Constructing permutation polynomials is a hot topic in the area of finite fields, and permutation polynomials have many applications in different areas. Recently, several classes of permutation trinomials were constructed. In 2015, Hou surveyed the achievements of permutation polynomials and novel methods. But, very few were known at that time. Recently, many permutation binomials and trinomials have been constructed. Here we survey the significant contribution made to the construction of permutation trinomials over finite fields in recent years. Emphasis is placed on significant results and novel methods. The covered material is split into three aspects: the existence of permutation trinomials of the respective forms xrh(xs), λ1xa+λ2xb+λ3xc and x+xs(qm−1)+1+xt(qm−1)+1, with Niho-type exponents s,t.
Citation: Varsha Jarali, Prasanna Poojary, G. R. Vadiraja Bhatta. A recent survey of permutation trinomials over finite fields[J]. AIMS Mathematics, 2023, 8(12): 29182-29220. doi: 10.3934/math.20231495
[1] | Yukun Song, Yang Chen, Jun Yan, Shuai Chen . The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28(1): 47-66. doi: 10.3934/era.2020004 |
[2] | Qiu Meng, Yuanyuan Zhao, Wucai Yang, Huifang Xing . Existence and uniqueness of solution for a class of non-Newtonian fluids with non-Newtonian potential and damping. Electronic Research Archive, 2023, 31(5): 2940-2958. doi: 10.3934/era.2023148 |
[3] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[4] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[5] | Yazhou Chen, Dehua Wang, Rongfang Zhang . On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817-3832. doi: 10.3934/era.2021063 |
[6] | Anna Gołȩbiewska, Marta Kowalczyk, Sławomir Rybicki, Piotr Stefaniak . Periodic solutions to symmetric Newtonian systems in neighborhoods of orbits of equilibria. Electronic Research Archive, 2022, 30(5): 1691-1707. doi: 10.3934/era.2022085 |
[7] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[8] | Dingshi Li, Xuemin Wang . Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29(2): 1969-1990. doi: 10.3934/era.2020100 |
[9] | Linyan Fan, Yinghui Zhang . Space-time decay rates of a nonconservative compressible two-phase flow model with common pressure. Electronic Research Archive, 2025, 33(2): 667-696. doi: 10.3934/era.2025031 |
[10] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
Constructing permutation polynomials is a hot topic in the area of finite fields, and permutation polynomials have many applications in different areas. Recently, several classes of permutation trinomials were constructed. In 2015, Hou surveyed the achievements of permutation polynomials and novel methods. But, very few were known at that time. Recently, many permutation binomials and trinomials have been constructed. Here we survey the significant contribution made to the construction of permutation trinomials over finite fields in recent years. Emphasis is placed on significant results and novel methods. The covered material is split into three aspects: the existence of permutation trinomials of the respective forms xrh(xs), λ1xa+λ2xb+λ3xc and x+xs(qm−1)+1+xt(qm−1)+1, with Niho-type exponents s,t.
Fluid-particle interaction model arises in many practical applications, and is of primary importance in the sedimentation analysis of disperse suspensions of particles in fluids. This model is one of the commonly used models nowadays in biotechnology, medicine, mineral processing and chemical engineering [27]-[25]. Usually, the fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation [4], the system has the form:
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇(P(ρ)+η)−μΔu−λ∇divu=−(η+βρ)∇Φ,ηt+div(η(u−∇Φ))−Δη=0, | (1) |
where
There are many kinds of literatures on the study of the existence and behavior of solutions to Navier-Stokes equations (See [1]-[17]). Taking system (1) as an example, Carrillo
Despite the important progress, there are few results of non-Newtonian fluid-particle interaction model. As we know, the Navier Stokes equations are generally accepted as a right governing equations for the compressible or incompressible motion of viscous fluids, which is usually described as
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)−div(Γ)+∇P=ρf, |
where
Eij(∇u)=∂ui∂xj+∂uj∂xi, |
is the rate of strain. If the relation between the stress and rate of strain is linear, namely,
Γ=μ(∂ui∂xj+∂uj∂xi)q, |
for
Γij=(μ0+μ1|E(∇xu)|p−2)Eij(∇xu). |
For
Non-Newtonian fluid flows are frequently encountered in many physical and industrial processes [8,9], such as porous flows of oils and gases [7], biological fluid flows of blood [30], saliva and mucus, penetration grouting of cement mortar and mixing of massive particles and fluids in drug production [13]. The possible appearance of the vacuum is one of the major difficulties when trying to prove the existence and strong regularity results. On the other hand, the constitutive behavior of non-Newtonian fluid flow is usually more complex and highly non-linear, which may bring more difficulties to study such flows.
In recent years, there has been many research in the field of non-Newtonian flows, both theoretically and experimentally (see [14]-[26]). For example, in [14], Guo and Zhu studied the partial regularity of the generalized solutions to an incompressible monopolar non-Newtonian fluids. In [32], the trajectory attractor and global attractor for an autonomous non-Newtonian fluid in dimension two was studied. The existence and uniqueness of solutions for non-Newtonian fluids were established in [29] by applying Ladyzhenskaya's viscous stress tensor model.
In this paper, followed by Ladyzhenskaya's model of non-Newtonian fluid, we consider the following system
{ρt+(ρu)x=0,(ρu)t+(ρu2)x+ρΨx−λ(|ux|p−2ux)x+(P+η)x=−ηΦx,(x,t)∈ΩT(|Ψx|q−2Ψx)x=4πg(ρ−1|Ω|∫Ωρdx),ηt+(η(u−Φx))x=ηxx, | (2) |
with the initial and boundary conditions
{(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω,u|∂Ω=Ψ|∂Ω=0,t∈[0,T], | (3) |
and the no-flux condition for the density of particles
(ηx+ηΦx)|∂Ω=0,t∈[0,T], | (4) |
where
The system describes a compressible shear thinning fluid-particle interaction system for the evolution of particles dispersed in a viscous non-Newtonian fluid and the particle is driven by non-Newtonian gravitational potential. To our knowledge, there still no existence results for (2)-(4) when
We state the definition of strong solution as follows:
Definition 1.1. The
(ⅰ)
ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). |
(ⅱ) For all
∫Ωρϕ(x,t)dx−∫t0∫Ω(ρϕt+ρuϕx)(x,s)dxds=∫Ωρ0ϕ(x,0)dx, | (5) |
(ⅲ) For all
∫Ωρuφ(x,t)dx−∫t0∫Ω{ρuφt+ρu2φx−ρΨxφ−λ|ux|p−2uxφx+(P+η)φx−ηΦxφ}(x,s)dxds=∫Ωρ0u0φ(x,0)dx, | (6) |
(ⅳ) For all
−∫t0∫Ω|Ψx|q−2Ψxψx(x,s)dxds=∫t0∫Ω4πg(ρ−1|Ω|∫Ωρdx)ψ(x,0)dxds, | (7) |
(ⅴ) For all
∫Ωηϑ(x,t)dx−∫t0∫Ω[η(u−Φx)−ηx]ϑx(x,s)dxds=∫Ωη0ϑ(x,0)dx. | (8) |
The main result of this paper is stated in the following theorem.
Theorem 1.2. Let
0≤ρ0∈H1(Ω),u0∈H10(Ω)∩H2(Ω),η0∈H2(Ω), |
and the compatibility condition
−(|u0x|p−2u0x)x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx), | (9) |
for some
ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). |
Remark 1. By using exactly the similar argument, we can prove the result also hold for the case
In this section, we will prove the local existence of strong solutions. From the continuity equation
∫Ωρ(t)dx=∫Ωρ0dx:=m0,(t>0,m0>0) |
Because equation
ρt+(ρu)x=0, | (10) |
(ρu)t+(ρu2)x+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx, | (11) |
[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]x=4πg(ρ−m0), | (12) |
ηt+(η(u−Φx))x=ηxx, | (13) |
with the initial and boundary conditions.
(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω, | (14) |
u|∂Ω=Ψ|∂Ω=(ηx+ηΦx)|∂Ω=0,t∈[0,T], | (15) |
and
{−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. | (16) |
Provided that
We first get the estimate of
{−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. | (16) |
Then
|u0xx|L2≤1p−1|(u20x+εεu20x+1)1−p2|L∞|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2≤1p−1(|u0x|2L∞+1)1−p2(|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2)≤1p−1(|u0xx|2L2+1)1−p2(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2). |
Applying Young's inequality, we have
|u0xx|L2≤C(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2)1p−1≤C, |
thus
|u0|L∞+|u0x|L∞+|u0xx|L2≤C, | (17) |
where
Next, we introduce an auxiliary function
Z(t)=sup0≤s≤t(1+|ρ(s)|H1+|u(s)|W1,p0+|√ρut(s)|L2+|ηt(s)|L2+|η(s)|H1). |
We will derive some useful estimate to each term of
In order to prove the main Theorem, we first give some useful lemmas for later use.
Lemma 2.1. Let
{−[(ε(uε0x)2+1(uε0x)2+ε)2−p2uε0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),uε0(0)=uε0(1)=0. | (18) |
Then there are a subsequence
uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
Proof. According to (18), we have
uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
Taking it by the
|uε0xx|L2≤|(ε(uε0x)2+1(uε0x)2+ε)1−p2|L∞|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2≤(|uε0x|2L∞+1)1−p2|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2, |
then
|uε0xx|L2≤C(1+|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2)1p−1≤C. | (19) |
Therefore, by the above inequality, as
uεj0→u0inC32(Ω),uεj0xx→u0xxinL2(Ω)weakly. |
Thus, we can obtain
|uεi0x−uεj0x|L∞(Ω)<α1. |
Now, we prove that
Let
|uεi0x−uεj0x|L∞(Ω)<α1. |
For all
|uεi0xx−uεj0xx|L2(Ω)≤|ϕi−ϕj|L∞(Ω)|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω). |
With the assumption, we can obtain
|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω)≤C, |
where
|ϕi−ϕj|L∞(Ω)≤|∫10ϕ′(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ((uεi0x)2−(uεj0x)2)|L∞(Ω), | (20) |
where
By the simple calculation, we can get
ϕ′(s)≤2p−1(1+s−p2), |
where
|ϕi−ϕj|L∞(Ω)≤2p−1|(1+∫10(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ)((uεi0x)2−(uεj0x)2)|L∞(Ω)≤2p−1|uεi0x−uεj0x|L∞(Ω)|uεi0x+uεj0x|L∞(Ω)+4(2−p)(p−1)|uεi0x−uεj0x|2−p2L∞(Ω)|uεi0x+uεj0x|2−p2L∞(Ω)≤α. |
Substituting this into (18), we have
|uεi0xx−uεj0xx|L∞(Ω)<α, |
then there is a subsequence
{uεj0xx}→χinL2(Ω). |
By the uniqueness of the weak convergence, we have
χ={uε0xx}. |
Since
[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
This completes the proof of Lemma 2.1.
Lemma 2.2.
sup0≤t≤T|ρ(t)|2H1≤Cexp(C∫t0Z6γ(3p−4)(q−1)(s)ds), | (21) |
where
Proof. We estimates for
[(εu2x+1u2x+ε)2−p2ux]x=ρut+ρuux+ρΨx+(P+η)x+ηΦx. |
We note that
|uxx|≤1p−1(u2x+ε)1−p2|ρut+ρuux+ρΨx+(P+η)x+ηΦx|≤1p−1(|ux|2−p+1)|ρut+ρuux+ρΨx+(P+η)x+ηΦx|. |
Taking it by the
|uxx|p−1L2≤C(1+|ρut|L2+|ρuux|L2+|ρΨx|L2+|(P+η)x|L2+|ηΦx|L2)≤C(1+|ρ|12L∞|√ρut|L2+|ρ|L∞|u|L∞|ux|p2Lp|ux|1−p2L∞+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2)≤C[1+|ρ|12L∞|√ρut|L2+(|ρ|L∞|u|L∞|ux|p2Lp)2(p−1)3p−4+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2]+12|uxx|p−1L2. | (22) |
On the other hand, by
|Ψxx|≤1q−1(|Ψx|2−q+1)|4πg(ρ−m0)|. |
Taking it by
|Ψxx|L2≤CZ1q−1(t). | (23) |
This implies that
|uxx|L2≤CZmax{qq−1,(p−1)(4+p)3p−4γ}(t)≤CZ6γ(3p−4)(q−1)(t). | (24) |
By (13), taking it by the
|ηxx|L2≤|ηt+(η(u−Φx))x|L2≤|ηt|L2+|ηx|L2|u|L∞+|ηx|L2|Φx|L∞+|η|L2|uxx|L2+|η|L∞|Φxx|L2≤CZ6γ+2(3p−4)(q−1)(t). | (25) |
Multiplying (10) by
12ddt∫Ω|ρ|2ds+∫Ω(ρu)xρdx=0. |
Integrating it by parts, using Sobolev inequality, we obtain
ddt|ρ(t)|2L2≤∫Ω|ux||ρ|2dx≤|uxx|L2|ρ|2L2. | (26) |
Differentiating
ddt∫Ω|ρx|2dx=−∫Ω[32ux(ρx)2+ρρxuxx](t)dx≤C[|ux|L∞|ρx|2L2+|ρ|L∞|ρx|L2|uxx|L2]≤C|ρ|2H1|uxx|L2. | (27) |
From (26) and (27) and the Gronwall's inequality, then lemma 2.2 holds.
Lemma 2.3.
|η|2H1+|ηt|2L2+∫t0(|ηx|2L2+|ηt|2L2+|ηxt|2L2)(s)ds≤C(1+∫t0Z4(s)ds), | (28) |
where
Proof. Multiplying
∫t0|ηx(s)|2L2ds+12|η(t)|2L2≤∬ΩT(|ηuηx|+|ηΦxηx|)dxds≤14∫t0|ηx(s)|2L2ds+C∫t0|ux|2Lp|η|2H1ds+C∫t0|η|2H1ds+C≤14∫t0|ηx(s)|2L2ds+C(1+∫t0Z4(t)ds). | (29) |
Multiplying
∫t0|ηt(s)|2L2ds+12|ηx(t)|2L2≤∬ΩT|η(u−Φx)ηxt|dxds≤14∫t0|ηxt(s)|2L2ds+C∫t0|η|2H1|ux|2Lpds+C∫t0|η|2H1ds+C≤14∫t0|ηxt(s)|2L2ds+C(1+∫t0Z4(t)ds). | (30) |
Differentiating
∫t0|ηxt(s)|2L2ds+12|ηt(t)|2L2=∬ΩT(η(u−Φx))tηxtdxds≤C+∬ΩT(|ηtuηxt|+|ηtΦxηxt|+|ηxutηt|+|ηuxtηt|)dxds≤C(1+∫t0(|ηt|2L2||ux|2Lp+|ηt|2L2+|ηx|2L2|ηt|2L2+|η|2H1|ηt|2L2)dx)+12∫t0|ηxt|2L2+12∫t0|uxt|2L2≤C(1+∫t0Z4(s)ds). | (31) |
Combining (29)-(31), we obtain the desired estimate of Lemma 2.3.
Lemma 2.4.
∫t0|√ρut(s)|2L2(s)ds+|ux(t)|pLp≤C(1+∫t0Z10+4γ(3p−4)(q−1)(s)ds), | (32) |
where
Proof. Using (10), we rewritten the (11) as
ρut+(ρu)ux+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx. | (33) |
Multiplying (33) by
∬ΩTρ|ut|2dxds+∬ΩT(εu2x+1u2x+ε)2−p2uxuxtdxds=−∬ΩT(ρuux+ρΨx+Px+ηx+ηΦx)utdxds. | (34) |
We deal with each term as follows:
∫Ω(εu2x+1u2x+ε)2−p2uxuxtdx=12∫Ω(εu2x+1u2x+ε)2−p2(u2x)tdx=12ddt∫Ω(∫u2x0(εs+1s+ε)2−p2ds)dx, |
∫u2x0(εs+1s+ε)2−p2ds≥∫u2x0(s+1)2−p2ds=2p[(u2x+1)p2−1], |
−∬ΩTPxutdxds=∬ΩTPuxtdxds=ddt∬ΩTPuxdxds−∬ΩTPtuxdxds. |
By virtue of
Pt=−γPux−Pxu,−∬ΩTηxutdxds=∬ΩTηuxtdxds=ddt∬ΩTηuxdxds−∬ΩTηtuxdxds.−∬ΩTηΦxutdxds=−ddt∬ΩTηΦxudxds+∬ΩTηtΦxudxds. | (35) |
Substituting the above into (34), using Sobolev inequality and Young's inequality, we have
∫t0|√ρut(s)|2L2ds+|ux(t)|pLp≤∬ΩT(|ρuuxut|+|ρΨxut|+|γPu2x|+|Pxuux|+|ηtux|+|ηtΦxu|)dxds+∫Ω(|Pux|+|ηux|+|ηΦxu|)dx+C≤C+∫t0(|ρ|12L∞|u|L∞|ux|p2Lp|ux|1−p2L∞|√ρut|L2+|ρ|12L∞|Ψx|L∞|√ρut|L2)ds+∫t0(γ|P|L2|ux|p2Lp|ux|1−p2L∞|uxx|L2+aγ|ρ|γ−1L∞|ρx|L2|u|L∞|ux|L∞+|ηt|L2|ux|p2Lp|ux|1−p2L∞+|ηt|L2|Φx|L2|u|L∞)ds+|P|Lpp−1|ux|Lp+|η|Lpp−1|ux|Lp+|η|Lpp−1|Φx|Lp|u|L∞≤C(1+∫t0(|ρ|L∞|ux|2+pLp|uxx|2−pL2+|ρ|H1|Ψxx|2L2+|P|L∞|ux|p2Lp|uxx|2−p2L2+|ρ|γ−1L∞|ρx|L2|ux|Lp|uxx|L2+|ηt|L2|ux|p2Lp|uxx|1−p2L2+|ηt|L2|ux|Lp)ds)+|P|pp−1Lpp−1+|η|pp−1Lpp−1+12∫t0|√ρut(s)|2L2ds+12|ux(t)|pLp. | (36) |
To estimate (36), combining (35) we have the following estimates
∫Ω|P(t)|pp−1dx=∫Ω|P(0)|pp−1dx+∫t0∂∂s(∫ΩP(s)pp−1dx)ds≤∫Ω|P(0)|pp−1dx+pp−1∫t0∫Ωaγργ−1P(s)1p−1(−ρxu−ρux)dxds≤C+C∫t0|ρ|γ−1L∞|P|1p−1L∞|ρ|H1|ux|Lpds≤C(1+∫t0Zγp−1+γ+1(s)ds), | (37) |
In exactly the same way, we also have
∫Ω|η(t)|pp−1dx≤C(1+∫t0Z1p−1+1(s)ds), | (38) |
which, together with (36) and (37), implies (32) holds.
Lemma 2.5.
|√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), | (39) |
where
Proof. Differentiating equation
12ddt∫Ωρ|ut|2dx+∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(ρu)x(u2t+uuxut+Ψxut)−ρuxu2t+(P+η)tuxt−ηtΦxut−ρΨxtut]dx. | (40) |
Note that
∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(εu2x+1u2x+ε)−p2ux](εu2x+1)(u2x+ε)−(2−p)(1−ε2)u2x(u2x+ε)2u2xtdx≥(p−1)∫Ω(u2x+1)p−22|uxt|2dx, | (41) |
Let
ω=(u2x+1)p−24, |
from (24), it follows that
|ω−1|L∞=|(u2x+1)2−p4|L∞≤C(|uxx|2−p2L2+1)≤CZ2γ(3p−4)(q−1)(t). |
Combining (35), (40) can be rewritten into
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
Using Sobolev inequality, Young's inequality,
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
In order to estimate
∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx=−4πg∫Ω(ρu)xΨtdx, | (43) |
and
∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx≥(q−1)∫Ω(Ψ2x+1)q−22|Ψxt|2dx. | (44) |
Let
βq=(Ψ2x+1)q−24 |
then
|(βq)−1|L∞=|(Ψ2x+1)2−q4|L∞≤C(|Ψxx|2−q2L2+1)≤CZ2−q2(q−1)(t). |
Then (43) can be rewritten into
∫Ω|βqΨxt|2dx≤C∫Ω(ρu)Ψxtdx≤C|ρ|L2|u|L∞|βqΨxt|L2|(βq)−1|L∞. |
Using Young's inequality, combining the above estimates we deduce that
I11≤|ρ|12L∞|√ρut|L2|βqΨxt|L2|(βq)−1|L∞≤CZ5q−32(q−1)(t). |
Substituting
|√ρut(t)|2L2+∫t0|ωuxt|2L2(s)ds≤|√ρut(τ)|2L2+∫t0Z26γ(3p−4)(q−1)(s)ds. | (45) |
To obtain the estimate of
∫Ωρ|ut|2dx≤2∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx. |
According to the smoothness of
limτ→0∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx=∫Ω(ρ0|u0|2|u0x|2+ρ0|Ψx|2+ρ−10|−[(εu20x+1u20x+ε)2−p2u0x]x+(P0+η0)x+η0Φx|2)dx≤|ρ0|L∞|u0|2L∞|u0x|2L2+|ρ0|L∞|Ψx|2+|g|2L2+|Φx|2L2≤C. |
Then, taking a limit on
|√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), | (46) |
This complete the proof of Lemma 2.5.
With the help of Lemma 2.2 to Lemma 2.5, and the definition of
Z(t)≤Cexp(˜C∫t0Z26γ(3p−4)(q−1)(s)ds), | (47) |
where
esssup0≤t≤T1(|ρ|H1+|u|W1,p0∩H2+|η|H2+|ηt|L2+|√ρut|L2+|ρt|L2)+∫T10(|√ρut|2L2+|uxt|2L2+|ηx|2L2+|ηt|2L2+|ηxt|2L2)ds≤C, | (48) |
where
In this section, the existence of strong solutions can be established by a standard argument. We construct the approximate solutions by using the iterative scheme, derive uniform bounds and thus obtain solutions of the original problem by passing to the limit. Our proof will be based on the usual iteration argument and some ideas developed in [10]. Precisely, we first define
ρkt+ρkxuk−1+ρkuk−1x=0, | (49) |
ρkukt+ρkuk−1ukx+ρkΨkx+Lpuk+Pkx+ηkx=−ηkΦx, | (50) |
LqΨk=4πg(ρk−m0), | (51) |
ηkt+(ηk(uk−1−Φx))x=ηkxx, | (52) |
with the initial and boundary conditions
(ρk,uk,ηk)|t=0=(ρ0,u0,η0), | (53) |
uk|∂Ω=(ηkx+ηkΦx)|∂Ω=0, | (54) |
where
Lpθk=−[(ε(θkx)2+1(θkx)2+ε)2−p2θkx]x. |
With the process, the nonlinear coupled system has been deduced into a sequence of decoupled problems and each problem admits a smooth solution. And the following estimates hold
esssup0≤t≤T1(|ρk|H1+|uk|W1,p0∩H2+|ηk|H2+|ηkt|L2+|√ρkukt|L2+|ρkt|L2)+∫T10(|√ρkukt|2L2+|ukxt|2L2+|ηkx|2L2+|ηkt|2L2+|ηkxt|2L2)ds≤C, | (55) |
where
In addition, we first find
ρkt+uk−1ρkx+uk−1xρk=0, |
ρk|t=0=ρ0, |
with smooth function
ρk(x,t)≥δexp[−∫T10|uk−1x(.,s)|L∞ds]>0,for all t∈(0,T1). |
Next, we will prove the approximate solution
ˉρk+1=ρk+1−ρk,ˉuk+1=uk+1−uk,ˉηk+1=ηk+1−ηk,ˉΨk+1=Ψk+1−Ψk. |
By a direct calculation, we can verify that the functions
ˉρk+1t+(ˉρk+1uk)x+(ρkˉuk)x=0, | (56) |
ρk+1ˉuk+1t+ρk+1ukˉuk+1x+(Lpuk+1−Lpuk)=−ˉρk+1(ukt+ukukx+Ψk+1x)−(Pk+1−Pk)x−ˉηk+1x+ρk(ˉukukx−ˉΨk+1x)−ˉηk+1Φx, | (57) |
LqΨk+1−LqΨk=4πgˉρk+1, | (58) |
ˉηk+1t+(ηkˉuk)x+(ˉηk+1(uk−Φx))x=ˉηk+1xx. | (59) |
Multiplying (56) by
ddt|ˉρk+1|2L2≤C|ˉρk+1|2L2|ukx|L∞+|ρk|H1|ˉukx|L2|ˉρk+1|L2≤C|ukxx|L2|ˉρk+1|2L2+Cξ|ρk|2H1|ˉρk+1|2L2+ξ|ˉukx|2L2≤Cξ|ˉρk+1|2L2+ξ|ˉukx|2L2, | (60) |
where
Multiplying (57) by
12ddt∫Ωρk+1|ˉuk+1|2dx+∫Ω(Lpuk+1−Lpuk)ˉuk+1dx≤C∫Ω[|ˉρk+1|(|ukt|+|ukukx|+|Ψk+1x|)+|Pk+1x−Pkx|+|ˉηk+1x|+|ρk|ˉuk||ukx|+|ρk||ˉΨk+1x|+|ˉηk+1Φx|]|ˉuk+1|dx≤C(|ˉρk+1|L2|ukxt|L2|ˉuk+1x|L2+|ˉρk+1|L2|ukx|Lp|ukxx|L2|ˉuk+1x|L2+|ˉρk+1|L2|Ψk+1x|L2|ˉuk+1x|L2+|Pk+1−Pk|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2+|ρk|12L2|√ρkˉuk|L2|ukxx|L2|ˉuk+1x|L2+|ρk|H1|ˉΨk+1x|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2). | (61) |
Let
σ(s)=(εs2+1s2+ε)2−p2s, |
then
σ′(s)=(εs2+1s2+ε)−p2(εs2+1)(s2+ε)−(2−p)(1−ε2)s2(s2+ε)2≥p−1(s2+ε)2−p2. |
To estimate the second term of (61), we have
∫Ω(Lpuk+1−Lpuk)ˉuk+1dx=∫Ω∫10σ′(θuk+1x+(1−θ)ukx)dθ|ˉuk+1x|2dx≥∫Ω[∫10dθ|θuk+1x+(1−θ)ukx|2−pL∞+1](ˉuk+1x)2≥C−1∫Ω|ˉuk+1x|2dx. | (62) |
On the other hand, multiplying (58) by
∫Ω(LqΨk+1−LqΨk)ˉΨk+1dx=4πg∫Ωˉρk+1ˉΨk+1dx. | (63) |
Since
∫Ω(LqΨk+1−LqΨk)ˉΨk+1xdx=(q−1)∫Ω(∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ)(ˉΨk+1x)2dx, |
and
∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ=∫101|θΨk+1x+(1−θ)Ψkx|2−qdθ≥∫101(|Ψk+1x|+|Ψkx|2−q)dθ=1(|Ψk+1x|+|Ψkx|)2−q, |
then
∫Ω[|Ψk+1x|q−2Ψk+1x−|Ψkx|q−2Ψkx]ˉΨk+1xdx≥1(|Ψk+1x(t)|L∞+|Ψkx(t)|L∞)2−q∫Ω(ˉΨk+1x)2dx, |
which implies
∫Ω(ˉΨk+1x)2dx≤C|ˉρk+1|2L2. | (64) |
From (55), (62) and (64), (61) can be re-written as
ddt∫Ωρk+1|ˉuk+1|2dx+C−1∫Ω|ˉuk+1x|2dx≤Bξ(t)|ˉρk+1|2L2+C(|√ρkˉuk|2L2+|ˉηk+1|2L2)+ξ|ˉuk+1x|2L2, | (65) |
where
\int_0^tB_\xi(s){\rm d} s\leq C+Ct. |
Multiplying (59) by
\begin{align} &\frac{1}{2}\frac{d}{dt}\int_\Omega|\bar\eta^{k+1}|^2{\rm d} x+\int_\Omega|\bar\eta_x^{k+1}|^2{\rm d} x\\ &\leq\int_\Omega|\bar\eta^{k+1}||u^k-\Phi_x||\bar\eta_x^{k+1}|{\rm d} x+\int_\Omega(|\eta^k||\bar u^k|)_x|\bar\eta^{k+1}|{\rm d} x\\ &\leq|\bar\eta^{k+1}|_{L^2}|u^k-\Phi_x|_{L^\infty}|\bar\eta_x^{k+1}|_{L^2}+|\eta_x^k|_{L^2}|\bar u^k|_{L^\infty}|\bar\eta^{k+1}|_{L^2}+|\eta^k|_{L^\infty}|\bar u_x^k|_{L^2}|\bar\eta^{k+1}|_{L^2}\\ &\leq C_\xi|\bar\eta^{k+1}|_{L^2}^2+\xi|\bar\eta_x^{k+1}|_{L^2}^2+\xi|\bar u_x^k|_{L^2}^2. \end{align} | (66) |
Combining (60), (65) and (66), we have
\begin{align} &\frac{d}{dt}\Big(|\bar\rho^{k+1}(t)|_{L^2}^2+|\sqrt{\rho^{k+1}}\bar u^{k+1}(t)|_{L^2}^2+|\bar\eta^{k+1}(t)|_{L^2}^2\Big)+|\bar u_x^{k+1}(t)|_{L^2}^2+|\bar\eta_x^{k+1}|_{L^2}^2\\ &\leq E_\xi(t)|\bar\rho^{k+1}(t)|_{L^2}^2+C|\sqrt{\rho^k} \bar u^k|_{L^2}^2+C_\xi|\bar\eta^{k+1}|_{L^2}^2+\xi|\bar u_x^k|_{L^2}^2, \end{align} | (67) |
where
\int_0^t E_\xi(s){\rm d} s\leq C+C_\xi t. |
Integrating (67) over
\begin{align} |\bar\rho^{k+1}(t)|_{L^2}^2&+|\sqrt{\rho^{k+1}}\bar u^{k+1}(t)|_{L^2}^2+|\bar\eta^{k+1}(t)|_{L^2}^2+\int_0^t|\bar u_x^{k+1}(t)|_{L^2}^2{\rm d} s+\int_0^t|\bar\eta_x^{k+1}|_{L^2}^2{\rm d} s\\ &\leq C\exp(C_\xi t)\int_0^t(|\sqrt{\rho^k} \bar u^k(s)|_{L^2}^2+|\bar u_x^k(s)|_{L^2}^2){\rm d} s. \end{align} | (68) |
From the above recursive relation, choose
\begin{align} \sum\limits_{k = 1}^K[\sup\limits_{0\leq t\leq T_*}(|\bar\rho^{k+1}(t)|_{L^2}^2&+|\sqrt{\rho^{k+1}}\bar u^{k+1}(t)|_{L^2}^2+|\bar\eta^{k+1}(t)|_{L^2}^2{\rm d} t\\ &+\int_0^{T_*}|\bar u_x^{k+1}(t)|_{L^2}^2+\int_0^{T_*}|\bar\eta_x^{k+1}(t)|_{L^2}^2{\rm d} t] < C, \end{align} | (69) |
where
Therefore, as
\begin{align} &\rho^k\rightarrow\rho^\varepsilon\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega)), \end{align} | (70) |
\begin{align} &u^k\rightarrow u^\varepsilon\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H_0^1(\Omega)), \end{align} | (71) |
\begin{align} &\eta^k\rightarrow \eta^\varepsilon\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H^1(\Omega)). \end{align} | (72) |
By virtue of the lower semi-continuity of various norms, we deduce from the uniform estimate (55) that
\begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho^\varepsilon|_{H^1}+|u^\varepsilon|_{W_0^{1,p} \cap H^2}+|\eta^\varepsilon|_{H^2}+|\eta_t^\varepsilon|_{L^2}+|\sqrt{\rho^\varepsilon}u_t^\varepsilon|_{L^2}+|\rho_t^\varepsilon|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho^\varepsilon u_t^\varepsilon|_{L^2}^2+|u_{xt}^\varepsilon|_{L^2}^2+|\eta_x^\varepsilon|_{L^2}^2+|\eta_t^\varepsilon|_{L^2}^2+|\eta_{xt}^\varepsilon|_{L^2}^2) {\rm d} s\leq C. \end{align} | (73) |
Since all of the constants are independent of
\begin{align} &\rho^\varepsilon\rightarrow\rho^\delta\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega)), \end{align} | (74) |
\begin{align} &u^\varepsilon\rightarrow u^\delta\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H_0^1(\Omega)), \end{align} | (75) |
\begin{align} &\eta^\varepsilon\rightarrow \eta^\delta\quad\mbox{in}\ \ L^\infty(0,T_*;L^2(\Omega))\cap L^2(0,T_*;H^1(\Omega)), \end{align} | (76) |
and there also holds
\begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho^\delta|_{H^1}+|u^\delta|_{W_0^{1,p} \cap H^2}+|\eta^\delta|_{H^2}+|\eta_t^\delta|_{L^2}+|\sqrt{\rho^\delta}u_t^\delta|_{L^2}+|\rho_t^\delta|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho^\delta u_t^\delta|_{L^2}^2+|u_{xt}^\delta|_{L^2}^2+|\eta_x^\delta|_{L^2}^2+|\eta_t^\delta|_{L^2}^2+|\eta_{xt}^\delta|_{L^2}^2) {\rm d} s\leq C. \end{align} | (77) |
For each small
\begin{align} \begin{cases} \begin{aligned} &L_p u_0^\delta+\big(P(\rho_0^\delta)+\eta_0^\delta\big)_x+\eta_0^\delta\Phi_x = (\rho_0^\delta)^{1\over2}(g^\delta+\Phi_x),&\\ &u_0^\delta|_{\partial\Omega} = 0,& \end{aligned} \end{cases} \end{align} | (78) |
where
We deduce that
\begin{align*} \begin{cases} \begin{aligned} &\rho_t+(\rho u)_x = 0,\\ &(\rho u )_t+(\rho u^2)_x+\rho\Psi_x-\lambda(|u_x|^{p-2}u_x)_x+(P+\eta)_x = -\eta\Phi_x,\\ &(|\Psi_x|^{q-2}\Psi_x)_x = 4\pi g(\rho-\frac{1}{|\Omega|} \int_\Omega \rho {\rm d} x),\\ &\eta_t+(\eta(u-\Phi_x))_x = \eta_{xx},\\ &(\rho,u,\eta)|_{t = 0} = (\rho_0^\delta,u_0^\delta,\eta_0^\delta),\\ &u|_{\partial\Omega} = (\eta_x+\eta\Phi_x)|_{\partial\Omega} = 0, \end{aligned} \end{cases} \end{align*} |
where
By the proof of Lemma 2.1, there exists a subsequence
\begin{align} \mbox{ess}\sup\limits_{0\leq t\leq T_1}(&|\rho|_{H^1}+|u|_{W_0^{1,p} \cap H^2}+|\eta|_{H^2}+|\eta_t|_{L^2}+|\sqrt{\rho}u_t|_{L^2}+|\rho_t|_{L^2})\\ &+\int_0^{T_*}(|\sqrt\rho u_t|_{L^2}^2+|u_{xt}|_{L^2}^2+|\eta_x|_{L^2}^2+|\eta_t|_{L^2}^2+|\eta_{xt}|_{L^2}^2) {\rm d} s\leq C, \end{align} | (79) |
where
The authors would like to thank the anonymous referees for their valuable suggestions.
[1] |
A. Akbary, D. Ghoica, Q. Wang, On constructing permutations of finite fields, Finite Fields Appl., 17 (2011), 51–67. https://doi.org/10.1016/j.ffa.2010.10.002 doi: 10.1016/j.ffa.2010.10.002
![]() |
[2] |
T. Bai, Y. Xia, A new class of permutation trinomials constructed from Niho exponents, Cryptography Commun., 10 (2018), 1023–1036. https://doi.org/10.1007/s12095-017-0263-4 doi: 10.1007/s12095-017-0263-4
![]() |
[3] |
D. Bartoli, L. Quoos, Permutation polynomials of the type x^{r}g(x^{s}) over F_{q^2n}, Design Codes Cryptography, 86 (2018), 1589–1599. https://doi.org/10.1007/s10623-017-0415-8 doi: 10.1007/s10623-017-0415-8
![]() |
[4] |
D. Bartoli, On a conjecture about a class of permutation trinomials, Finite Fields Appl., 52 (2018), 30–50. https://doi.org/10.1016/j.ffa.2018.03.003 doi: 10.1016/j.ffa.2018.03.003
![]() |
[5] |
D. Bartoli, M. Giulietti, Permutation polynomials, fractional polynomials, and algebraic curves, Finite Fields Appl., 51 (2018), 1–16. https://doi.org/10.1016/j.ffa.2018.01.001 doi: 10.1016/j.ffa.2018.01.001
![]() |
[6] |
D. Bartoli, Permutation trinomials over F_{q^{3}} , Finite Fields Appl., 61 (2020), 101597. https://doi.org/10.1016/j.ffa.2019.101597 doi: 10.1016/j.ffa.2019.101597
![]() |
[7] |
D. Bartoli, M. Timpanella, On trinomials of type x^{n+m}(1+AX^{m(q-1)}+BX^{n(q-1)}) , n, m odd, over F_{q^{2}} , q = 2^{2s+1} , Finite Fields Appl., 72 (2021), 101816. https://doi.org/10.1016/j.ffa.2021.101816 doi: 10.1016/j.ffa.2021.101816
![]() |
[8] |
D. Bartoli, M. Timpanella, A family of permutation trinomials over F_{q^2}, Finite Fields Appl., 70 (2021), 101781. https://doi.org/10.1016/j.ffa.2020.101781 doi: 10.1016/j.ffa.2020.101781
![]() |
[9] |
G. R. V. Bhatta, B. R. Shankar, A study of permutation polynomials as Latin squares, Nearrings Nearfields Related Topics, 2017 (2017), 270–281. https://doi.org/10.1142/9789813207363-0025 doi: 10.1142/9789813207363-0025
![]() |
[10] |
S. Bhattacharya, S. Sarkar, On some permutation binomials and trinomials over F_{2^n}, Designs Codes Cryptography, 82 (2017), 149–160. https://doi.org/10.1007/s10623-016-0229-0 doi: 10.1007/s10623-016-0229-0
![]() |
[11] |
X. Cao, X. Hou, J. Mi, S. Xu, More permutation polynomials with Niho exponents which permute F_{q^{2}} , Finite Fields Appl., 62 (2020), 101626. https://doi.org/10.1016/j.ffa.2019.101626 doi: 10.1016/j.ffa.2019.101626
![]() |
[12] |
L. Carlitz, Permutations in a finite field, Proc. Amer. Math. Soc., 4 (1953), 538. https://doi.org/10.1090/S0002-9939-1953-0055965-8 doi: 10.1090/S0002-9939-1953-0055965-8
![]() |
[13] |
W. Cherowitzo, \alpha-flocks and hyperovals, Geometriae Dedicata, 72 (1998), 221–245. https://doi.org/10.1023/A:1005022808718 doi: 10.1023/A:1005022808718
![]() |
[14] |
H. Deng, D. Zheng, More classes of permutation trinomials with Niho exponents, Cryptography Commun., 11 (2019), 227–236. https://doi.org/10.1007/s12095-018-0284-7 doi: 10.1007/s12095-018-0284-7
![]() |
[15] |
L. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896), 65–120. https://doi.org/10.2307/1967217 doi: 10.2307/1967217
![]() |
[16] |
C. Ding, J. Yuan, A family of skew Hadamard difference sets, J. Comb. Theory, 113 (2006), 1526–1535. https://doi.org/10.1016/j.jcta.2005.10.006 doi: 10.1016/j.jcta.2005.10.006
![]() |
[17] |
C. Ding, Cyclic codes from some monomials and trinomials, SIAM J. Discrete Math., 27 (2013), 1977–1994. https://doi.org/10.1137/120882275 doi: 10.1137/120882275
![]() |
[18] |
C. Ding, Z. Zhou, Binary cyclic codes from explicit polynomials over GF (2m), Discrete Math., 321 (2014), 76–89. https://doi.org/10.1016/j.disc.2013.12.020 doi: 10.1016/j.disc.2013.12.020
![]() |
[19] |
C. Ding, L. Qu, Q. Wang, J. Yuan, P. Yuan, Permutation trinomials over finite fields with even characteristic, SIAM J. Discrete Math., 29 (2015), 79–92. https://doi.org/10.1137/140960153 doi: 10.1137/140960153
![]() |
[20] |
Z. Ding, M. Zieve, Determination of a class of permutation quadrinomials, Proc. London Math. Soc., 127 (2023), 221–260. https://doi.org/10.1112/plms.12540 doi: 10.1112/plms.12540
![]() |
[21] | H. Dobbertin, Uniformly representable permutation polynomials, Springer, 2022. |
[22] |
N. Fernando, X. Hou, S. Lappano, A new approach to permutation polynomials over finite fields, Ⅱ, Finite Fields Appl., 22 (2013), 122–158. https://doi.org/10.1016/j.ffa.2013.01.001 doi: 10.1016/j.ffa.2013.01.001
![]() |
[23] | N. Fernando, A note on permutation binomials and trinomials over finite fields, arXiv, 2016. https://doi.org/10.48550/arXiv.1609.07162 |
[24] | W. Fulton, Algebraic curves, University of Michigan, 1989. |
[25] | H. Guo, S. Wang, H. Song, X. Zhang, J. Liu, A new method of construction of permutation trinomials with coefficients 1, arXiv, 2021. https://doi.org/10.48550/arXiv.2112.14547 |
[26] |
R. Gupta, R. Sharma, Some new classes of permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 41 (2016), 89–96. https://doi.org/10.1016/j.ffa.2016.05.004 doi: 10.1016/j.ffa.2016.05.004
![]() |
[27] | C. Hermite, Sur les fonctions de sept lettres, Académie Sciences, 1863. |
[28] |
X. Hou, A class of permutation binomials over finite fields, J. Number Theory, 133 (2013), 3549–3558. https://doi.org/10.1016/j.jnt.2013.04.011 doi: 10.1016/j.jnt.2013.04.011
![]() |
[29] | X. Hou, A class of permutation trinomials over finite fields, arXiv, 2013. https://doi.org/10.48550/arXiv.1303.0568 |
[30] |
X. Hou, Determination of a type of permutation trinomials over finite fields, Acta Arith., 3 (2014), 253–278. https://doi.org/10.4064/aa166-3-3 doi: 10.4064/aa166-3-3
![]() |
[31] |
X. Hou, Determination of a type of permutation trinomials over finite fields, II , Finite Fields Appl., 35 (2015), 16–35. https://doi.org/10.1016/j.ffa.2015.03.002 doi: 10.1016/j.ffa.2015.03.002
![]() |
[32] |
X. Hou, A survey of permutation binomials and trinomials over finite fields, Contemp. Math., 632 (2015), 177–191. https://doi.org/10.1090/conm/632/12628 doi: 10.1090/conm/632/12628
![]() |
[33] |
X. Hou, Z. Tu, X. Zeng, Determination of a class of permutation trinomials in characteristic three, Finite Fields Appl., 61 (2020), 101596. https://doi.org/10.1016/j.ffa.2019.101596 doi: 10.1016/j.ffa.2019.101596
![]() |
[34] |
X. Hou, On the Tu-Zeng permutation trinomial of type (1/ 4, 3/ 4) , Discrete Math., 344 (2021), 112241. https://doi.org/10.1016/j.disc.2020.112241 doi: 10.1016/j.disc.2020.112241
![]() |
[35] |
V. Jarali, P. Poojary, G. R. V. Bhatta, Construction of permutation polynomials using additive and multiplicative characters, Symmetry, 14 (2022), 1539. https://doi.org/10.3390/sym14081539 doi: 10.3390/sym14081539
![]() |
[36] |
G. Khachatrian, M. Kyureghyan, Permutation polynomials and a new public-key encryption, Discrete Appl. Math., 216 (2017), 622–626. https://doi.org/10.1016/j.dam.2015.09.001 doi: 10.1016/j.dam.2015.09.001
![]() |
[37] | G. Kyureghyan, M. Zieve, Permutation polynomials of the form x+ \gamma Tr (x^{k}), arXiv, 2016. https://doi.org/10.48550/arXiv.1603.01175 |
[38] |
J. Lee, Y. Park, Some permuting trinomials over finite fields, Acta Math. Sci., 17 (1997), 250–254. https://doi.org/10.1016/S0252-9602(17)30842-1 doi: 10.1016/S0252-9602(17)30842-1
![]() |
[39] |
K. Li, L. Qu, C. Li, S. Fu, New permutation trinomials constructed from fractional polynomials, Acta Arith., 183 (2018), 101–116. https://doi.org/10.4064/aa8461-11-2017 doi: 10.4064/aa8461-11-2017
![]() |
[40] |
K. Li, L. Qu, X. Chen, New classes of permutation binomials and permutation trinomials over finite fields, Finite Fields Appl., 43 (2017), 69–85. https://doi.org/10.1016/j.ffa.2016.09.002 doi: 10.1016/j.ffa.2016.09.002
![]() |
[41] |
N. Li, On two conjectures about permutation trinomials over F_{3^2k} , Finite Fields Appl., 47 (2017), 1–10. https://doi.org/10.1016/j.ffa.2017.05.003 doi: 10.1016/j.ffa.2017.05.003
![]() |
[42] |
N. Li, T. Helleseth, Several classes of permutation trinomials from Niho exponents, Cryptography Commun., 9 (2017), 693–705. https://doi.org/10.1007/s12095-016-0210-9 doi: 10.1007/s12095-016-0210-9
![]() |
[43] |
K. Li, L. Qu, X. Chen, C. Li, Permutation polynomials of the form cx+ Tr_{q^{l}/q}(x^{a}) and permutation trinomials over finite fields with even characteristic, Cryptography Commun., 10 (2018), 531–554. https://doi.org/10.1007/s12095-017-0236-7 doi: 10.1007/s12095-017-0236-7
![]() |
[44] |
L. Li, C. Li, C. Li, X. Zeng, New classes of complete permutation polynomials, Finite Fields Appl., 55 (2019), 177–201. https://doi.org/10.1016/j.ffa.2018.10.001 doi: 10.1016/j.ffa.2018.10.001
![]() |
[45] |
N. Li, T. Helleseth, New permutation trinomials from Niho exponents over finite fields with even characteristic, Cryptography Commun., 11 (2019), 129–136. https://doi.org/10.1007/s12095-018-0321-6 doi: 10.1007/s12095-018-0321-6
![]() |
[46] |
N. Li, X. Zeng, A survey on the applications of Niho exponents, Cryptography Commun., 11 (2019), 509–548. https://doi.org/10.1007/s12095-018-0305-6 doi: 10.1007/s12095-018-0305-6
![]() |
[47] | R. Lidl, H. Niederreiter, Finite fields, Cambridge University Press, 1997. https://doi.org/10.1017/CBO9781139172769 |
[48] | X. Liu, Further results on some classes of permutation polynomials over finite fields, arXiv, 2019. https://doi.org/10.48550/arXiv.1907.03386 |
[49] |
Q. Liu, Y. Sun, Several classes of permutation trinomials from Niho exponents over finite fields of characteristic 3, J. Algebra Appl., 18 (2019), 1950069. https://doi.org/10.1142/S0219498819500695 doi: 10.1142/S0219498819500695
![]() |
[50] |
Q. Liu, X. Liu, J. Zou, A class of new permutation polynomials over F_{2^{n}} , J. Math., 2021 (2021), 5872429. https://doi.org/10.1155/2021/5872429 doi: 10.1155/2021/5872429
![]() |
[51] |
Q. Liu, Two classes of permutation polynomials with niho exponents over finite fields with even characteristic, Turk. J. Math., 46 (2022), 919–928. https://doi.org/10.55730/1300-0098.3132 doi: 10.55730/1300-0098.3132
![]() |
[52] |
J. Ma, T. Zhang, T. Feng, G. Ge, Some new results on permutation polynomials over finite fields, Designs Codes Cryptography, 83 (2017), 425–443. https://doi.org/10.1007/s10623-016-0236-1 doi: 10.1007/s10623-016-0236-1
![]() |
[53] |
J. Ma, G. Ge, A note on permutation polynomials over finite fields, Finite Fields Appl., 48 (2017), 261–270. https://doi.org/10.1016/j.ffa.2017.08.003 doi: 10.1016/j.ffa.2017.08.003
![]() |
[54] | Y. Niho, Multi-valued cross-correlation functions between two maximal linear recursive sequences, University of Southern California, 1972. |
[55] |
T. Niu, K. Li, L. Qu, Q. Wang, Finding compositional inverses of permutations from the AGW criterion, IEEE Trans. Inf. Theory, 67 (2021), 4975–4985. https://doi.org/10.1109/TIT.2021.3089145 doi: 10.1109/TIT.2021.3089145
![]() |
[56] |
J. Peng, L. Zheng, C. Wu, H. Kan, Permutation polynomials x^{2^{k+1}+3}+ax^{2^{k}+2}+bx over F_{2^2k} and their differential uniformity, Sci. China Inf. Sci., 63 (2020), 209101. https://doi.org/10.1007/s11432-018-9741-6 doi: 10.1007/s11432-018-9741-6
![]() |
[57] | H. Peter, G. Korchmáros, F. Torres, F. Orihuela, Algebraic curves over a finite field, Princeton University Press, 2008. |
[58] |
X. Qin, L. Yan, Constructing permutation trinomials via monomials on the subsets of \mu_{q+1}, Appl. Algebra Eng. Commun. Comput., 34 (2023), 321–334. https://doi.org/10.1007/s00200-021-00505-8 doi: 10.1007/s00200-021-00505-8
![]() |
[59] |
R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120–126. https://doi.org/10.1145/359340.359342 doi: 10.1145/359340.359342
![]() |
[60] |
R. K. Sharma, R. Gupta, Determination of a type of permutation binomials and trinomials, Appl. Algebra Eng. Commun. Comput., 31 (2020), 65–86. https://doi.org/10.1007/s00200-019-00394-y doi: 10.1007/s00200-019-00394-y
![]() |
[61] |
R. Singh, K. Sarma, A. Saikia, Poly-dragon: an efficient multivariate public key cryptosystem, J. Math. Cryptology, 4 (2011), 349–364. https://doi.org/10.1515/jmc.2011.002 doi: 10.1515/jmc.2011.002
![]() |
[62] |
R. Singh, K. Sarma, A. Saikia, A public key cryptosystem using a group of permutation polynomials, Tatra Mt. Math. Publ., 77 (2020), 139–162. http://doi.org/10.2478/tmmp-2020-0013 doi: 10.2478/tmmp-2020-0013
![]() |
[63] | H. Stichtenoth, Algebraic function fields and codes, Springer Science & Business Media, 2009. http://doi.org/10.1007/978-3-540-76878-4 |
[64] | Z. Tu, X. Zeng, L. Hu, C. Li, A class of binomial permutation polynomials, arXiv, 2013. https://doi.org/10.48550/arXiv.1310.0337 |
[65] |
Z. Tu, X. Zeng, L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl., 25 (2014), 182–193. https://doi.org/10.1016/j.ffa.2013.09.007 doi: 10.1016/j.ffa.2013.09.007
![]() |
[66] |
Z. Tu, X. Zeng, C. Li, T. Helleseth, A class of new permutation trinomials, Finite Fields Appl., 50 (2018), 178–195. https://doi.org/10.1016/j.ffa.2017.11.009 doi: 10.1016/j.ffa.2017.11.009
![]() |
[67] |
Z. Tu, X. Zeng, Two classes of permutation trinomials with Niho exponents, Finite Fields Appl., 53 (2018), 99–112. https://doi.org/10.1016/j.ffa.2018.05.007 doi: 10.1016/j.ffa.2018.05.007
![]() |
[68] |
Z. Tu, X. Zeng, A class of permutation trinomials over finite fields of odd characteristic, Cryptography Commun., 11 (2019), 563–583. https://doi.org/10.1007/s12095-018-0307-4 doi: 10.1007/s12095-018-0307-4
![]() |
[69] |
D. Wan, R. Lidl, Permutation polynomials of the form x^rf(x^{\frac{(q-1)}{d}}) and their group structure, Monatsh. Math., 112 (1991), 149–163. https://doi.org/10.1007/BF01525801 doi: 10.1007/BF01525801
![]() |
[70] | Q. Wang, Cyclotomic mapping permutation polynomials over finite fields, Springer, 2007. |
[71] |
Y. Wang, Z. Zha, W. Zhang, Six new classes of permutation trinomials over F_{3^3k}, Appl. Algebra Eng. Commun. Comput., 29 (2018), 479–499. https://doi.org/10.1007/s00200-018-0353-3 doi: 10.1007/s00200-018-0353-3
![]() |
[72] |
Y. Wang, W. Zhang, Z. Zha, Six new classes of permutation trinomials over F_{2^{n}}^{*} , SIAM J. Discrete Math., 32 (2018), 1946–1961. https://doi.org/10.1137/17M1156666 doi: 10.1137/17M1156666
![]() |
[73] |
B. Wu, D. Lin, On constructing complete permutation polynomials over finite fields of even characteristic, Discrete Appl. Math., 184 (2015), 213–222. https://doi.org/10.1016/j.dam.2014.11.008 doi: 10.1016/j.dam.2014.11.008
![]() |
[74] |
D. Wu, P. Yuan, C. Ding, Y. Ma, Permutation trinomials over F_{2^{m}} , Finite Fields Appl., 46 (2017), 38–56. https://doi.org/10.1016/j.ffa.2017.03.002 doi: 10.1016/j.ffa.2017.03.002
![]() |
[75] |
G. Wu, N. Li, Several classes of permutation trinomials over F_{5^{n}} from Niho exponents, Cryptography Commun., 11 (2019), 313–324. https://doi.org/10.1007/s12095-018-0291-8 doi: 10.1007/s12095-018-0291-8
![]() |
[76] |
X. Xie, N. Li, L. Xu, X. Zeng, X. Tang, Two new classes of permutation trinomials over F_{q^{3}} with odd characteristic, Discrete Math., 346 (2023), 113607. https://doi.org/10.1016/j.disc.2023.113607 doi: 10.1016/j.disc.2023.113607
![]() |
[77] |
P. Yaun, Compositional inverses of AGW-PPs-dedicated to professor cunsheng ding for his 60th birthday, Adv. Math. Commun., 16 (2022), 1185–1195. https://doi.org/10.3934/amc.2022045 doi: 10.3934/amc.2022045
![]() |
[78] | P. Yaun, Permutation polynomials and their compositional inverses, arXiv, 2022, https://doi.org/10.48550/arXiv.2206.04252 |
[79] | P. Yuan, Local method for compositional inverses of permutational polynomials, arXiv, 2022. https://doi.org/10.48550/arXiv.2211.10083 |
[80] |
Z. Zha, L. Hu, S. Fan, Further results on permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 45 (2017), 43–52. https://doi.org/10.1016/j.ffa.2016.11.011 doi: 10.1016/j.ffa.2016.11.011
![]() |
[81] |
D. Zheng, M. Yuan, L. Yu, Two types of permutation polynomials with special forms, Finite Fields Appl., 56 (2019), 1–16. https://doi.org/10.1016/j.ffa.2018.10.008 doi: 10.1016/j.ffa.2018.10.008
![]() |
[82] |
L. Zheng, H. Kan, J. Peng, Two classes of permutation trinomials with Niho exponents over finite fields with even characteristic, Finite Fields Appl., 68 (2020), 101754. https://doi.org/10.1016/j.ffa.2020.101754 doi: 10.1016/j.ffa.2020.101754
![]() |
[83] |
L. Zheng, H. Kan, J. Peng, D. Tang, Two classes of permutation trinomials with Niho exponents, Finite Fields Appl., 70 (2021), 101790. https://doi.org/10.1016/j.ffa.2020.101790 doi: 10.1016/j.ffa.2020.101790
![]() |
[84] |
L. Zheng, B. Liu, H. Kan, J. Peng, D. Tang, More classes of permutation quadrinomials from niho exponents in characteristic two, Finite Fields Appl., 78 (2022), 101962. https://doi.org/10.1016/j.ffa.2021.101962 doi: 10.1016/j.ffa.2021.101962
![]() |
[85] | M. Zieve, On some permutation polynomials over of the form x^{r}h(x^{\frac{q-1}{d}}), Proc. Amer. Math. Soc., 137 (2009), 2209–2216. |
[86] | M. Zieve, Permutation polynomials on F_q induced form R´edei function bijections on subgroups of F_q^*, arXiv, 2013. https://doi.org/10.48550/arXiv.1310.0776 |
[87] | M. Zieve, A note on the paper arXiv: 2112.14547, arXiv, 2022. https://doi.org/10.48550/arXiv.2201.01106 |