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1) \mathfrak{B}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1) \mathfrak{Y}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\\Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac {\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1) \mathfrak{C}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1)\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1+(x-1) \mathfrak{Z}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^2 }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)} \end{array} \right). \end{align*}

    Equation (4.12) holds for n = 2. Assume that Eq (4.12) holds for n = m , i.e.,

    \begin{equation*} 2TLCq-RPFHWG(M_{1}, M_{2}, \ldots, M_{m}) = \end{equation*}
    \begin{eqnarray} \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{A}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{A}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{X}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{X}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{B}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{Y}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\\Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{ \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{C}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)} \end{array} \right). \end{eqnarray}

    To prove that the formula holds for n = m+1 , by induction hypothesis we have

    \begin{equation*} 2TLCq-RPFHWG(M_{1}, M_{2}, \ldots, M_{m}, M_{m+1}) = 2TLCq-RPFHWG(M_{1}, M_{2}, \ldots, M_{m})\bigotimes M^{\mathcal{W}_{m+1}}_{m+1} \end{equation*}
    \begin{align*} & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{A}_{k}^{\mathcal{W}_{k}}}{\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{A}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^m }\limits_{k = 1} \mathfrak{X}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)(1-\mathfrak{X}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^m }\limits_{k = 1} (\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{B}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{Y}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{C}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1)\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^m }\limits_{k = 1} (1+(x-1) \mathfrak{Z}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^m }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)} \end{array} \right)\bigotimes\\ &\left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{A}_{m+1}^{\mathcal{W}_{m+1}}}{\sqrt[q]{(1+(x-1)(1-\mathfrak{A}_{m+1}^{q})) ^{\mathcal{W} _{m+1}}+(x-1)(\mathfrak{A}_{m+1}^{q})^{\mathcal{W}_{m+1}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathfrak{X}_{m+1}^{\mathcal{W}_{m+1}}} {\sqrt[q]{(1+(x-1)(1-\mathfrak{X}_{m+1} ^{q}))^ {\mathcal{W}_{m+1}}+(x-1)(\mathfrak{X}_{m+1}^{q})^{\mathcal{W}_{m+1}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{B}_{m+1}^{q})^{\mathcal{W}_{m+1}}-(1-\mathfrak{B}_{m+1}^{q})^{\mathcal{W} _{m+1}}} {(1+(x-1) \mathfrak{B}_{m+1}^{q}) ^{\mathcal{W}_{m+1}}+(x-1) (1-\mathfrak{B}_{m+1}^{q})^{\mathcal{W}_{m+1}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{Y}_{m+1}^{q})^{\mathcal{W}_{m+1}}-(1-\mathfrak{Y}_{m+1}^{q})^{\mathcal {W}_{m+1}}} {(1+(x-1) \mathfrak{Y}_{m+1}^{q}) ^{\mathcal{W}_{m+1}}+(x-1) (1-\mathfrak{Y}_{m+1}^{q})^{\mathcal{W}_{m+1}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{C}_{m+1}^{q})^{\mathcal{W}_{m+1}}-(1-\mathfrak{C}_{m+1}^{q})^{\mathcal{W} _{m+1}}} {(1+(x-1) \mathfrak{C}_{m+1}^{q}) ^{\mathcal{W}_{m+1}}+(x-1) (1-\mathfrak{C}_{m+1}^{q})^{\mathcal{W}_{m+1}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{(1+(x-1)\mathfrak{Z}_{m+1}^{q})^{\mathcal{W}_{m+1}}-(1-\mathfrak{Z}_{m+1}^{q})^{\mathcal {W}_{m+1}}} {(1+(x-1) \mathfrak{Z}_{m+1}^{q}) ^{\mathcal{W}_{m+1}}+(x-1) (1-\mathfrak{Z}_{m+1}^{q})^{\mathcal{W}_{m+1}}}}\Bigg)\Bigg)} \end{array} \right)\\\\ & = \left( \begin{array}{c} \Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \mathfrak{A}_{k}^{\mathcal{W}_{k}}}{\sqrt[q] {\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)(1-\mathfrak{A}_{k}^{q}))^{\mathcal{W} _{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (\mathfrak{A}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)e^{i2\pi\Lambda\Bigg(\Upsilon\Bigg(\frac{\sqrt[q]{x}\; \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} \mathfrak{X}_{k}^{\mathcal{W}_{k}}} {\sqrt[q]{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)(1-\mathfrak{X}_{k} ^{q}))^ {\mathcal{W}_{k}}+(x-1)\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (\mathfrak{X}_{k}^{q})^{\mathcal{W}_{k}}}} \Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1) \mathfrak{B}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{B}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1) \mathfrak{Y}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{Y}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}-\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1) \mathfrak{C}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{C}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)e^{i2\pi \Lambda\Bigg(\Upsilon\Bigg(\sqrt[q]{\frac{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1)\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}- \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}{\mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1+(x-1) \mathfrak{Z}_{k}^{q}) ^{\mathcal{W}_{k}}+(x-1) \mathop {\mathop \prod \limits^{m + 1} }\limits_{k = 1} (1-\mathfrak{Z}_{k}^{q})^{\mathcal{W}_{k}}}}\Bigg)\Bigg)}, \\ \end{array} \right). \end{align*}

    Hence, Equation (4.12) holds for all positive integers n\geq 1.



    [1] K. R. Joseph, S. Edirimanne, G. D. Eslick, Multifocality as a prognostic factor in thyroid cancer: A meta-analysis, Int. J. Surg., 50 (2018), 121–125. http://.doi.org/10.1016/j.ijsu.2017.12.035 doi: 10.1016/j.ijsu.2017.12.035
    [2] A. Arianpoor, M. Asadi, E. Amini, A. Ziaeemehr, Investigating the prevalence of risk factors of papillary thyroid carcinoma recurrence and disease-free survival after thyroidectomy and central neck dissection in Iranian patients, Acta Chir. Belg., 120 (2020), 173–178. http://.doi.org/10.1080/00015458.2019.1576447 doi: 10.1080/00015458.2019.1576447
    [3] V. Zaydfudim, I. D. Feurer, M. R. Griffin, J. E. Phay, The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma, Surgery, 144 (2008), 1077–1078. http://.doi.org/10.1016/j.surg.2008.08.034 doi: 10.1016/j.surg.2008.08.034
    [4] I. M. Boschin, M. R. Pelizzo, F. Giammarile, D. Rubello, P. Colletti, Lymphoscintigraphy in differentiated thyroid cancer, Clin. Nucl. Med., 40 (2015), e343–350. http://.doi.org/10.1097/RLU.0000000000000825 doi: 10.1097/RLU.0000000000000825
    [5] D. Hou, H. Xu, B. Yuan, J. Liu, Y. Lu, M. Liu, Effects of active localization and vascular preservation of inferior parathyroid glands in central neck dissection for papillary thyroid carcinoma, World J. Surg. Oncol., 18 (2020), 95. http://.doi.org/10.1186/s12957-020-01867-y doi: 10.1186/s12957-020-01867-y
    [6] I. Elia, G. Doglioni, S. M. Fendt, Metabolic hallmarks of metastasis formation, Trends Cell Biol., 28 (2018), 673–684. http://.doi.org/10.1016/j.tcb.2018.04.002 doi: 10.1016/j.tcb.2018.04.002
    [7] H. Harjunpää, M. Llort Asens, C. Guenther, S. C. Fagerholm, Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment, Front. Immunol., 10 (2019), 1078. http://.doi.org/10.3389/fimmu.2019.01078 doi: 10.3389/fimmu.2019.01078
    [8] L. Mautone, C. Ferravante, A. Tortora, Higher integrin alpha 3 beta1 expression in papillary thyroid cancer is associated with worst outcome, Cancers (Basel), 13 (2021), 2937.http://.doi.org/10.3390/cancers13122937 doi: 10.3390/cancers13122937
    [9] J. Weiss, F. Kuusisto, K. Boyd, Machine learning for treatment assignment: Improving individualized risk attribution, AMIA Annu. Symp. Proc., 2015 (2015), 1306–1315.
    [10] J. C. Weiss, D. Page, P. L. Peissig, Statistical Relational Learning to predict primary myocardial infarction from electronic health records, Proc. Innov. Appl. Artif. Intell. Conf., 2012 (2012), 2341–2347.
    [11] M. E. Ritchie, B. Phipson, D. Wu, Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47.http://.doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
    [12] G. Tomas, M. Tarabichi, D. Gacquer, A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic, Oncogene, 31 (2012), 4490–4498.http://.doi.org/10.1038/onc.2011.626 doi: 10.1038/onc.2011.626
    [13] M. Tarabichi, M. Saiselet, C. Tresallet, Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer, Br. J. Cancer, 112 (2015), 1665–1674.http://.doi.org/10.1038/bjc.2014.665 doi: 10.1038/bjc.2014.665
    [14] A. Subramanian, P. Tamayo, V. K. Mootha, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 (2005), 15545–15550. http://.doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
    [15] A. Liberzon, A. Subramanian, R. Pinchback, Molecular signatures database (MSigDB) 3.0, Bioinformatics, 27 (2011), 1739–1740. http://.doi.org/10.1093/bioinformatics/btr260 doi: 10.1093/bioinformatics/btr260
    [16] A. Liberzon, C. Birger, H. Thorvaldsdottir, The Molecular Signatures Database (MSigDB) hallmark gene set collection, Cell Syst., 1 (2015), 417–425. http://.doi.org/10.1016/j.cels.2015.12.004 doi: 10.1016/j.cels.2015.12.004
    [17] G. Huang, X. Xu, C. Ju, Identification and validation of autophagy-related gene expression for predicting prognosis in patients with idiopathic pulmonary fibrosis, Front. Immunol., 13 (2022), 997138. http://.doi.org/10.3389/fimmu.2022.997138 doi: 10.3389/fimmu.2022.997138
    [18] X. Sun, Z. Zhang, Z. Wang, The role of Angiogenesis and remodeling (AR) associated signature for predicting prognosis and clinical outcome of immunotherapy in pan-cancer, Front. Immunol., 13 (2022), 1033967. http://.doi.org/10.3389/fimmu.2022.1033967 doi: 10.3389/fimmu.2022.1033967
    [19] J. Ruan, S. Xu, R. Chen, EMLI-ICC: an ensemble machine learning-based integration algorithm for metastasis prediction and risk stratification in intrahepatic cholangiocarcinoma, Brief. Bioinform., 23 (2022), bbac450. http://.doi.org/10.1093/bib/bbac450 doi: 10.1093/bib/bbac450
    [20] X. Wang, L. Yang, C. Yu, An integrated computational strategy to predict personalized cancer drug combinations by reversing drug resistance signatures, Comput. Biol. Med., 163 (2023), 107230. http://.doi.org/10.1016/j.compbiomed.2023.107230 doi: 10.1016/j.compbiomed.2023.107230
    [21] H. Zhang, P. Xia, J. Liu, ATIC inhibits autophagy in hepatocellular cancer through the AKT/FOXO3 pathway and serves as a prognostic signature for modeling patient survival, Int. J. Biol. Sci., 17 (2021), 4442–4458. http://.doi.org/10.7150/ijbs.65669 doi: 10.7150/ijbs.65669
    [22] X. Bao, J. Chi, Y. Zhu, High FAAP24 expression reveals poor prognosis and an immunosuppressive microenvironment shaping in AML, Cancer Cell Int., 23 (2023), 117. http://.doi.org/10.1186/s12935-023-02937-3 doi: 10.1186/s12935-023-02937-3
    [23] B. Cheng, C. Tang, J. Xie, Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis, Life Sci., 325 (2023), 121659. http://.doi.org/10.1016/j.lfs.2023.121659 doi: 10.1016/j.lfs.2023.121659
    [24] S. He, Y. Ding, Z. Ji, HOPX is a tumor-suppressive biomarker that corresponds to T cell infiltration in skin cutaneous melanoma, Cancer Cell Int., 23 (2023), 122. http://.doi.org/10.1186/s12935-023-02962-2 doi: 10.1186/s12935-023-02962-2
    [25] Z. Liu, L. Liu, S. Weng, Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer, Nat. Commun., 13 (2022), 816. http://.doi.org/10.1038/s41467-022-28421-6 doi: 10.1038/s41467-022-28421-6
    [26] Y. Chen, Y. Pan, H. Gao, Mechanistic insights into super-enhancer-driven genes as prognostic signatures in patients with glioblastoma, J. Cancer Res. Clin. Oncol., 149 (2023), 12315–12332. http://.doi.org/10.1007/s00432-023-05121-2 doi: 10.1007/s00432-023-05121-2
    [27] A. Huang, L. Li, X. Liu, Hedgehog signaling is a potential therapeutic target for vascular calcification, Gene, 872 (2023), 147457. http://.doi.org/10.1016/j.gene.2023.147457 doi: 10.1016/j.gene.2023.147457
    [28] P. Zhou, J. Shen, X. Ge, Classification and characterisation of extracellular vesicles-related tuberculosis subgroups and immune cell profiles, J. Cell. Mol. Med., 27 (2023), 2482–2494. http://.doi.org/10.1111/jcmm.17836 doi: 10.1111/jcmm.17836
    [29] R. Kolde, S. Laur, P. Adler, Robust rank aggregation for gene list integration and meta-analysis, Bioinformatics, 28 (2012), 573–580. http://.doi.org/10.1093/bioinformatics/btr709 doi: 10.1093/bioinformatics/btr709
    [30] C. H. Gao, G. Yu, P. Cai, ggVennDiagram: An intuitive, easy-to-use, and highly customizable R package to generate Venn Diagram, Front. Genet., 12 (2021), 706907. http://.doi.org/10.3389/fgene.2021.706907 doi: 10.3389/fgene.2021.706907
    [31] Y. Zhou, B. Zhou, L. Pache, Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun., 10 (2019), 1523. http://.doi.org/10.1038/s41467-019-09234-6 doi: 10.1038/s41467-019-09234-6
    [32] S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data, BMC Bioinf., 14 (2013), 7. http://.doi.org/10.1186/1471-2105-14-7 doi: 10.1186/1471-2105-14-7
    [33] K. Yoshihara, M. Shahmoradgoli, E. Martinez, Inferring tumour purity and stromal and immune cell admixture from expression data, Nat. Commun., 4 (2013), 2612. http://.doi.org/10.1038/ncomms3612 doi: 10.1038/ncomms3612
    [34] A. M. Newman, C. L. Liu, M. R. Green, Robust enumeration of cell subsets from tissue expression profiles, Nat. Methods, 12 (2015), 453–457. http://.doi.org/10.1038/nmeth.3337 doi: 10.1038/nmeth.3337
    [35] J. H. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Software, 33 (2010), 1–22. http://.doi.org/10.18637/jss.v033.i01 doi: 10.18637/jss.v033.i01
    [36] P. Blanche, J. F. Dartigues, H. Jacqmin-Gadda, Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks, Stat. Med., 32 (2013), 5381–5397. http://.doi.org/10.1002/sim.5958 doi: 10.1002/sim.5958
    [37] M. Kuhn, Building Predictive models in R using the caret package, J. Stat. Software, 28 (2008), 1–26. http://.doi.org/10.18637/jss.v028.i05 doi: 10.18637/jss.v028.i05
    [38] M. Uhlen, C. Zhang, S. Lee, A pathology atlas of the human cancer transcriptome, Science, 357 (2017), eaan2507. http://.doi.org/10.1126/science.aan2507 doi: 10.1126/science.aan2507
    [39] N. Enz, G. Vliegen, I. De Meester, CD26/DPP4-a potential biomarker and target for cancer therapy, Pharmacol Ther, 198 (2019), 135–159. http://.doi.org/10.1016/j.pharmthera.2019.02.015 doi: 10.1016/j.pharmthera.2019.02.015
    [40] Q. He, H. Cao, Y. Zhao, Dipeptidyl peptidase-4 stabilizes integrin alpha4beta1 complex to promote thyroid cancer cell metastasis by activating transforming growth factor-beta signaling pathway, Thyroid, 32 (2022), 1411–1422. http://.doi.org/10.1089/thy.2022.0317 doi: 10.1089/thy.2022.0317
    [41] X. Hu, S. Chen, C. Xie, DPP4 gene silencing inhibits proliferation and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through suppression of the MAPK pathway, J. Endocrinol. Invest., 44 (2021), 1609–1623. http://.doi.org/10.1007/s40618-020-01455-7 doi: 10.1007/s40618-020-01455-7
    [42] G. Peppino, R. Ruiu, M. Arigoni, Teneurins: Role in cancer and potential role as diagnostic biomarkers and targets for therapy, Int. J. Mol. Sci., 22 (2021), 2321. http://.doi.org/10.3390/ijms22052321 doi: 10.3390/ijms22052321
    [43] S. P. Cheng, M. J. Chen, M. N. Chien, Overexpression of teneurin transmembrane protein 1 is a potential marker of disease progression in papillary thyroid carcinoma, Clin. Exper. Med., 17 (2017), 555–564. http://.doi.org/10.1007/s10238-016-0445-y doi: 10.1007/s10238-016-0445-y
    [44] S. Lemarchant, M. Pruvost, J. Montaner, ADAMTS proteoglycanases in the physiological and pathological central nervous system, J. Neuroinflamm., 10 (2013), 133. http://.doi.org/10.1186/1742-2094-10-133 doi: 10.1186/1742-2094-10-133
    [45] W. Sun, G. Ma, L. Zhang, DNMT3A-mediated silence in ADAMTS9 expression is restored by RNF180 to inhibit viability and motility in gastric cancer cells, Cell Death Dis., 12 (2021), 428. http://.doi.org/10.1038/s41419-021-03628-5 doi: 10.1038/s41419-021-03628-5
    [46] N. Wang, X. Huo, B. Zhang, METTL3-Mediated ADAMTS9 Suppression facilitates angiogenesis and carcinogenesis in gastric cancer, Front. Oncol., 12 (2022), 861807. http://.doi.org/10.3389/fonc.2022.861807 doi: 10.3389/fonc.2022.861807
    [47] K. Goto, M. Morimoto, M. Osaki, The impact of AMIGO2 on prognosis and hepatic metastasis in gastric cancer patients, BMC Cancer, 22 (2022), 280. http://.doi.org/10.1186/s12885-022-09339-0 doi: 10.1186/s12885-022-09339-0
    [48] R. Izutsu, M. Osaki, J. P. Jehun, Liver metastasis formation is defined by AMIGO2 expression via adhesion to hepatic endothelial cells in human gastric and colorectal cancer cells, Pathol. Res. Pract., 237 (2022), 154015. http://.doi.org/10.1016/j.prp.2022.154015 doi: 10.1016/j.prp.2022.154015
    [49] Z. Han, Y. Feng, Y. Deng, Integrated analysis reveals prognostic value and progression-related role of AMIGO2 in prostate cancer, Transl. Androl. Urol., 11 (2022), 914–928. http://.doi.org/10.21037/tau-21-1148 doi: 10.21037/tau-21-1148
    [50] E. Rassart, F. Desmarais, O. Najyb, Apolipoprotein D, Gene, 756 (2020), 144874. http://.doi.org/10.1016/j.gene.2020.144874 doi: 10.1016/j.gene.2020.144874
    [51] F. Desmarais, V. Herve, K. F. Bergeron, Cerebral apolipoprotein D exits the brain and accumulates in peripheral tissues, Int. J. Mol. Sci., 22 (2021), 4118. http://.doi.org/10.3390/ijms22084118 doi: 10.3390/ijms22084118
    [52] C. J. Lai, H. C. Cheng, C. Y. Lin, Activation of liver X receptor suppresses angiogenesis via induction of ApoD, Faseb J., 31 (2017), 5568–5576. http://.doi.org/10.1096/fj.201700374R doi: 10.1096/fj.201700374R
    [53] M. Schulze, C. Violonchi, S. Swoboda, RELN signaling modulates glioblastoma growth and substrate-dependent migration, Brain Pathol., 28 (2018), 695–709. http://.doi.org/10.1111/bpa.12584 doi: 10.1111/bpa.12584
    [54] O. Dohi, H. Takada, N. Wakabayashi, Epigenetic silencing of RELN in gastric cancer, Int. J. Oncol., 36 (2010), 85–92. http://doi.org/10.3892/ijo_00000478
    [55] Z. Li, X. Wang, Y. Yang, Identification and validation of RELN mutation as a response indicator for immune checkpoint inhibitor therapy in melanoma and non-small cell lung cancer, Cells, 11 (2022), 3841. http://.doi.org/10.3390/cells11233841 doi: 10.3390/cells11233841
    [56] N. Rufo, A. D. Garg, P. Agostinis, The unfolded protein response in immunogenic cell death and cancer immunotherapy, Trends Cancer, 3 (2017), 643–658. http://.doi.org/10.1016/j.trecan.2017.07.002 doi: 10.1016/j.trecan.2017.07.002
    [57] R. Saghaleyni, A. Sheikh Muhammad, P. Bangalore, Machine learning-based investigation of the cancer protein secretory pathway, PLoS Comput. Biol., 17 (2021), e1008898. http://.doi.org/10.1371/journal.pcbi.1008898 doi: 10.1371/journal.pcbi.1008898
    [58] C. T. Walsh, B. P. Tu, Y. Tang, Eight kinetically stable but thermodynamically activated molecules that power cell metabolism, Chem. Rev., 118 (2018), 1460–1494. http://.doi.org/10.1021/acs.chemrev.7b00510 doi: 10.1021/acs.chemrev.7b00510
    [59] S. Y. Lunt, S. M. Fendt, Metabolism – A cornerstone of cancer initiation, progression, immune evasion and treatment response, Curr. Opin. Syst. Biol., 8 (2018), 67–72. https://doi.org/10.1016/j.coisb.2017.12.006 doi: 10.1016/j.coisb.2017.12.006
    [60] V. Friand, G. David, P. Zimmermann, Syntenin and syndecan in the biogenesis of exosomes, Biol. Cell., 107 (2015), 331–341. http://.doi.org/10.1111/boc.201500010 doi: 10.1111/boc.201500010
    [61] S. Y. Lunt, M. G. Vander Heiden, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation, Annu. Rev. Cell Dev. Biol., 27 (2011), 441–464. http://.doi.org/10.1146/annurev-cellbio-092910-154237 doi: 10.1146/annurev-cellbio-092910-154237
    [62] B. Sousa, J. Pereira, J. Paredes, The crosstalk between cell adhesion and cancer metabolism, Int. J. Mol. Sci., 20 (2019), 1933. http://.doi.org/10.3390/ijms20081933 doi: 10.3390/ijms20081933
    [63] D. Hanahan, L. M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell, 21 (2012), 309–322. http://.doi.org/10.1016/j.ccr.2012.02.022 doi: 10.1016/j.ccr.2012.02.022
  • mbe-20-12-911 supplementary.pdf
  • This article has been cited by:

    1. Ghous Ali, Muhammad Zain Ul Abidin, Qin Xin, Ferdous M. O. Tawfiq, An Innovative Hybrid Multi-Criteria Decision-Making Approach under Picture Fuzzy Information, 2022, 14, 2073-8994, 2434, 10.3390/sym14112434
    2. Ayesha Khan, Muhammad Akram, Uzma Ahmad, Mohammed M. Ali Al-Shamiri, A new multi-objective optimization ratio analysis plus full multiplication form method for the selection of an appropriate mining method based on 2-tuple spherical fuzzy linguistic sets, 2022, 20, 1551-0018, 456, 10.3934/mbe.2023021
    3. Aliya Fahmi, Fazli Amin, Sayed M Eldin, Meshal Shutaywi, Wejdan Deebani, Saleh Al Sulaie, Multiple attribute decision-making based on Fermatean fuzzy number, 2023, 8, 2473-6988, 10835, 10.3934/math.2023550
    4. Aliya Fahmi, Particle swarm optimization selection based on the TOPSIS technique, 2023, 27, 1432-7643, 9225, 10.1007/s00500-023-08200-1
    5. Ayesha Khan, Uzma Ahmad, Sundas Shahzadi, A new decision analysis based on 2-tuple linguistic q-rung picture fuzzy ITARA–VIKOR method, 2023, 1432-7643, 10.1007/s00500-023-08263-0
    6. Xiaoping Jia, Baozhu Jia, A ship equipment reliability evaluation method based on symbolic information and interval-valued q-rung picture fuzzy projection, 2024, 299, 00298018, 117003, 10.1016/j.oceaneng.2024.117003
    7. Uzma Ahmad, Ayesha Khan, Sundas Shhazadi, Extended ELECTRE I method for decision-making based on 2-tuple linguistic q-rung picture fuzzy sets, 2024, 1432-7643, 10.1007/s00500-023-09544-4
    8. Muhammad Gulistan, Ying Hongbin, Witold Pedrycz, Muhammad Rahim, Fazli Amin, Hamiden Abd El-Wahed Khalifa, p,q,r-Fractional fuzzy sets and their aggregation operators and applications, 2024, 57, 1573-7462, 10.1007/s10462-024-10911-2
    9. Ayesha Khan, Uzma Ahmad, Multi-criteria group decision-making based on 2-tuple linguistic q-rung picture fuzzy sets, 2024, 9, 2364-4966, 10.1007/s41066-023-00441-7
    10. Mengran Sun, Yushui Geng, Jing Zhao, Multi-Attribute Group Decision-Making Methods Based on Entropy Weights with q-Rung Picture Uncertain Linguistic Fuzzy Information, 2023, 15, 2073-8994, 2027, 10.3390/sym15112027
    11. Adel Fahad Alrasheedi, Jungeun Kim, Rukhsana Kausar, q-Rung orthopair fuzzy information aggregation and their application towards material selection, 2023, 8, 2473-6988, 18780, 10.3934/math.2023956
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2525) PDF downloads(88) Cited by(0)

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog