We aim to implement the pseudospectral method on fractional Telegraph equation. To implement this method, Chebyshev cardinal functions (CCFs) are considered bases. Introducing a matrix representation of the Caputo fractional derivative (CFD) via an indirect method and applying it via the pseudospectral method helps to reduce the desired problem to a system of algebraic equations. The proposed method is an effective and accurate numerical method such that its implementation is easy. Some examples are provided to confirm convergence analysis, effectiveness and accuracy.
Citation: Haifa Bin Jebreen, Beatriz Hernández-Jiménez. An approach based on the pseudospectral method for fractional telegraph equations[J]. AIMS Mathematics, 2023, 8(12): 29221-29238. doi: 10.3934/math.20231496
[1] | Batirkhan Turmetov, Valery Karachik . On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Mathematics, 2024, 9(3): 6832-6849. doi: 10.3934/math.2024333 |
[2] | M. J. Huntul, Kh. Khompysh, M. K. Shazyndayeva, M. K. Iqbal . An inverse source problem for a pseudoparabolic equation with memory. AIMS Mathematics, 2024, 9(6): 14186-14212. doi: 10.3934/math.2024689 |
[3] | Bauyrzhan Derbissaly, Makhmud Sadybekov . Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(4): 9969-9988. doi: 10.3934/math.2024488 |
[4] | Arivazhagan Anbu, Sakthivel Kumarasamy, Barani Balan Natesan . Lipschitz stability of an inverse problem for the Kawahara equation with damping. AIMS Mathematics, 2020, 5(5): 4529-4545. doi: 10.3934/math.2020291 |
[5] | Yilihamujiang Yimamu, Zui-Cha Deng, Liu Yang . An inverse volatility problem in a degenerate parabolic equation in a bounded domain. AIMS Mathematics, 2022, 7(10): 19237-19266. doi: 10.3934/math.20221056 |
[6] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[7] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[8] | Abdelkader Laiadi, Abdelkrim Merzougui . Free surface flows over a successive obstacles with surface tension and gravity effects. AIMS Mathematics, 2019, 4(2): 316-326. doi: 10.3934/math.2019.2.316 |
[9] | A. M. A. El-Sayed, W. G. El-Sayed, Somyya S. Amrajaa . On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions. AIMS Mathematics, 2022, 7(3): 3896-3911. doi: 10.3934/math.2022215 |
[10] | Lin Fan, Shunchu Li, Dongfeng Shao, Xueqian Fu, Pan Liu, Qinmin Gui . Elastic transformation method for solving the initial value problem of variable coefficient nonlinear ordinary differential equations. AIMS Mathematics, 2022, 7(7): 11972-11991. doi: 10.3934/math.2022667 |
We aim to implement the pseudospectral method on fractional Telegraph equation. To implement this method, Chebyshev cardinal functions (CCFs) are considered bases. Introducing a matrix representation of the Caputo fractional derivative (CFD) via an indirect method and applying it via the pseudospectral method helps to reduce the desired problem to a system of algebraic equations. The proposed method is an effective and accurate numerical method such that its implementation is easy. Some examples are provided to confirm convergence analysis, effectiveness and accuracy.
Modern problems of natural science lead to the need to generalize the classical problems of mathematical physics, as well as to the formulation of qualitatively new problems, which include non-local problems for differential equations. Among nonlocal problems, problems with integral conditions are of great interest. Integral conditions are encountered in the study of physical phenomena in the case when the boundary of the process flow region is inaccessible for direct measurements. Inverse problems arise in various fields of human activity, such as seismology, mineral exploration, biology, medical visualization, computed tomography, earth remote sensing, spectral analysis, nondestructive control, etc. Various inverse problems for certain types of partial differential equations have been studied in many works. A more detailed bibliography and a classification of problems are found in [1,2,3,4,5]. Inverse problems for one-dimensional pseudo-parabolic equations of third-order were studied in [6]. The existence and uniqueness of the solution of the inverse problem for the third order pseudoparabolic equation with integral over-determination condition is studied in [7]. Khompysh [8] investigated the reconstruction of unknown coefficient in pseudo-parabolic inverse problem with the integral over determination condition and studied the uniqueness and existence of solution by means of method of successive approximations. Studies of wave propagation in cold plasma and magnetohydrodynamics also reduce to the partial differential equations of fourth-order. To the study of nonlocal boundary value problems (including integral conditions) for partial differential equations of the fourth-order are devoted large number of works, see, for example, [9,10]. It should be noted that boundary value problems with integral conditions are of particular interest. From physical considerations, the integral conditions are completely natural, and they arise in mathematical modelling in cases where it is impossible to obtain information about the process occurring at the boundary of the region of its flow using direct measurements or when it is possible to measure only some averaged (integral) characteristics of the desired quantity.
In this article, we study the an inverse boundary value problem for a fourth order pseudo parabolic equation with periodic and integral condition to identify the time-dependent coefficients along with the solution function theoretically, i.e. existence and uniqueness.
Statement of the problem and its reduction to an equivalent problem. In the domain DT={(x,t):0≤x≤1,0≤t≤T}, we consider an inverse boundary value problem of recovering the timewise dependent coefficients p(t) in the pseudo-parabolic equation of the fourth-order
ut(x,t)−butxx(x,t)+a(t)uxxxx(x,t)=p(t)u(x,t)+f(x,t) | (1.1) |
with the initial condition
u(x,0)+δu(x,T)=φ(x)(0≤x≤1), | (1.2) |
boundary conditions
u(0,t)=u(1,t),ux(0,t)=ux(1,t),uxx(0,t)=uxx(1,t)(0≤t≤T), | (1.3) |
nonlocal integral condition
∫10u(x,t)dx=0(0≤t≤T) | (1.4) |
and with an additional condition
u(0,t)=∫t0γ(τ)u(1,τ)dτ+h(t)(0≤t≤T), | (1.5) |
where b>0, δ≥0-given numbers, a(t)>0,f(x,t),φ(x),γ(τ),h(t) -given functions, u(x,t) and p(t) - required functions.
Denote
ˉC4,1(DT)={u(x,t):u(x,t)∈C2,1(DT),utxx,uxxxx∈C(DT)}. |
Definition.By the classical solution of the inverse boundary value problem (1.1)-(1.5)we mean the pair {u(x,t),p(t)} functions u(x,t)∈ˉC4,1(DT), p(t)∈C[0,T] satisfying equation (1.1) in DT, condition (1.2) in [0, 1] and conditions (1.3)-(1.5) in [0, T].
Theorem 1. Let be b>0,δ≥0,φ(x)∈C[0,1],f(x,t)∈C(DT), ∫10f(x,t)dx=0, 0<a(t)∈C[0,T], h(t)∈C1[0,T], h(t)≠0(0≤t≤T), γ(t)∈C[0,T],δγ(t)=0 (0≤t≤T) and
∫10φ(x)dx=0,φ(0)=h(0)+δh(T). |
Then the problem of finding a solution to problem (1.1)-(1.5) is equivalent to the problem of determining the functions u(x,t)∈ˉC4,1(DT) and p(t)∈C[0,T], from (1.1)-(1.3) and
uxxx(0,t)=uxxx(1,t)(0≤t≤T), | (1.6) |
γ(t)u(1,t)+h′(t)−butxx(0,t)+a(t)uxxxx(0,t)= |
=p(t)(∫t0γ(τ)u(1,τ)dτ+h(t))+f(0,t)(0≤t≤T). | (1.7) |
Proof. Let be {u(x,t),p(t)} is a classical solution to problem (1.1)-(1.5). Integrating equation (1.1) with respect to x from 0 to 1, we get:
ddt∫10u(x,t)dx−b(utx(1,t)−utx(0,t))+a(t)(uxxx(1,t)−uxxx(0,t))= |
=p(t)∫10u(x,t)dx+∫10f(x,t)dx(0≤t≤T). | (1.8) |
Assuming that ∫10f(x,t)dx=0, taking into account (1.3) and (1.4), we arrive at the fulfillment of (1.6).
Further, considering h(t)∈C1[0,T] and differentiating with respect to t (1.5), we get:
ut(0,t)=γ(t)u(1,t)+h′(t)(0≤t≤T) | (1.9) |
Substituting x=0 into equation (1.1), we have:
ut(0,t)−butxx(0,t)+a(t)uxxxx(0,t)=p(t)u(0,t)+f(0,t)(0≤t≤T). | (1.10) |
Now, suppose that {u(x,t),p(t)} is a solution to problem (1.1)-(1.3), (1.6), (1.7). Then from (1.8), taking into account (1.3) and (1.6), we find:
ddt∫10u(x,t)dx−p(t)∫10u(x,t)dx=0(0≤t≤T). | (1.11) |
Due to (1.2) and ∫10φ(x)dx=0, it's obvious that
∫10u(x,0)dx+δ∫10u(x,T)dx=∫10φ(x)dx=0. | (1.12) |
Obviously, the general solution(1.11) has the form:
∫10u(x,t)dx=ce−∫t0p(τ)dτ(0≤t≤T). | (1.13) |
From here, taking into account (1.12), we obtain:
∫10u(x,0)dx+δ∫10u(x,T)dx=c(1+δe−∫T0p(τ)dτ)=0. | (1.14) |
By virtue of δ≥0, from (1.14) we get that c=0, and substituting into (1.13) we conclude, that ∫10u(x,t)dx=0(0≤t≤T). Therefore, condition (1.4) is also satisfied.
Further, from (1.7) and (1.10), we obtain:
ddt[u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))]= |
=p(t)[u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))](0≤t≤T). | (1.15) |
Let introduce the notation:
y(t)≡u(0,t)−(∫t0γ(τ)u(1,τ)dτ+h(t))(0≤t≤T) | (1.16) |
and rewrite the last relation in the form:
y′(t)+p(t)y(t)=0(0≤t≤T). | (1.17) |
From (1.16), taking into account (1.2), δγ(t)=0 (0≤t≤T) and φ(0)=h(0)+δh(T), it is easy to see that
y(0)+δy(T)=u(0,0)−h(0)+δ[u(0,T)−(∫T0γ(τ)u(1,τ)dτ+h(T))]=u(0,0)+ |
+δu(0,T)−(h(0)+δh(T))−δ∫T0γ(τ)u(1,τ)dτ=φ(0)−(h(0)+δh(T))=0. | (1.18) |
Obviously, the general solution (1.17) has the form:
y(t)=ce−∫t0p(τ)dτ(0≤t≤T). | (1.19) |
From here, taking into account (1.18), we obtain:
y(0)+δy(T)=c(1+δe−∫T0a0(τ)a1(τ)dτ)=0. | (1.20) |
By virtue of δ≥0, from (1.20) we get that c=0, and substituting into (1.19) we conclude that y(t)=0(0≤t≤T). Therefore, from (1.16) it is clear that the condition (1.5). The theorem has been proven.
It is known [5] that the system
1,cosλ1x,sinλ1x,...,cosλkx,sinλkx,... | (2.1) |
forms the basis of L2(0,1), where λk=2kπ(k=0,1,...).
Since system (2.1) forms a basis in L2(0,1), it is obvious that for each solution {u(x,t),a(t)} problem (1.1)–(1.3), (1.6), (1.7):
u(x,t)=∞∑k=0u1k(t)cosλkx+∞∑k=1u2k(t)sinλkx(λk=2πk), | (2.2) |
where
u10(t)=∫10u(x,t)dx,u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), |
u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...). |
Applying the formal scheme of the Fourier method, to determine the desired coefficients u1k(t)(k=0,1,...) and u2k(t)(k=1,2,...) functions u(x,t) from (1.1) and (1.2) we get:
u″10(t)=F10(t;u,p)(0≤t≤T), | (2.3) |
(1+bλ2k)u′ik(t)+a(t)λ4kuik(t)=Fik(t;u,p)(i=1,2;0≤t≤T;k=1,2,...), | (2.4) |
u10(0)+δu10(T)=φ10, | (2.5) |
uik(0)+δuik(T)=φik(i=1,2;k=1,2,...), | (2.6) |
where
F1k(t;u,a,b)=p(t)u1k(t)+f1k(t)(k=0,1,...), |
f10(t)=∫10f(x,t)dx,f1k(t)=2∫10f(x,t)cosλkxdx(k=1,2,...), |
φ10=∫10φ(x)dx,φ1k=2∫10φ(x)cosλkxdx(k=1,2,...), |
F2k(t;u,a,b)=p(t)u2k(t)+f2k(t), |
f2k(t)=2∫10f(x,t)sinλkxdx(k=1,2,...),φ2k=2∫10φ(x)sinλkxdx(k=1,2,...). |
Solving problem (2.3)-(2.6), we find:
u10(t)=(1+δ)−1(φ10−δ∫T0F0(τ;u,p)dτ)+∫t0F10(τ;u,p)dτ(0≤t≤T), | (2.7) |
uik(t)=e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφik+11+bλ2k∫t0Fik(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0Fik(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ(i=1,2;0≤t≤T;k=1,2,...). | (2.8) |
After substituting the expression u1k(t)(k=0,1,...), u2k(t)(k=1,2,...) in (2.2), to define a component u(x,t) solution of problem (1.1)-(1.3), (1.6), (1.7), we obtain:
u(x,t)=(1+δ)−1(φ0−δ∫T0F0(τ;u,p)dτ)+∫t0F0(τ;u,p)dτ+ |
+∞∑k=1{e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1kk+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ}cosλkx+ |
+∞∑k=1{e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ2kk+11+bλ2k∫t0F2k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F2k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ}sinλkx. | (2.9) |
Now from (1.7), taking into account (2.2), we have:
p(t)=[h(t)]−1{h′(t)−f(0,t)+γ(t)u10(t)−p(t)∫t0γ(τ)u10(τ)dτ+ |
+∞∑k=1(bλ2ku′1k(t)+a(t)λ4ku1k(t)+γ(t)u1k(t)−p(t)∫t0γ(τ)u1k(τ)dτ). | (2.10) |
Further, from (2.4), taking into account (2.8), we obtain:
bλ2ku′1k(t)+a(t)λ4ku1k(t)+γ(t)u1k(t)=F1k(t;u,p)−u′1k(t)+γ(t)u1k(t)= |
=bλ2k1+bλ2kF1k(t;u,p)+(a(t)λ4k1+bλ2k+γ(t))u1k(t)= |
=bλ2k1+bλ2kFk(t;u,p)+(a(t)λ4k1+bλ2k+γ(t))[e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1k+ |
+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ](0≤t≤T;k=1,2,...). | (2.11) |
p(t)=[h(t)]−1{h′(t)−f(0,t)+ |
+γ(t))[(1+δ)−1(φ10−δ∫T0F0(τ;u,p)dτ)+∫t0F10(τ;u,p)dτ]− |
−p(t)∫t0γ(τ)u10(τ)dτ+∞∑k=1[bλ2k1+bλ2kF1k(t;u,p)+ |
+(a(t)λ4k1+bλ2k+γ(t))[e−∫t0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kdssφ1k+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
+11+bλ2k∫t0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ− |
−δe−∫T0a(s)λ4k1+bλ2kds1+δe−∫T0a(s)λ4k1+bλ2kds11+bλ2k∫T0F1k(τ;u,p)e−∫tτa(s)λ4k1+bλ2kdsdτ]+ |
+p(t)∫t0γ(τ)u1k(τ)dτ]}. | (2.12) |
Thus, the solution of problem (1.1)–(1.3), (1.6), (1.7)is reduced to the solution of system (2.9), (2.12) with respect to unknown functions u(x,t) and p(t).
To study the question of the uniqueness of the solution of problem (1.1)–(1.3), (1.6), (1.7) the following plays an important role.
Lemma 1. If {u(x,t),p(t)}-any solution of problem (1.1)–(1.3), (1.6), (1.7), then the functions
u10(t)=∫10u(x,t)dx,u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), |
u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...) |
satisfy the system consisting of equations (27), (28) on [0,T].
It is obvious that if u10(t)=∫10u(x,t)dx, u1k(t)=2∫10u(x,t)cosλkxdx(k=1,2,...), u2k(t)=2∫10u(x,t)sinλkxdx(k=1,2,...) is a solution to system (2.7), (2.8), then the pair {u(x,t),p(t)} functions u(x,t)=∑∞k=0u1k(t)cosλkx+∑∞k=1u2k(t)sinλkx(λk=2πk) and p(t) is a solution to system (2.9), (2.12).
Consequence. Let system (29), (32) have a unique solution. Then problem (1.1)–(1.3), (1.6), (1.7) cannot have more than one solution, i.e. if problem (1.1)-(1.3), (1.6), (1.7) has a solution, then it is unique.
In order to study the problem (1.1)–(1.3), (1.6), (1.7) consider the following spaces.
Denote by Bα2,T [6] the set of all functions of the form
u(x,t)=∞∑k=0u1k(t)cosλkx+∞∑k=1u2k(t)sinλkx(λk=2πk), |
considered in DT, where each of the functions u1k(t)(k=0,1,...), u2k(t)(k=1,2,...) continuous on [0,T] and
J(u)=‖u10(t)‖C[0,T]+{∞∑k=1(λαk‖u1k(t)‖C[0,T])2}12+{∞∑k=1(λαk‖u2k(t)‖C[0,T])2}12<+∞, |
α≥0. We define the norm in this set as follows:
‖u(x,t)‖Bα2,T=J(u). |
Through EαT denote the space Bα2,T×C[0,T] vector - functions z(x,t)={u(x,t),p(t)} with norm
‖z(x,t)‖EαT=‖u(x,t)‖Bα2,T+‖p(t)‖C[0,T]. |
It is known that Bα2,T and EαT are Banach spaces.
Now consider in space E5T operator
Φ(u,p)={Φ1(u,p),Φ2(u,p)}, |
operator
Φ1(u,p))=˜u(x,t)≡∞∑k=0˜u1k(t)cosλkx+∞∑k=1˜u2k(t)sinλkx,Φ2(u,p)=˜p(t), |
˜u10(t),˜uik(t)(i=1,2;k=1,2,...),˜p(t) are equal to the right-hand sides of (2.7), (2.8) and (2.12), respectively.
It is easy to see that
1+bλ2k>bλ2k,1+δ≥1,.1+δe−∫T0a(s)λ4k1+bλ2kds≥1. |
Then, we have:
‖˜u0(t)‖C[0,T]≤|φ10|+(1+δ)√T(∫T0|f10(τ)|2dτ)12+(1+δ)T‖p(t)‖C[0,T]‖u10(t)‖C[0,T], | (2.13) |
(∞∑k=1(λ5k‖˜uik(t)‖C[0,T])2)12≤√3(∞∑k=1(λ5k|φik|)2)12+√3(1+δ)b√T(∫T0∞∑k=1(λ3k|fik(τ)|)2dτ)12+ |
+√3(1+δ)bT‖p(t)‖C[0,T](∞∑k=1(λ5k‖uik(t)‖C[0,T])2)12(i=1,2), | (2.14) |
‖˜p(t)‖C[0,T]≤‖[h(t)]−1‖C[0,T]{‖h′(t)−f(0,t)‖C[0,T]+ |
+‖γ(t)‖C[0,T][|φ0|+(1+δ)√T(∫T0|f0(τ)|2dτ)12+(1+δ)T‖p(t)‖C[0,T]‖u0(t)‖C[0,T]]+ |
+T‖γ(t)‖C[0,T]‖p(t)‖C[0,T]‖u10(t)‖C[0,T]+ |
+(∞∑k=1λ−2k)12[(∞∑k=1(λk‖f1k(t)‖)2C[0,T])12+‖p(t)‖C[0,T](∞∑k=1(λ3k‖u1k(t)‖C[0,T])2)12+ |
+(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])[(∞∑k=1(λ3k|φ1k|)2)12+√T(1+δ)b(∫T0∞∑k=1(λk|f1k(τ)|)2dτ)12+ |
+T(1+δ)b‖p(t)‖C[0,T](∞∑k=1(λ5k‖u1k(t)‖C[0,T])2)12]++T‖γ(t)‖C[0,T]‖p(t)‖C[0,T](∞∑k=1(λ5k‖u1k(t)‖C[0,T])2)12]}. | (2.15) |
Let us assume that the data of problem (1.1)–(1.3), (1.6), (1.7) satisfy the following conditions:
1.φ(x)∈W2(5)(0,1),φ(0)=φ(1),φ′(0)=φ′(1), |
φ″(0)=φ″(1),φ‴(0)=φ‴(1),φ(4)(0)=φ(4)(1); |
2.f(x,t),fx(x,t),fxx(x,t)∈C(DT),fxxx(x,t)∈L2(DT), |
f(0,t)=f(1,t),fx(0,t)=fx(1,t),fxx(0,t)=fxx(1,t)(0≤t≤T); |
3.b>0,δ≥0,γ(t),a(t)∈C[0,T],h(t)∈C1[0,T],h(t)≠0(0≤t≤T). |
Then from (2.10)–(2.12), we have:
‖˜u(x,t)‖B52,T≤A1(T)+B1(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.16) |
‖˜p(t)‖C[0,T]≤A2(T)+B2(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.17) |
where
A1(T)=‖φ(x)‖L2(0,1)+(1+δ)√T‖f(x,t)‖L2(DT)+2√3‖φ(5)(x)‖L2(0,1)+ |
+2√3b(1+δ)√T‖fxxx(x,t)‖L2(DT),B1(T)=(1+δ)(1+√3b)T, |
A2(T)=‖[h(t)]−1‖C[0,T]{‖h′(t)−f(0,t)‖C[0,T]+ |
+‖γ(t)‖C[0,T](‖φ(x)‖L2(0,1)+(1+δ)√T‖f(x,t)‖L2(DT))+ |
+(∞∑k=1λ−2k)12[‖‖fx(x,t)‖C[0,T]‖L2(0,1)+ |
+(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])(‖φ(3)(x)‖L2(0,1)+√T(1+δ)b‖fx(x,t)‖L2(DT))]}, |
B2(T)=‖[h(t)]−1‖C[0,T](∑∞k=1λ−2k)12[(‖γ(t)‖C[0,T]+1b‖a(t)‖C[0,T])T(2+δ)b+ |
+T‖γ(t)‖C[0,T]+1]. |
From inequalities (2.16), (2.17) we conclude:
‖u(x,t)‖B52,T+‖˜p(t)‖C[0,T]≤A(T)+B(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.18) |
A(T)=A1(T)+A2(T),B(T)=B1(T)+B2(T). |
We can prove the following theorem.
Theorem 2. Let conditions 1-3 be satisfied and
(A(T)+2)2B(T)<1. | (2.19) |
Then problem (1.1)–(1.3), (1.6), (1.7) has in K=KR(‖z‖E5T≤R=A(T)+2) in the space E5T only one solution.
Proof. In space E5T consider the equation
z=Φz, | (2.20) |
where z={u,p}, components P Φ1(u,p),Φ2(u,p) of operators Φ(u,p) are defined by the right-hand sides of equations (2.9) and (2.12).
Consider the operator Φ(u,p) in a ball K=KR from E5T. Similarly to (2.18) we obtain that for any z={u,p}, z1={u1,p1}, z2={u2,p2}∈KR :
‖Φz‖E5T≤A(T)+B(T)‖p(t)‖C[0,T]‖u(x,t)‖B52,T, | (2.21) |
‖Φz1−Φz2‖E5T≤B(T)R(‖p1(t)−p2(t)‖C[0,T]+‖u1(x,t)−u2(x,t)‖B52,T). | (2.22) |
Then from estimates (2.21), (2.22), taking into account (2.19), it follows that the operator Φ acts in a ball K=KR and is contractive. Therefore, in the ball K=KR operator Φ has a single fixed point {u,p}, which is the only one in the ball K=KR solution of equation (2.20), i.e. is the only one solution in the ball K=KR of system (2.9), (2.12) in the ball.
Functions u(x,t), as an element of space B52,T is continuous and has continuous derivatives ux(x,t),uxx(x,t), uxxx(x,t),uxxxx(x,t) in DT.
From (2.4), it is easy to see that
(∞∑k=1(λk‖u′ik(t)‖C[0,T])2)12≤√2b‖a(t)‖C[0,T](∞∑k=1(λ5k‖uik(t)‖C[0,T])2)12+ |
+√2b‖‖fx(x,t)+p(t)ux(x,t)‖C[0,T]‖L2(0,1)(i=1,2). |
Hence it follows that ut(x,t) and utxx continuous in DT.
It is easy to check that equation (1.1) and conditions (1.2), (1.3), (1.6), (1.7) are satisfied in the usual sense. Consequently, {u(x,t),p(t)} is a solution to problem (1.1)–(1.3), (1.6), (1.7). By the corollary of Lemma 1, it is unique in the ball K=KR. The theorem has been proven.
With the help of Theorem 1, the unique solvability of the original problem (1.1)–(1.5) immediately follows from the last theorem.
Theorem 3. Let all the conditions of Theorem 1 be satisfied, ∫10f(x,t)dx=0(0≤t≤T), δγ(t)=0 (0≤t≤T) and the matching condition is met:
∫10φ(x)dx=0,φ(0)=h(0)+δh(T). |
Then problem (1.1)–(1.5) has in the ball K=KR(‖z‖E5T≤R=A(T)+2) from E5T the only classical solution.
The article considered an inverse boundary value problem with a periodic and integral condition, when the unknown coefficient depends on time for a linear pseudoparabolic equation of the fourth order. An existence and uniqueness theorem for the classical solution of the problem is proved.
The authors have declared no conflict of interest.
[1] | M. Lakestani, B. N. Saray, Numerical solution of Telegraph equation using interpolating scaling functions, Comput. Math. Appl., 60 (2010) 1964–1972. https://doi.org/10.1016/j.camwa.2010.07.030 |
[2] | X. Yang, H. Zhang, J. Tang, The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions, Comput. Math. Appl., 82 (2021), 1–12. |
[3] |
M. Dehghan, M. Lakestani, The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation, Numer. Meth. Part. D. E., 25 (2009), 931–938. https://doi.org/10.1002/num.20382 doi: 10.1002/num.20382
![]() |
[4] |
M. Dehghan, A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Math. Part. D. E., 24 (2008), 1080–1093. https://doi.org/10.1002/num.20306 doi: 10.1002/num.20306
![]() |
[5] |
O. Nikan, Z. Avazzadeh, J. A. T. Machado, M. N. Rasoulizadeh, An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals, Eng. Comput., 39 (2023), 2327–2344. https://doi.org/10.1007/s00366-022-01630-9 doi: 10.1007/s00366-022-01630-9
![]() |
[6] |
S. Sharifi, J. Rashidinia, Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 281 (2016), 28–38. https://doi.org/10.1016/j.amc.2016.01.049 doi: 10.1016/j.amc.2016.01.049
![]() |
[7] |
R. M. Hafez, Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method, Comput. Appl. Math., 37 (2018), 5253–5273. https://doi.org/10.1007/s40314-018-0635-1 doi: 10.1007/s40314-018-0635-1
![]() |
[8] |
H. B. Jebreen, Y. C. Cano, I. Dassios, An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation, AIMS Math., 6 (2020), 1296–1308. https://doi.org/10.3934/math.2021080 doi: 10.3934/math.2021080
![]() |
[9] |
W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri, M. A. Bassuony, New Tchebyshev-Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations, Numer. Meth. Part. D. E., 32 (2016), 1553–1571. https://doi.org/10.1002/num.22074 doi: 10.1002/num.22074
![]() |
[10] |
A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. Part. D. E., 26 (2010), 239–252. https://doi.org/10.1002/num.20442 doi: 10.1002/num.20442
![]() |
[11] |
H. B. Jebreen, I. Dassios, A biorthogonal hermite cubic spline Galerkin method for solving fractional riccati equation, Mathematics, 10 (2022), 1461. https://doi.org/10.3390/math10091461 doi: 10.3390/math10091461
![]() |
[12] |
H. B. Jebreen, C. Cattani, Interpolating scaling functions tau method for solving space-time fractional partial differential equations, Symmetry, 14 (2022), 2463. https://doi.org/10.3390/sym14112463 doi: 10.3390/sym14112463
![]() |
[13] |
M. Asadzadeh, B. N. Saray, On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem, BIT, 62 (2022), 383–1416. https://doi.org/10.1007/s10543-022-00915-1 doi: 10.1007/s10543-022-00915-1
![]() |
[14] |
M. H. Heydari, M. Razzaghi, Highly accurate solutions for space-time fractional Schrödinger equations with non-smooth continuous solution using the hybrid clique functions, Math. Sci., 17 (2023), 31–42. https://doi.org/10.1007/s40096-021-00437-x doi: 10.1007/s40096-021-00437-x
![]() |
[15] |
X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
![]() |
[16] | X. Yang, Q. Zhang, G. Yuan, Z. sheng, On positivity preservation in nonlinear finite volume method for multi-term fractional subdiffusion equation on polygonal meshes, Nonlinear Dynam., 92 (2018), 595–612. |
[17] | H. Zhang, X. Yang, D. Xu, An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation, J. Sci. Comput., 85 (2020). https://doi.org/10.1007/s10915-020-01308-8 |
[18] |
A. Iqbal, T. Akram, A numerical study of anomalous electro-diffusion cells in cable sense with a non-singular kernel, Demonstr. Math., 55 (2022), 574–586. https://doi.org/10.1515/dema-2022-0155 doi: 10.1515/dema-2022-0155
![]() |
[19] |
T. Akram, M. Abbas, A. Ali, A. Iqbal, D. Baleanu, A numerical approach of a time fractional reaction-diffusion model with a non-singular kernel, Symmetry, 12 (2020), 1653. https://doi.org/10.3390/sym12101653 doi: 10.3390/sym12101653
![]() |
[20] |
V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009
![]() |
[21] | Y. H. Youssri, W. M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys., 63 (2018), 1–16. |
[22] |
N. Mollahasani, M. M. Mohseni, K. Afrooz, A new treatment based on hybrid functions to the solution of telegraph equations of fractional order, Appl. Math. Model., 40 (2016), 2804–2814. https://doi.org/10.1016/j.apm.2015.08.020 doi: 10.1016/j.apm.2015.08.020
![]() |
[23] | A. Saadatmandi, M. Mohabbati, Numerical solution of fractional telegraph equation via the tau method, Math. Rep., 17 (2015), 155–166. |
[24] |
J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377. https://doi.org/10.1016/j.jmaa.2007.06.023 doi: 10.1016/j.jmaa.2007.06.023
![]() |
[25] |
W. Jiang, Y. Lin, Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci., 16 (2011), 3639–3645. https://doi.org/10.1016/j.cnsns.2010.12.019 doi: 10.1016/j.cnsns.2010.12.019
![]() |
[26] |
A. Ali, T. Abdeljawad, A. Iqbal, T. Akram, M. Abbas, On unconditionally stable new modified fractional group iterative scheme for the solution of 2D time-fractional telegraph model, Symmetry, 13 (2021), 2078. https://doi.org/10.3390/sym13112078 doi: 10.3390/sym13112078
![]() |
[27] |
M. Shahriari, B. N. Saray, B. Mohammadalipour, S. Saeidian, Pseudospectral method for solving the fractional one-dimensional Dirac operator using Chebyshev cardinal functions, Phys. Scripta., 98 (2023), 055205. https://doi.org/10.1088/1402-4896/acc7d3 doi: 10.1088/1402-4896/acc7d3
![]() |
[28] |
A. Afarideh, F. D. Saei, M. Lakestani, B. N. Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Phys. Scripta, 96 (2021), 125267. https://doi.org/10.1088/1402-4896/ac3c59 doi: 10.1088/1402-4896/ac3c59
![]() |
[29] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods fundamentals in single domains, Berlin: Springer-Verlag, 2006. |
[30] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[31] | G. Dahlquist, A. Björck, Numerical methods, Englewood Cliffs: Prentice Hall, 1974. |
[32] | H. Zhang, Y. Liu, X. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. |
1. | Batirkhan Turmetov, Valery Karachik, On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution, 2024, 9, 2473-6988, 6832, 10.3934/math.2024333 | |
2. | İrem Bağlan, Ahmet Akdemir, Mustafa Dokuyucu, Inverse coefficient problem for quasilinear pseudo-parabolic equation by fourier method, 2023, 37, 0354-5180, 7217, 10.2298/FIL2321217B |