Malignancies such as bladder urothelial carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, lung adenocarcinoma and prostate adenocarcinoma significantly impact men's well-being. Accurate cancer classification is vital in determining treatment strategies and improving patient prognosis. This study introduced an innovative method that utilizes gene selection from high-dimensional datasets to enhance the performance of the male tumor classification algorithm. The method assesses the reliability of DNA methylation data to distinguish the five most prevalent types of male cancers from normal tissues by employing DNA methylation 450K data obtained from The Cancer Genome Atlas (TCGA) database. First, the chi-square test is used for dimensionality reduction and second, L1 penalized logistic regression is used for feature selection. Furthermore, the stacking ensemble learning technique was employed to integrate seven common multiclassification models. Experimental results demonstrated that the ensemble learning model utilizing multiple classification models outperformed any base classification model. The proposed ensemble model achieved an astonishing overall accuracy (ACC) of 99.2% in independent testing data. Moreover, it may present novel ideas and pathways for the early detection and treatment of future diseases.
Citation: Ji-Ming Wu, Wang-Ren Qiu, Zi Liu, Zhao-Chun Xu, Shou-Hua Zhang. Integrative approach for classifying male tumors based on DNA methylation 450K data[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19133-19151. doi: 10.3934/mbe.2023845
[1] | Baiyu Liu, Wenlong Yang . Asymptotic symmetry of solutions for reaction-diffusion equations via elliptic geometry. Communications in Analysis and Mechanics, 2025, 17(2): 341-364. doi: 10.3934/cam.2025014 |
[2] | He Wang, Yu Liu . Laguerre BV spaces, Laguerre perimeter and their applications. Communications in Analysis and Mechanics, 2023, 15(2): 189-213. doi: 10.3934/cam.2023011 |
[3] | Jizheng Huang, Shuangshuang Ying . Hardy-Sobolev spaces of higher order associated to Hermite operator. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037 |
[4] | Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu . Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020 |
[5] | Heng Yang, Jiang Zhou . Some estimates of multilinear operators on tent spaces. Communications in Analysis and Mechanics, 2024, 16(4): 700-716. doi: 10.3934/cam.2024031 |
[6] | Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002 |
[7] | Cheng Yang . On the Hamiltonian and geometric structure of Langmuir circulation. Communications in Analysis and Mechanics, 2023, 15(2): 58-69. doi: 10.3934/cam.2023004 |
[8] | Andrea Brugnoli, Ghislain Haine, Denis Matignon . Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics, 2023, 15(3): 362-387. doi: 10.3934/cam.2023018 |
[9] | Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012 |
[10] | Siegfried Carl . Quasilinear parabolic variational-hemivariational inequalities in RN×(0,τ) under bilateral constraints. Communications in Analysis and Mechanics, 2025, 17(1): 41-60. doi: 10.3934/cam.2025003 |
Malignancies such as bladder urothelial carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, lung adenocarcinoma and prostate adenocarcinoma significantly impact men's well-being. Accurate cancer classification is vital in determining treatment strategies and improving patient prognosis. This study introduced an innovative method that utilizes gene selection from high-dimensional datasets to enhance the performance of the male tumor classification algorithm. The method assesses the reliability of DNA methylation data to distinguish the five most prevalent types of male cancers from normal tissues by employing DNA methylation 450K data obtained from The Cancer Genome Atlas (TCGA) database. First, the chi-square test is used for dimensionality reduction and second, L1 penalized logistic regression is used for feature selection. Furthermore, the stacking ensemble learning technique was employed to integrate seven common multiclassification models. Experimental results demonstrated that the ensemble learning model utilizing multiple classification models outperformed any base classification model. The proposed ensemble model achieved an astonishing overall accuracy (ACC) of 99.2% in independent testing data. Moreover, it may present novel ideas and pathways for the early detection and treatment of future diseases.
The theory of the basic and the fractional quantum calculus, that is, the basic (or q-) calculus and the fractional basic (or q-) calculus, play important roles in many diverse areas of the mathematical, physical and engineering sciences (see, for example, [10,15,33,45]). Our main objective in this paper is to introduce and study some subclasses of the class of the normalized p-valently analytic functions in the open unit disk:
U={z:z∈Cand|z|<1} |
by applying the q-derivative operator in conjunction with the principle of subordination between analytic functions (see, for details, [8,30]).
We begin by denoting by A(p) the class of functions f(z) of the form:
f(z)=zp+∞∑n=p+1anzn (p∈N:={1,2,3,⋯}), | (1.1) |
which are analytic and p-valent in the open unit disk U. In particular, we write A(1)=:A.
A function f(z)∈A(p) is said to be in the class S∗p(α) of p-valently starlike functions of order α in U if and only if
ℜ(zf′(z)f(z))>α (0≦α<p;z∈U). | (1.2) |
Moreover, a function f(z)∈A(p) is said to be in the class Cp(α) of p-valently convex functions of order α in U if and only if
ℜ(1+zf′′(z)f′(z))>α (0≦α<p;z∈U). | (1.3) |
The p-valent function classes S∗p(α) and Cp(α) were studied by Owa [32], Aouf [2,3] and Aouf et al. [4,5]. From (1.2) and (1.3), it follows that
f(z)∈Cp(α)⟺zf′(z)p∈S∗p(α). | (1.4) |
Let P denote the Carathéodory class of functions p(z), analytic in U, which are normalized by
p(z)=1+∞∑n=1cnzn, | (1.5) |
such that ℜ(p(z))>0.
Recently, Kanas and Wiśniowska [18,19] (see also [17,31]) introduced the conic domain Ωk(k≧0), which we recall here as follows:
Ωk={u+iv:u>k√(u−1)2+v2} |
or, equivalently,
Ωk={w:w∈Candℜ(w)>k|w−1|}. |
By using the conic domain Ωk, Kanas and Wiśniowska [18,19] also introduced and studied the class k-UCV of k-uniformly convex functions in U as well as the corresponding class k-ST of k-starlike functions in U. For fixed k, Ωk represents the conic region bounded successively by the imaginary axis when k=0. For k=1, the domain Ωk represents a parabola. For 1<k<∞, the domain Ωk represents the right branch of a hyperbola. And, for k>1, the domain Ωk represents an ellipse. For these conic regions, the following function plays the role of the extremal function:
pk(z)={1+z1−z(k=0)1+2π2[log(1+√z1−√z)]2(k=1)1+11−k2cos(2iπ(arccosk)log(1+√z1−√z))(0<k<1)1+1k2−1sin(π2K(κ)∫u(z)√κ0dt√1−t2√1−κ2t2)+k2k2−1(1<k<∞) | (1.6) |
with
u(z)=z−√κ1−√κz(0<κ<1;z∈U), |
where κ is so chosen that
k=cosh(πK′(κ)4K(κ)). |
Here K(κ) is Legendre's complete elliptic integral of the first kind and
K′(κ)=K(√1−κ2), |
that is, K′(κ) is the complementary integral of K(κ) (see, for example, [48,p. 326,Eq 9.4 (209)]).
We now recall the definitions and concept details of the basic (or q-) calculus, which are used in this paper (see, for details, [13,14,45]; see also [1,6,7,11,34,38,39,42,54,59]). Throughout the paper, unless otherwise mentioned, we suppose that 0<q<1 and
N={1,2,3⋯}=N0∖{0} (N0:={0,1,2,⋯}). |
Definition 1. The q-number [λ]q is defined by
[λ]q={1−qλ1−q(λ∈C)n−1∑k=0qk=1+q+q2⋯+qn−1(λ=n∈N), | (1.7) |
so that
limq→1−[λ]q=1−qλ1−q=λ. |
.
Definition 2. For functions given by (1.1), the q-derivative (or the q-difference) operator Dq of a function f is defined by
Dqf(z)={f(z)−f(qz)(1−q)z(z≠0)f′(0)(z=0), | (1.8) |
provided that f′(0) exists.
We note from Definition 2 that
limq→1−Dqf(z)=limq→1−f(z)−f(qz)(1−q)z=f′(z) |
for a function f which is differentiable in a given subset of C. It is readily deduced from (1.1) and (1.8) that
Dqf(z)=[p]qzp−1+∞∑n=p+1[n]qanzn−1. | (1.9) |
We remark in passing that, in the above-cited recently-published survey-cum-expository review article, the so-called (p,q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [42,p. 340]).
Making use of the q-derivative operator Dq given by (1.6), we introduce the subclass S∗q,p(α) of p-valently q-starlike functions of order α in U and the subclass Cq,p(α) of p-valently q-convex functions of order α in U as follows (see [54]):
f(z)∈S∗q,p(α)⟺ℜ(1[p]qzDqf(z)f(z))>α | (1.10) |
(0<q<1;0≦α<1;z∈U) |
and
f(z)∈Cq,p(α)⟺ℜ(1[p]qDp,q(zDqf(z))Dqf(z))>α | (1.11) |
(0<q<1;0≦α<1;z∈U), |
respectively. From (1.10) and (1.11), it follows that
f(z)∈Cq,p(α)⟺zDqf(z)[p]q∈S∗q,p(α). | (1.12) |
For the simpler classes S∗q,p and C∗q,p of p-valently q-starlike functions in U and p-valently q-convex functions in U, respectively, we have write
S∗q,p(0)=:S∗q,pandCq,p(0)=:Cq,p. |
Obviously, in the limit when q→1−, the function classes S∗q,p(α) and Cq,p(α) reduce to the familiar function classes S∗p(α) and Cp(α), respectively.
Definition 3. A function f∈A(p) is said to belong to the class S∗q,p of p-valently q-starlike functions in U if
|zDqf(z)[p]qf(z)−11−q|≤11−q(z∈U). | (1.13) |
In the limit when q→1−, the closed disk
|w−11−q|≦11−q(0<q<1) |
becomes the right-half plane and the class S∗q,p of p-valently q-starlike functions in U reduces to the familiar class S∗p of p-valently starlike functions with respect to the origin (z=0). Equivalently, by using the principle of subordination between analytic functions, we can rewrite the condition (1.13) as follows (see [58]):
zDqf(z)[p]qf(z)≺ˆp(z) (ˆp(z)=1+z1−qz). | (1.14) |
We note that S∗q,1=S∗q (see [12,41]).
Definition 4. (see [50]) A function p(z) given by (1.5) is said to be in the class k-Pq if and only if
p(z)≺2pk(z)(1+q)+(1−q)pk(z), |
where pk(z) is given by (1.6).
Geometrically, the function p∈k-Pq takes on all values from the domain Ωk,q (k≧0) which is defined as follows:
Ωk,q={w:ℜ((1+q)w(q−1)w+2)>k|(1+q)w(q−1)w+2−1|}. | (1.15) |
The domain Ωk,q represents a generalized conic region which was introduced and studied earlier by Srivastava et al. (see, for example, [43,50]). It reduces, in the limit when q→1−, to the conic domain Ωk studied by Kanas and Wiśniowska [18]. We note the following simpler cases.
(1) k-Pq⊆P(2k2k+1+q), where P(2k2k+1+q) is the familiar class of functions with real part greater than 2k2k+1+q;
(2) limq→1−{k-Pq}=P(pk(z)), where P(pk(z)) is the known class introduced by Kanas and Wiśniowska [18];
(3) limq→1−{0-Pq}=P, where P is Carathéodory class of analytic functions with positive real part.
Definition 5. A function f∈A(p) is said to be in the class k-STq,p if and only if
ℜ((1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2)>k|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|(z∈U) | (1.16) |
or, equivalently,
zDqf(z)[p]qf(z)∈k-Pq. | (1.17) |
The folowing special cases are worth mentioning here.
(1) k-STq,1=k-STq, where k-STq is the function class introduced and studied by Srivastava et al. [50] and Zhang et al. [60] with γ=1;
(2) 0-STq,p=Sq,p;
(3) limq→1{k-STq,p}=k-STp, where k-STp is the class of p-valently uniformly starlike functions;
(4) limq→1{0-STq,p}=Sp, where S∗p is the class of p-valently starlike functions;
(5) 0-STq,1=S∗q, where S∗q (see [12,41]);
(6) limq→1{k-STq,1}=k-ST, where k-ST is a function class introduced and studied by Kanas and Wiśniowska [19];
(7) limq→1{0-STq,1}=S∗, where S∗ is the familiar class of starlike functions in U.
Definition 6. By using the idea of Alexander's theorem [9], the class k-UCVq,p can be defined in the following way:
f(z)∈k-UCVq,p⟺zDqf(z)[p]q∈k-STq,p. | (1.18) |
In this paper, we investigate a number of useful properties including coefficient estimates and the Fekete-Szegö inequalities for the function classes k-STq,p and k-UCVq,p, which are introduced above. Various corollaries and consequences of most of our results are connected with earlier works related to the field of investigation here.
In order to establish our main results, we need the following lemmas.
Lemma 1. (see [16]) Let 0≦k<∞ be fixed and let pk be defined by (1.6). If
pk(z)=1+Q1z+Q2z2+⋯, |
then
Q1={2A21−k2(0≦k<1)8π2(k=1)π24√t(k2−1)[K(t)]2(1+t)(1<k<∞) | (2.1) |
and
Q2={A2+23Q1(0≦k<1)23Q1(k=1)4[K(t)]2(t2+6t+1)−π224√t[K(t)]2(1+t)Q1(1<k<∞), | (2.2) |
where
A=2arccoskπ, |
and t∈(0,1) is so chosen that
k=cosh(πK′(t)K(t)), |
K(t) being Legendre's complete elliptic integral of the first kind.
Lemma 2. Let 0≦k<∞ be fixed and suppose that
pk,q(z)=2pk(z)(1+q)+(1−q)pk(z), | (2.3) |
where pk(z) be defined by (1.6). Then
pk,q(z)=1+12(1+q)Q1z+12(1+q)[Q2−12(1−q)Q21]z2+⋯ , | (2.4) |
where Q1 and Q2 are given by (2.1) and (2.2), respectively.
Proof. By using (1.6) in (2.3), we can easily derive (2.4).
Lemma 3. (see [26]) Let the function h given by
h(z)=1+∞∑n=1cnzn∈P |
be analytic in U and satisfy ℜ(h(z))>0 for z in U. Then the following sharp estimate holds true:
|c2−vc21|≦2max{1,|2v−1|}(∀v∈C). |
The result is sharp for the functions given by
g(z)=1+z21−z2org(z)=1+z1−z. | (2.5) |
Lemma 4. (see [26]) If the function h is given by
h(z)=1+∞∑n=1cnzn∈P, |
then
|c2−νc21|≦{−4ν+2(ν≦0)2(0≦ν≦1)4ν−2(ν≧1). | (2.6) |
When ν>1, the equality holds true if and only if
h(z)=1+z1−z |
or one of its rotations. If 0<ν<1, then the equality holds true if and only if
h(z)=1+z21−z2 |
or one of its rotations. If ν=0, the equality holds true if and only if
h(z)=(1+λ2)(1+z1−z)+(1−λ2)(1−z1+z)(0≦λ≦1) |
or one of its rotations. If ν=1, the equality holds true if and only if the function h is the reciprocal of one of the functions such that equality holds true in the case when ν=0.
The above upper bound is sharp and it can be improved as follows when 0<ν<1:
|c2−νc21|+ν|c1|2≦2(0≦ν≦12) |
and
|c2−νc21|+(1−ν)|c1|2≦2(12≤ν≦1). |
We assume throughout our discussion that, unless otherwise stated, 0≦k<∞, 0<q<1, p∈N, Q1 is given by (2.1), Q2 is given by (2.2) and z∈U.
Theorem 1. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1{2(k+1)([n]q−[p]q)+qn+2[p]q−1}|an|<(1+q)[p]q, | (3.1) |
then the function f∈k-STq,p.
Proof. Suppose that the inequality (3.1) holds true. Then it suffices to show that
k|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|−ℜ((1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1)<1. |
In fact, we have
k|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|−ℜ((1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1)≦(k+1)|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|=2(k+1)|zDqf(z)−[p]qf(z)(q−1)zDqf(z)+2[p]qf(z)|=2(k+1)|∞∑n=p+1([n]q−[p]q)anzn−p(1+q)[p]q+∞∑n=p+1((q−1)[n]q+2[p]q)anzn−p|≦2(k+1)∞∑n=p+1([n]q−[p]q)|an|(1+q)[p]q−∞∑n=p+1(qn+2[p]q−1)|an|. |
The last expression is bounded by 1 if (3.1) holds true. This completes the proof of Theorem 1.
Corollary 1. If f(z)∈k-STq,p, then
|an|≦(1+q)[p]q{2(k+1)([n]q−[p]q)+qn+2[p]q−1}(n≧p+1). |
The result is sharp for the function f(z) given by
f(z)=zp+(1+q)[p]q{2(k+1)([n]q−[p]q)+qn+2[p]q−1}zn(n≧p+1). |
Remark 1. Putting p=1 Theorem 1, we obtain the following result which corrects a result of Srivastava et al. [50,Theorem 3.1].
Corollary 2. (see Srivastava et al. [50,Theorem 3.1]) If a function f∈A is of the form (1.1) (with p=1) and satisfies the following condition:
∞∑n=2{2(k+1)([n]q−1)+qn+1}|an|<(1+q) |
then the function f∈k-STq.
Letting q→1− in Theorem 1, we obtain the following known result [29,Theorem 1] with
α1=β1=p,αi=1(i=2,⋯,s+1)andβj=1(j=2,⋯,s). |
Corollary 3. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1{(k+1)(n−p)+p}|an|<p, |
then the function f∈k-STp.
Remark 2. Putting p=1 in Corollary 3, we obtain the result obtained by Kanas and Wiśniowska [19,Theorem 2.3].
By using Theorem 1 and (1.18), we obtain the following result.
Theorem 2. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1([n]q[p]q){2(k+1)([n]q−[p]q)+qn+2[p]q−1}|an|<(1+q)[p]q, |
then the function f∈k-UCVq,p.
Remark 3. Putting p=1 Theorem 1, we obtain the following result which corrects the result of Srivastava et al. [50,Theorem 3.3].
Corollary 4. (see Srivastava et al. [50,Theorem 3.3]) If a function f∈A is of the form (1.1) (with p=1) and satisfies the following condition:
∞∑n=2[n]q{2(k+1)([n]q−1)+qn+1}|an|<(1+q), |
then the function f∈k-UCVq.
Letting q→1− in Theorem 2, we obtain the following corollary (see [29,Theorem 1]) with
α1=p+1,β1=p,αℓ=1(ℓ=2,⋯,s+1)andβj=1(j=2,⋯,s). |
Corollary 5. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1(np){(k+1)(n−p)+p}|an|<p, |
then the function f∈k-UCVp.
Remark 4. Putting p=1 in Corollary 5, we obtain the following corollary which corrects the result of Kanas and Wiśniowska [18,Theorem 3.3].
Corollary 6. If a function f∈A is of the form (1.1) (with p=1) and satisfies the following condition:
∞∑n=2n{n(k+1)−k}|an|<1, |
then the function f∈k-UCV.
Theorem 3. If f∈k-STq,p, then
|ap+1|≦(1+q)[p]qQ12qp[1]q | (3.2) |
and, for all n=3,4,5,⋯,
|an+p−1|≦(1+q)[p]qQ12qp[n−1]qn−2∏j=1(1+(1+q)[p]qQ12qp[j]q). | (3.3) |
Proof. Suppose that
zDqf(z)[p]qf(z)=p(z), | (3.4) |
where
p(z)=1+∞∑n=1cnzn∈k-Pq. |
Eq (3.4) can be written as follows:
zDqf(z)=[p]qf(z)p(z), |
which implies that
∞∑n=p+1([n]q−[p]q)anzn=[p]q(zp+∞∑n=p+1anzn)(∞∑n=1cnzn). | (3.5) |
Comparing the coefficients of zn+p−1 on both sides of (3.5), we obtain
([n+p−1]q−[p]q)an+p−1=[p]q{cn−1+ap+1cn−2+⋯+an+p−2c1}. |
By taking the moduli on both sides and then applying the following coefficient estimates (see [50]):
|cn|≦12(1+q)Q1(n∈N), |
we find that
|an+p−1|≦(1+q)[p]qQ12qp[n−1]q{1+|ap+1|+⋯+|an+p−2|}. | (3.6) |
We now apply the principle of mathematical induction on (3.6). Indeed, for n=2, we have
|ap+1|≦(1+q)[p]qQ12qp[1]q, | (3.7) |
which shows that the result is true for n=2. Next, for n=3 in (3.7), we get
|ap+2|≦(1+q)[p]qQ12qp[2]q{1+|ap+1|}. |
By using (3.7), we obtain
|ap+2|≦(1+q)[p]qQ12qp[2]q(1+(1+q)[p]qQ12qp[1]q), |
which is true for n=3. Let us assume that (3.3) is true for n=t(t∈N), that is,
|at+p−1|≦(1+q)[p]qQ12qp[t−1]qt−2∏j=1(1+(1+q)[p]qQ12qp[j]q). |
Let us consider
|at+p|≦(1+q)[p]qQ12qp[t]q{1+|ap+1|+|ap+2|+⋯+|at+p−1|}≦(1+q)[p]qQ12qp[t]q{1+(1+q)[p]qQ12qp[1]q+(1+q)[p]qQ12qp[2]q(1+(1+q)[p]qQ12qp[1]q)+⋯+(1+q)[p]qQ12qp[t−1]qt−2∏j=1(1+(1+q)[p]qQ12qp[j]q)}=(1+q)[p]qQ12qp[t]q{(1+(1+q)[p]qQ12qp[1]q)(1+(1+q)[p]qQ12qp[2]q)⋯(1+(1+q)[p]qQ12qp[t−1]q)}=(1+q)[p]qQ12qp[t]qt−1∏j=1(1+(1+q)[p]qQ12qp[j]q) |
Therefore, the result is true for n=t+1. Consequently, by the principle of mathematical induction, we have proved that the result holds true for all n(n∈N∖{1}). This completes the proof of Theorem 3.
Similarly, we can prove the following result.
Theorem 4. If f∈k-UCVq,p and is of form (1.1), then
|ap+1|≦(1+q)[p]2qQ12qp[p+1]q |
and, for all n=3,4,5,⋯,
|an+p−1|≦(1+q)[p]2qQ12qp[n+p−1]q[n−1]qn−2∏j=1(1+(1+q)[p]qQ12qp[j]q). |
Putting p=1 in Theorems 3 and 4, we obtain the following corollaries.
Corollary 7. If f∈k-STq, then
|a2|≦(1+q)Q12q |
and, for all n=3,4,5,⋯,
|an|≦(1+q)Q12q[n−1]qn−2∏j=1(1+(1+q)Q12q[j]q). |
Corollary 8. If f∈k-UCVq, then
|a2|≦Q12q |
and, for all n=3,4,5,⋯,
|an|≦(1+q)Q12q[n]q[n−1]qn−2∏j=1(1+(1+q)Q12q[j]q). |
Theorem 5. Let f∈k-STq,p. Then f(U) contains an open disk of the radius given by
r=2qp2(p+1)qp+(1+q)[p]qQ1. |
Proof. Let w0≠0 be a complex number such that f(z)≠w0 for z∈U. Then
f1(z)=w0f(z)w0−f(z)=zp+1+(ap+1+1w0)zp+1+⋯. |
Since f1 is univalent, so
|ap+1+1w0|≦p+1. |
Now, using Theorem 3, we have
|1w0|≦p+1+(1+q)[p]qQ12qp=2qp(p+1)+(1+q)[p]qQ12qp. |
Hence
|w0|≧2qp2qp(p+1)+(1+q)[p]qQ1. |
This completes the proof of Theorem 5.
Theorem 6. Let the function f∈k-STq,p be of the form (1.1). Then, for a complex number μ,
|ap+2−μa2p+1|≦[p]qQ12qpmax{1,|Q2Q1+([p]q(1+q)−qp(1−q))Q12qp⋅(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))|}. | (3.8) |
The result is sharp.
Proof. If f∈k-STq,p, we have
zDqf(z)[p]qf(z)≺pk,q(z)=2pk(z)(1+q)+(1−q)pk(z). |
From the definition of the differential subordination, we know that
zDqf(z)[p]qf(z)=pk,q(w(z))(z∈U), | (3.9) |
where w(z) is a Schwarz function with w(0)=0 and |w(z)|<1 for z∈U.
Let h∈P be a function defined by
h(z)=1+w(z)1−w(z)=1+c1z+c2z2+⋯(z∈U). |
This gives
w(z)=12c1z+12(c2−c212)z2+⋯ |
and
pk,q(w(z))=1+1+q4c1Q1z+1+q4{Q1c2+12(Q2−Q1−1−q2Q21)c21}z2+⋯. | (3.10) |
Using (3.10) in (3.9), we obtain
ap+1=(1+q)[p]qc1Q14qp |
and
ap+2=[p]qQ14qp[c2−12(1−Q2Q1−[p]q(1+q)−qp(1−q)2qpQ1)c21] |
Now, for any complex number μ, we have
ap+2−μa2p+1=[p]qQ14qp[c2−12(1−Q2Q1−[p]q(1+q)−qp(1−q)2qpQ1)c21]−μ(1+q)2[p]2qQ21c2116q2p. | (3.11) |
Then (3.11) can be written as follows:
ap+2−μa2p+1=[p]qQ14qp{c2−vc21}, | (3.12) |
where
v=12[1−Q2Q1−([p]q(1+q)−qp(1−q))Q12qp⋅(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))]. | (3.13) |
Finally, by taking the moduli on both sides and using Lemma 4, we obtain the required result. The sharpness of (3.8) follows from the sharpness of (2.5). Our demonstration of Theorem 6 is thus completed.
Similarly, we can prove the following theorem.
Theorem 7. Let the function f∈k-UCVq,p be of the form (1.1). Then, for a complex number μ,
|ap+2−μa2p+1|≦[p]2qQ12qp[p+2]qmax{1,|Q2Q1+((1+q)[p]q−(1−q)qp)Q12qp⋅(1−μ[p+2]q(1+q)2[p]2q((1+q)[p]q−(1−q)qp)[p+1]2q)|}. |
The result is sharp.
Putting p=1 in Theorems 6 and 7, we obtain the following corollaries.
Corollary 9. Let the function f∈k-STq be of the form (1.1) (with p=1). Then, for a complex number μ,
|a3−μa22|≦Q12qmax{1,|Q2Q1+(1+q2)Q12q(1−μ(1+q)21+q2)|}. |
The result is sharp.
Corollary 10. Let the function f∈k-UCVq be of the form (1.1) (with p=1). Then, for a complex number μ,
|a3−μa22|≦Q12q[3]qmax{1,|Q2Q1+(1+q2)Q12q(1−μ[3]q1+q2)|}. |
The result is sharp.
Theorem 8. Let
σ1=([p]q(1+q)−qp(1−q))Q21+2qp(Q2−Q1)[p]q(1+q)2Q21, |
σ2=([p]q(1+q)−qp(1−q))Q21+2qp(Q2+Q1)[p]q(1+q)2Q21 |
and
σ3=([p]q(1+q)−qp(1−q))Q21+2qpQ2[p]q(1+q)2Q21. |
If the function f given by (1.1) belongs to the class k-STq,p, then
|ap+2−μa2p+1|≦{[p]qQ12qp{Q2Q1+([p]q(1+q)−qp(1−q))Q12qp(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))}(μ≦σ1)[p]qQ12qp(σ1≦μ≦σ2),−[p]qQ12qp{Q2Q1+([p]q(1+q)−qp(1−q))Q12qp(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))}(μ≧σ2). |
Furthermore, if \sigma _{1}\leqq \mu \leqq \sigma _{3}, then
\begin{align*} &\left\vert a_{p+2}-\mu a_{p+1}^{2}\right\vert +\frac{2q^{p}}{\left( 1+q\right) ^{2}\left[p\right]_{q}Q_{1}}\Bigg\{1-\frac{Q_{2}}{Q_{1}}- \frac{\left( \left[ p\right] _{q}\left(1+q\right)-q^{p}\left(1-q\right) \right) Q_{1}}{2q^{p}}\\ &\qquad \qquad \qquad \qquad \qquad \cdot \Bigg( 1-\mu \;\frac{\left(1+q\right) ^{2}\left[ p \right] _{q}}{\left( \left[ p\right] _{q}\left( 1+q\right) -q^{p}\left( 1-q\right) \right) }\Bigg) \Bigg\} \left\vert a_{p+1}\right\vert ^{2}\\ &\qquad \quad \leqq \frac{\left[ p\right]_{q}Q_{1}}{2q^{p}}. \end{align*} |
If \sigma _{3}\leqq \mu \leqq \sigma _{2}, then
\begin{align*} &\left\vert a_{p+2}-\mu a_{p+1}^{2}\right\vert +\frac{2q^{p}}{\left( 1+q\right)^{2}\left[p\right] _{q}Q_{1}}\Bigg\{ 1+\frac{Q_{2}}{Q_{1}}+ \frac{\left(\left[p\right] _{q}\left( 1+q\right) -q^{p}\left( 1-q\right) \right) Q_{1}}{2q^{p}}\\ &\qquad \qquad \qquad \qquad \qquad \cdot \Bigg(1-\mu \;\frac{\left( 1+q\right) ^{2}\left[ p \right] _{q}}{\left( \left[ p\right] _{q}\left( 1+q\right) -q^{p}\left( 1-q\right) \right) }\Bigg) \Bigg\} \left\vert a_{p+1}\right\vert ^{2}\\ &\qquad \quad \leqq \frac{\left[ p\right] _{q}Q_{1}}{2q^{p}}. \end{align*} |
Proof. Applying Lemma 4 to (3.12) and (3.13), respectively, we can derive the results asserted by Theorem 8.
Putting p = 1 in Theorem 8, we obtain the following result.
Corollary 11. Let
\begin{align*} \sigma _{4} = \frac{\left(1+q^{2}\right) Q_{1}^{2}+2q\left( Q_{2}-Q_{1}\right) }{\left(1+q\right) ^{2}Q_{1}^{2}}, \end{align*} |
\begin{align*} \sigma _{5} = \frac{ \left( 1+q^{2}\right) Q_{1}^{2}+2q\left( Q_{2}+Q_{1}\right)}{\left( 1+q\right) ^{2}Q_{1}^{2}} \end{align*} |
and
\begin{align*} \sigma _{6} = \frac{\left( 1+q^{2}\right) Q_{1}^{2}+2qQ_{2}}{\left( 1+q\right) ^{2}Q_{1}^{2}}. \end{align*} |
If the function f given by (1.1) (with p = 1) belongs to the class k - \mathcal{ST}_{q}, then
\begin{equation*} \left\vert a_{3}-\mu a_{2}^{2}\right\vert \leqq \left\{ \begin{array}{lll} \frac{Q_{1}}{2q}\left\{ \frac{Q_{2}}{Q_{1}}+\frac{\left( 1+q^{2}\right) Q_{1} }{2q}\left( 1-\mu \frac{\left( 1+q\right) ^{2}}{1+q^{2}}\right) \right\} &\quad \left( \mu \leqq \sigma _{4}\right) \\ \\ \frac{Q_{1}}{2q} &\quad \left( \sigma _{4}\leqq \mu \leqq \sigma _{5}\right) \\ \\ -\frac{Q_{1}}{2q}\left\{ \frac{Q_{2}}{Q_{1}}+\frac{\left( 1+q^{2}\right) Q_{1}}{2q}\left( 1-\mu \frac{\left( 1+q\right) ^{2}}{1+q^{2}}\right) \right\} & \quad \left( \mu \geqq \sigma _{5}\right) . \end{array} \right. \end{equation*} |
Furthermore, if \sigma _{4}\leqq \mu \leqq \sigma _{6}, then
\begin{equation*} \left\vert a_{3}-\mu a_{2}^{2}\right\vert +\frac{2q}{\left( 1+q\right) ^{2}Q_{1}}\left\{ 1-\frac{Q_{2}}{Q_{1}}-\frac{\left(1+q^{2}\right) Q_{1}}{ 2q}\left( 1-\mu \frac{\left(1+q\right)^{2}}{1+q^{2}}\right) \right\} \left\vert a_{2}\right\vert ^{2}\leqq \frac{Q_{1}}{2q}. \end{equation*} |
If \sigma _{3}\leqq \mu \leqq \sigma _{2}, then
\begin{equation*} \left\vert a_{3}-\mu a_{2}^{2}\right\vert +\frac{2q}{\left(1+q\right) ^{2}Q_{1}}\left\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right)Q_{1}}{ 2q}\left(1-\mu \frac{\left(1+q\right) ^{2}}{1+q^{2}}\right) \right\} \left\vert a_{2}\right\vert^{2}\leqq \frac{Q_{1}}{2q}. \end{equation*} |
Similarly, we can prove the following result.
Theorem 9. Let
\begin{align*} \eta _{1} = \frac{\left[ \left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) Q_{1}^{2}+2q^{p}\left( Q_{2}-Q_{1}\right) \right] \left[ p+1\right] _{q}^{2}}{\left[p\right] _{q}^{2}\left[ p+2\right] _{q}\left( 1+q\right) ^{2}Q_{1}^{2}}, \end{align*} |
\begin{align*} \eta _{2} = \frac{\left[ \left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) Q_{1}^{2}+2q^{p}\left( Q_{2}+Q_{1}\right) \right] \left[ p+1\right] _{q}^{2}}{\left[p\right] _{q}^{2}\left[ p+2\right] _{q}\left( 1+q\right) ^{2}Q_{1}^{2}} \end{align*} |
and
\begin{align*} \eta _{3} = \frac{\left[ \left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) Q_{1}^{2}+2q^{p}Q_{2}\right] \left[p+1 \right] _{q}^{2}}{\left[ p\right] _{q}^{2}\left[ p+2\right] _{q}\left( 1+q\right) ^{2}Q_{1}^{2}}. \end{align*} |
If the function f given by (1.1) belongs to the class k - \mathcal{UCV}_{q, p}, then
\begin{align*} &\left\vert a_{p+2}-\mu a_{p+1}^{2}\right\vert\\ &\leqq \left\{ \begin{array}{ll} \frac{\left[ p\right] _{q}^{2}Q_{1}}{2q^{p}\left[ p+2\right] _{q}}\left\{ \frac{Q_{2}}{Q_{1}}+\frac{\left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) Q_{1}}{2q^{p}}\left( 1-\frac{\left[ p+2 \right] _{q}\left( 1+q\right) ^{2}\left[ p\right] _{q}^{2}\ \mu }{\left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) \left[ p+1\right] _{q}^{2}}\right) \right\} & \left( \mu \leqq \eta _{1}\right) \\ \\ \frac{\left[p\right] _{q}^{2}Q_{1}}{2q^{p}\left[p+2\right]_{q}} & \left( \eta _{1}\leqq \mu \leqq \eta _{2}\right) \\ \\ -\frac{\left[ p\right] _{q}^{2}Q_{1}}{2q^{p}\left[ p+2\right] _{q}}\left\{ \frac{Q_{2}}{Q_{1}}+\frac{\left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) Q_{1}}{2q^{p}}\left( 1-\frac{\left[ p+2 \right] _{q}\left( 1+q\right) ^{2}\left[ p\right] _{q}^{2}\ \mu }{\left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) \left[ p+1\right] _{q}^{2}}\right) \right\} & \left(\mu \geqq \eta _{2}\right) . \end{array} \right. \end{align*} |
Furthermore, if \eta _{1}\leqq \mu \leqq \eta _{3}, then
\begin{align*} &\left\vert a_{p+2}-\mu a_{p+1}^{2}\right\vert +\frac{2q^{p}\left[p+1\right] _{q}^{2}Q_{1}}{\left[p+2\right] _{q}\left( 1+q\right) ^{2}\left[ p\right] _{q}^{2}Q_{1}^{2}}\Bigg\{1-\frac{Q_{2}}{Q_{1}}-\frac{\left(\left( 1+q\right) \left[p\right]_{q}-\left(1-q\right) q^{p}\right) Q_{1}}{2q^{p}}\\ &\qquad \qquad \qquad \cdot \Bigg(1-\mu \;\frac{\left[p+2\right] _{q}\left(1+q\right)^{2}\left[p \right] _{q}^{2}}{\left(\left(1+q\right)\left[p\right] _{q}-\left( 1-q\right) q^{p}\right) \left[ p+1\right] _{q}^{2}}\Bigg)\Bigg\} \left\vert a_{p+1}\right\vert ^{2}\\ &\qquad \quad \leqq \frac{\left[p\right]_{q}^{2}Q_{1}}{2q^{p} \left[p+2\right]_{q}}. \end{align*} |
If \eta _{3}\leqq \mu \leqq \eta _{2}, then
\begin{align*} &\left\vert a_{p+2}-\mu a_{p+1}^{2}\right\vert +\frac{2q^{p}\left[p+1\right] _{q}^{2}Q_{1}}{\left[ p+2\right] _{q}\left( 1+q\right) ^{2}\left[ p\right] _{q}^{2}Q_{1}^{2}}\Bigg\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left( \left( 1+q\right)\left[p\right]_{q}-\left(1-q\right)q^{p}\right) Q_{1}}{2q^{p}}\\ &\qquad \qquad \qquad \cdot \Bigg(1-\mu \;\frac{\left[ p+2\right] _{q}\left( 1+q\right) ^{2}\left[ p \right] _{q}^{2}}{\left( \left( 1+q\right) \left[ p\right] _{q}-\left( 1-q\right) q^{p}\right) \left[ p+1\right] _{q}^{2}}\Bigg)\Bigg\} \left\vert a_{p+1}\right\vert ^{2}\\ &\qquad \quad \leqq \frac{\left[p\right] _{q}^{2}Q_{1}}{2q^{p} \left[p+2\right]_{q}}. \end{align*} |
Putting p = 1 in Theorem 9, we obtain the following result.
Corollary 12. Let
\begin{align*} \eta _{4} = \frac{\left( 1+q^{2}\right) Q_{1}^{2}+2q\left( Q_{2}-Q_{1}\right) }{\left[ 3\right]_{q}Q_{1}^{2}}, \end{align*} |
\begin{align*} \eta _{5} = \frac{\left( 1+q^{2}\right) Q_{1}^{2}+2q\left( Q_{2}+Q_{1}\right) }{\left[3\right] _{q}Q_{1}^{2}} \\ \end{align*} |
and
\begin{align*} \eta _{6} = \frac{\left( 1+q^{2}\right) Q_{1}^{2}+2qQ_{2}}{\left[3\right] _{q}Q_{1}^{2}}. \end{align*} |
If the function f given by (1.1) (with p = 1) belongs to the class k - \mathcal{UCV}_{q}, then
\begin{equation*} \left\vert a_{3}-\mu a_{2}^{2}\right\vert \leqq \left\{ \begin{array}{ll} \frac{Q_{1}}{2q\left[ 3\right] _{q}}\left\{ \frac{Q_{2}}{Q_{1}}+\frac{\left( 1+q^{2}\right) Q_{1}}{2q}\left( 1-\mu \frac{\left[ 3\right] _{q}}{1+q^{2}} \right) \right\} & \quad \left( \mu \leqq \eta _{4}\right) \\ \\ \frac{Q_{1}}{2q\left[ 3\right] _{q}} & \quad \left( \eta _{4}\leqq \mu \leqq \eta _{5}\right) \\ \\ -\frac{Q_{1}}{2q\left[ 3\right] _{q}}\left\{ \frac{Q_{2}}{Q_{1}}+\frac{ \left( 1+q^{2}\right) Q_{1}}{2q}\left( 1-\mu \frac{\left[ 3\right]_{q}}{ 1+q^{2}}\right) \right\} & \quad \left( \mu \geqq \eta _{5}\right) . \end{array} \right. \end{equation*} |
Furthermore, if \eta _{4}\leqq \mu \leqq \eta _{6}, then
\begin{equation*} \left\vert a_{3}-\mu a_{2}^{2}\right\vert +\frac{2q}{\left[3\right] _{q}Q_{1}}\left\{1-\frac{Q_{2}}{Q_{1}}-\frac{\left( 1+q^{2}\right) Q_{1}}{ 2q}\left( 1-\mu \frac{\left[3\right]_{q}}{1+q^{2}}\right) \right\} \left\vert a_{2}\right\vert^{2}\leqq \frac{Q_{1}}{2q\left[3\right]_{q}}. \end{equation*} |
If \eta _{3}\leqq \mu \leqq \eta _{2}, then
\begin{equation*} \left\vert a_{3}-\mu a_{2}^{2}\right\vert +\frac{2q}{\left[3\right] _{q}Q_{1}}\left\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{ 2q}\left( 1-\mu \frac{\left[3\right] _{q}}{1+q^{2}}\right) \right\} \left\vert a_{2}\right\vert^{2}\leqq \frac{Q_{1}}{2q\left[3\right]_{q}}. \end{equation*} |
In our present investigation, we have applied the concept of the basic (or q -) calculus and a generalized conic domain, which was introduced and studied earlier by Srivastava et al. (see, for example, [43,50]). By using this concept, we have defined two subclasses of normalized multivalent functions which map the open unit disk:
\mathbb{U} = \left\{z: z\in \mathbb{C}\qquad \text{and} \qquad \left\vert z\right\vert < 1\right\} |
onto this generalized conic domain. We have derived a number of useful properties including (for example) the coefficient estimates and the Fekete-Szegö inequalities for each of these multivalent function classes. Our results are connected with those in several earlier works which are related to this field of Geometric Function Theory of Complex Analysis.
Basic (or q -) series and basic (or q -) polynomials, especially the basic (or q -) hypergeometric functions and basic (or q -) hypergeometric polynomials, are applicable particularly in several diverse areas [see, for example, [48,pp. 350-351]. Moreover, as we remarked in the introductory Section 1 above, in the recently-published survey-cum-expository review article by Srivastava [42], the so-called (p, q) -calculus was exposed to be a rather trivial and inconsequential variation of the classical q -calculus, the additional parameter p being redundant or superfluous (see, for details, [42,p. 340]). This observation by Srivastava [42] will indeed apply to any attempt to produce the rather straightforward (p, q) -variations of the results which we have presented in this paper.
In conclusion, with a view mainly to encouraging and motivating further researches on applications of the basic (or q -) analysis and the basic (or q -) calculus in Geometric Function Theory of Complex Analysis along the lines of our present investigation, we choose to cite a number of recently-published works (see, for details, [25,47,51,53,56] on the Fekete-Szegö problem; see also [20,21,22,23,24,27,28,35,36,37,40,44,46,49,52,55,57] dealing with various aspects of the usages of the q -derivative operator and some other operators in Geometric Function Theory of Complex Analysis). Indeed, as it is expected, each of these publications contains references to many earlier works which would offer further incentive and motivation for considering some of these worthwhile lines of future researches.
The authors declare no conflicts of interest.
[1] |
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin., 71 (2021), 209–249. https://doi.org/10.3322/caac.21660 doi: 10.3322/caac.21660
![]() |
[2] |
W. Wang, L. R. Meadows, J. M. den Haan, N. E. Sherman, Y. Chen, E. Blokland, et al., Human HY: a male-specific histocompatibility antigen derived from the SMCY protein, Science, 269 (1995), 1588–1590. https://doi.org/10.1126/science.7667640 doi: 10.1126/science.7667640
![]() |
[3] |
K. Shibuya, C. D. Mathers, C. Boschi-Pinto, A. D. Lopez, C. J. Murray, Global and regional estimates of cancer mortality and incidence by site: Ⅱ. Results for the global burden of disease 2000, BMC Cancer, 2 (2002), 37. https://doi.org/10.1186/1471-2407-2-37 doi: 10.1186/1471-2407-2-37
![]() |
[4] |
A. Jemal, R. Siegel, J. Xu, E. Ward, Cancer statistics, 2010, CA Cancer J. Clin., 60 (2010), 277–300. https://doi.org/10.3322/caac.20073 doi: 10.3322/caac.20073
![]() |
[5] | Cancer Genome Atlas Research, Comprehensive molecular characterization of urothelial bladder carcinoma, Nature, 507 (2014), 315–322. https://doi.org/10.1038/nature12965 |
[6] |
J. Terzic, S. Grivennikov, E. Karin, M. Karin, Inflammation and colon cancer, Gastroenterology, 138 (2010), 2101–2114. https://doi.org/10.1053/j.gastro.2010.01.058 doi: 10.1053/j.gastro.2010.01.058
![]() |
[7] |
F. X. Bosch, J. Ribes, M. Diaz, R. Cleries, Primary liver cancer: worldwide incidence and trends, Gastroenterology, 127 (2004), S5–S16. https://doi.org/10.1053/j.gastro.2004.09.011 doi: 10.1053/j.gastro.2004.09.011
![]() |
[8] | Cancer Genome Atlas Research, Comprehensive molecular profiling of lung adenocarcinoma, Nature, 511 (2014), 543–550. https://doi.org/10.1038/nature13385 |
[9] |
P. Rawla, Epidemiology of prostate cancer, World J. Oncol., 10 (2019), 63–89. https://doi.org/10.14740/wjon1191 doi: 10.14740/wjon1191
![]() |
[10] |
P. Jurmeister, M. Leitheiser, P. Wolkenstein, F. Klauschen, D. Capper, L. Brcic, DNA methylation-based machine learning classification distinguishes pleural mesothelioma from chronic pleuritis, pleural carcinosis, and pleomorphic lung carcinomas, Lung Cancer, 170 (2022), 105–113. https://doi.org/10.1016/j.lungcan.2022.06.008 doi: 10.1016/j.lungcan.2022.06.008
![]() |
[11] |
Z. D. Smith, A. Meissner, DNA methylation: roles in mammalian development, Nat. Rev. Genet., 14 (2013), 204–220. https://doi.org/10.1038/nrg3354 doi: 10.1038/nrg3354
![]() |
[12] |
P. A. Jones, Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev. Genet., 13 (2012), 484–492. https://doi.org/10.1038/nrg3230 doi: 10.1038/nrg3230
![]() |
[13] |
T. Bozic, C. C. Kuo, J. Hapala, J. Franzen, M. Eipel, U. Platzbecker, et al., Investigation of measurable residual disease in acute myeloid leukemia by DNA methylation patterns, Leukemia, 36 (2022), 80–89. https://doi.org/10.1038/s41375-021-01316-z doi: 10.1038/s41375-021-01316-z
![]() |
[14] | C. Stirzaker, D. S. Millar, C. L. Paul, P. M. Warnecke, J. Harrison, P. C. Vincent, et al., Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors, Cancer Res., 57 (1997), 2229–2237. |
[15] |
I. Huh, X. Yang, T. Park, S. V. Yi, Bis-class: a new classification tool of methylation status using bayes classifier and local methylation information, BMC Genomics, 15 (2014), 608. https://doi.org/10.1186/1471-2164-15-608 doi: 10.1186/1471-2164-15-608
![]() |
[16] |
J. Jo, J. Oh, C. Park, Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists, J. Microbiol., 58 (2020), 176–192. https://doi.org/10.1007/s12275-020-9525-5 doi: 10.1007/s12275-020-9525-5
![]() |
[17] |
M. Mohammed, H. Mwambi, I. B. Mboya, M. K. Elbashir, B. Omolo, A stacking ensemble deep learning approach to cancer type classification based on TCGA data, Sci. Rep., 11 (2021), 15626. https://doi.org/10.1038/s41598-021-95128-x doi: 10.1038/s41598-021-95128-x
![]() |
[18] | S. Jia, Y. Zhang, Y. Mao, J. Gao, Y. Chen, Y. Jiang, et al., A new parsimonious method for classifying Cancer Tissue-of-Origin Based on DNA Methylation 450K data, preprint, arXiv: 2101.00570. https://doi.org/10.48550/arXiv.2101.00570 |
[19] |
W. Lin, S. Hu, Z. Wu, Z. Xu, Y. Zhong, Z. Lv, et al., iCancer-Pred: A tool for identifying cancer and its type using DNA methylation, Genomics, 114 (2022), 110486. https://doi.org/10.1016/j.ygeno.2022.110486 doi: 10.1016/j.ygeno.2022.110486
![]() |
[20] |
M. J. Goldman, B. Craft, M. Hastie, K. Repecka, F. McDade, A. Kamath, et al., Visualizing and interpreting cancer genomics data via the Xena platform, Nat. Biotechnol., 38 (2020), 675–678. https://doi.org/10.1038/s41587-020-0546-8 doi: 10.1038/s41587-020-0546-8
![]() |
[21] |
N. Pandis, The chi-square test, Am. J. Orthod. Dentofacial Orthop., 150 (2016), 898–899. https://doi.org/10.1016/j.ajodo.2016.08.009 doi: 10.1016/j.ajodo.2016.08.009
![]() |
[22] |
T. Desyani, A. Saifudin, Y. Yulianti, Feature selection based on naive bayes for caesarean section prediction, IOP Conf. Ser.: Mater. Sci. Eng., 879 (2020), 01209. https://doi.org/10.1088/1757-899X/879/1/012091 doi: 10.1088/1757-899X/879/1/012091
![]() |
[23] |
A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, et al., Machine learning for neuroimaging with scikit-learn, Front. Neuroinf., 8 (2014), 14. https://doi.org/10.3389/fninf.2014.00014 doi: 10.3389/fninf.2014.00014
![]() |
[24] |
M. Wimmer, G. Sluiter, D. Major, D. Lenis, A. Berg, T. Neubauer, et al., Multi-task fusion for improving mammography screening data classification, IEEE Trans. Med. Imaging, 41 (2022), 937–950. https://doi.org/10.1109/TMI.2021.3129068 doi: 10.1109/TMI.2021.3129068
![]() |
[25] |
P. Khumprom, D. Grewell, N. Yodo, Deep neural network feature selection approaches for data-driven prognostic model of aircraft engines, Aerospace, 7 (2020), 132. https://doi.org/10.3390/aerospace7090132 doi: 10.3390/aerospace7090132
![]() |
[26] |
H. Kaneko, Examining variable selection methods for the predictive performance of regression models and the proportion of selected variables and selected random variables, Heliyon, 7 (2021), e07356. https://doi.org/10.1016/j.heliyon.2021.e07356 doi: 10.1016/j.heliyon.2021.e07356
![]() |
[27] |
H. Gao, H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization, Opt. Express, 18 (2010), 1854–1871. https://doi.org/10.1364/OE.18.001854 doi: 10.1364/OE.18.001854
![]() |
[28] |
P. Ravikumar, M. J. Wainwright, J. D. Lafferty, High-dimensional Ising model selection using ℓ1-regularized logistic regression, Ann. Statist., 38 (2010), 1287–1319. https://doi.org/10.1214/09-aos691 doi: 10.1214/09-aos691
![]() |
[29] |
K. Shah, H. Patel, D. Sanghvi, M. Shah, A comparative analysis of logistic regression, random forest and KNN models for the text classification, Augment. Hum. Res., 5 (2020). https://doi.org/10.1007/s41133-020-00032-0 doi: 10.1007/s41133-020-00032-0
![]() |
[30] |
Y. Wang, D. Wang, D. Geng, Y. Wang, Y. Yin, Y. Jin, Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection, Appl. Soft Comput., 77 (2019), 188–204. https://doi.org/10.1016/j.asoc.2019.01.015 doi: 10.1016/j.asoc.2019.01.015
![]() |
[31] |
L. Breiman, Random forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1007/978-1-4419-9890-3_12 doi: 10.1007/978-1-4419-9890-3_12
![]() |
[32] |
C. J. C. Burges, K. Discovery, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov., 2 (1998), 121–167. https://doi.org/10.1023/A:1009715923555 doi: 10.1023/A:1009715923555
![]() |
[33] |
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI, 7 (1995), 1137–1143. https://dl.acm.org/doi/10.5555/1643031.1643047 doi: 10.5555/1643031.1643047
![]() |
[34] |
B. Recht, C. Re, S. Wright, F. Niu, Hogwild!: A lock-free approach to parallelizing stochastic gradient descent, Adv. Neural Inf. Process. Syst., 24 (2011), 693–701. https://doi.org/10.48550/arXiv.1106.5730 doi: 10.48550/arXiv.1106.5730
![]() |
[35] |
S. Cui, Y. Yin, D. Wang, Z. Li, Y. Wang, A stacking-based ensemble learning method for earthquake casualty prediction, Appl. Soft Comput., 101 (2021). https://doi.org/10.1016/j.asoc.2020.107038 doi: 10.1016/j.asoc.2020.107038
![]() |
[36] |
S. Boughorbel, F. Jarray, M. El-Anbari, Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric, PLoS One, 12 (2017), e0177678. https://doi.org/10.1371/journal.pone.0177678 doi: 10.1371/journal.pone.0177678
![]() |
[37] |
T. S. Tsou, A robust likelihood approach to inference about the kappa coefficient for correlated binary data, Stat. Methods Med. Res., 28 (2019), 1188–1202. https://doi.org/10.1177/0962280217751519 doi: 10.1177/0962280217751519
![]() |
[38] |
L. Li, W. K. Ching, Z. P. Liu, Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods, Comput. Biol. Chem., 100 (2022), 107747. https://doi.org/10.1016/j.compbiolchem.2022.107747 doi: 10.1016/j.compbiolchem.2022.107747
![]() |
[39] |
H. Zou, T. Hastie, Regularization and variable selection via the elastic nets, J. R. Stat. Soc. Series B Stat. Methodol., 67 (2015), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x doi: 10.1111/j.1467-9868.2005.00503.x
![]() |
[40] |
T. P. Hettinger, J. F. Gent, L. E. Marks, M. E. Frank, A confusion matrix for the study of taste perception, Percept. Psychophys., 61 (1999), 1510–1521. https://doi.org/10.3758/bf03213114 doi: 10.3758/bf03213114
![]() |
[41] |
I. Palatnik de Sousa, M. Maria Bernardes Rebuzzi Vellasco, E. Costa da Silva, Local interpretable model-agnostic explanations for classification of lymph node metastases, Sensors (Basel), 19 (2019). https://doi.org/10.3390/s19132969 doi: 10.3390/s19132969
![]() |
[42] |
S. Ding, H. Li, Y. H. Zhang, X. Zhou, K. Feng, Z. Li, et al., Identification of pan-cancer biomarkers based on the gene expression profiles of cancer cell lines, Front. Cell Dev. Biol., 9 (2021), 781285. https://doi.org/10.3389/fcell.2021.781285 doi: 10.3389/fcell.2021.781285
![]() |
[43] |
Y. H. Zhang, T. Zeng, L. Chen, T. Huang, Y. D. Cai, Determining protein–protein functional associations by functional rules based on gene ontology and KEGG pathway, Biochim. Biophys. Acta Proteins Proteom., 1869 (2021), 140621. https://doi.org/10.1016/j.bbapap.2021.140621 doi: 10.1016/j.bbapap.2021.140621
![]() |
[44] |
P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498–2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
![]() |
[45] |
T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J. S. Liu, et al., TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells, Cancer Res., 77 (2017), e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307 doi: 10.1158/0008-5472.CAN-17-0307
![]() |
[46] |
E. L. Kaplan, P. Meier, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 53 (1958), 457–481. https://doi.org/10.1080/01621459.1958.10501452 doi: 10.1080/01621459.1958.10501452
![]() |
[47] |
K. J. Jager, P. C. van Dijk, C. Zoccali, F. W. Dekker, The analysis of survival data: the Kaplan-Meier method, Kidney Int., 74 (2008), 560–565. https://doi.org/10.1038/ki.2008.217 doi: 10.1038/ki.2008.217
![]() |
[48] |
P. Guyot, A. E. Ades, M. J. Ouwens, N. J. Welton, Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves, BMC Med. Res. Methodol., 12 (2012), 9. https://doi.org/10.1186/1471-2288-12-9 doi: 10.1186/1471-2288-12-9
![]() |
[49] |
A. Emami, F. Javanmardi, A. Akbari, J. Kojuri, H. Bakhtiari, T. Rezaei, et al., Survival rate in hypertensive patients with COVID-19, Clin. Exp. Hypertens., 43 (2021), 77–80. https://doi.org/10.1080/10641963.2020.1812624 doi: 10.1080/10641963.2020.1812624
![]() |
[50] |
S. K. Kondapuram, M. S. Coumar, Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them, Gene, 844 (2022), 146821. https://doi.org/10.1016/j.gene.2022.146821 doi: 10.1016/j.gene.2022.146821
![]() |
[51] |
P. Kowalczyk, M. Woszczynski, J. Ostrowski, Increased expression of ribosomal protein S2 in liver tumors, posthepactomized livers, and proliferating hepatocytes in vitro, Acta Biochim. Pol., 49 (2002), 615–624. https://doi.org/10.18388/abp.2002_3770 doi: 10.18388/abp.2002_3770
![]() |
[52] |
K. H. Pan, L. L. Wan, M. Chen, Exploration and identification of potential therapeutic targets and biomarkers for docetaxel resistant prostate cancer, preprint, 2022. https://doi.org/10.21203/rs.3.rs-1172051/v2 doi: 10.21203/rs.3.rs-1172051/v2
![]() |
[53] |
C. Wang, S. Qin, W. Pan, X. Shi, H. Gao, P. Jin, et al., mRNAsi-related genes can effectively distinguish hepatocellular carcinoma into new molecular subtypes, Comput. Struct. Biotechnol. J., 20 (2022), 2928–2941. https://doi.org/10.1016/j.csbj.2022.06.011 doi: 10.1016/j.csbj.2022.06.011
![]() |
[54] |
W. Xu, A. Anwaier, C. Ma, W. Liu, X. Tian, M. Palihati, et al., Multi-omics reveals novel prognostic implication of SRC protein expression in bladder cancer and its correlation with immunotherapy response, Ann. Med., 53 (2021), 596–610. https://doi.org/10.1080/07853890.2021.1908588 doi: 10.1080/07853890.2021.1908588
![]() |
[55] |
K. A. Myers, J. A. Fuller, D. F. Scott, T. J. Devine, M. J. Denton, A. Chan, Multivariate Cox regression analysis of covariates for patency rates after femorodistal vein bypass grafting, Ann. Vasc. Surg., 7 (1993), 262–269. https://doi.org/10.1007/BF02000252 doi: 10.1007/BF02000252
![]() |
[56] |
S. A. Best, S. Ding, A. Kersbergen, X. Dong, J. Y. Song, Y. Xie, et al., Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma, Nat. Commun., 10 (2019), 4190. https://doi.org/10.1038/s41467-019-12164-y doi: 10.1038/s41467-019-12164-y
![]() |