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Abstract:  Malignancies such as bladder urothelial carcinoma,  colon adenocarcinoma, liver 
hepatocellular carcinoma, lung adenocarcinoma and prostate adenocarcinoma  significantly impact 
men’s well-being. Accurate cancer classification is vital in determining treatment strategies and 
improving patient prognosis. This study introduced an innovative method that utilizes gene selection 
from high-dimensional datasets to enhance the performance of the male tumor classification algorithm. 
The method assesses the reliability of DNA methylation data to distinguish the five most prevalent 
types of male cancers from normal tissues by employing DNA methylation 450K data obtained from 
The Cancer Genome Atlas (TCGA) database. First, the chi-square test is used for dimensionality 
reduction and second, L1 penalized logistic regression is used for feature selection. Furthermore, the 
stacking ensemble learning technique was employed to integrate seven common multiclassification 
models. Experimental results demonstrated that the ensemble learning model utilizing multiple 
classification models outperformed any base classification model. The proposed ensemble model 
achieved an astonishing overall accuracy (ACC) of 99.2% in independent testing data. Moreover, it 
may present novel ideas and pathways for the early detection and treatment of future diseases. 
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1. Introduction 

Cancer is a serious disease that profoundly affects human physical and mental health. According 
to the International Agency for Research on Cancer (IARC) of the World Health Organization, 
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approximately 19.3 million people worldwide were diagnosed with cancer in 2020 [1], with over half 
being male patients. Moreover, male-specific tumors [2] (such as prostate adenocarcinoma) have 
garnered significant attention due to their high incidence rates and their impact on men’s health. There 
are notable differences in the global occurrence rates of male cancers [3]. Accurately classifying these 
cancers is one of the fundamental strategies to furnish clinical decision-making information and reduce 
the mortality rates of male cancers [4]. Among these, bladder urothelial carcinoma [5], colon 
adenocarcinoma [6], liver hepatocellular carcinoma [7], lung adenocarcinoma [8] and prostate 
adenocarcinoma [9] are prevalent cancers in males. The incidence of these prevalent cancers in men, 
among which prostate adenocarcinoma is one of the most common, increases with age. Bladder 
urothelial carcinoma and colon adenocarcinoma are usually associated with diet, lifestyle and genetic 
factors. On the other hand, liver hepatocellular carcinoma is primarily associated with hepatitis B and 
C virus infection, while lung adenocarcinoma is associated with smoking and exposure to airborne 
pollutants. These cancers’ high incidence and mortality rates pose considerable threats to human health 
and life. Hence, cancer classification is crucial in selecting appropriate treatment strategies and 
improving the patient’s prognosis. DNA methylation analysis has emerged as a promising tool for 
cancer classification [10], providing valuable insights into tumor biology and revealing potential 
therapeutic targets. 

DNA methylation is the process of covalently modifying DNA by adding a methyl group to 
cytosine residues located in CpG dinucleotide contexts without altering the DNA sequence itself [11]. 
This process is critical in regulating gene expression, maintaining genomic stability and silencing 
transposable elements [12]. Increasing evidence suggests that abnormal DNA methylation patterns are 
associated with many diseases [13], especially cancer. Specifically, abnormal DNA methylation 
patterns in CpG island promoter regions [14] can lead to an increased loss of control of gene expression 
and genomic instability, thus promoting tumor initiation and progression. It is noteworthy that DNA 
methylation analysis has become an effective tool for cancer classification primarily because this 
technique can provide comprehensive information on the methylation status of individual CpG sites [15]. 
Consequently, it can accurately identify differential methylation patterns between normal and tumor 
tissues, making it an essential tool for cancer diagnosis and classification. 

In recent years, high-throughput sequencing technology [16] has emerged as one of the most 
crucial tools in cancer research. DNA methylation data, which are closely associated with cancer 
development, are one of the types of data analyzed using this technology. With the continuous 
advancement of sequencing technology and computer processing capabilities, an increasing amount of 
large-scale DNA methylation data has been amassed. The challenge is now to extract useful 
information from these data and classify cancer, a critical issue in current cancer research. In addition to 
integrating multiple high-throughput sequencing data, artificial intelligence technology has also been 
widely used in cancer research. For instance, deep learning algorithms can be utilized to automate tasks 
and improve work efficiency in cancer diagnosis and treatment. For example, Mohammed et al. [17] 
used multiple One-Dimensional Convolutional Neural Network (1D-CNN) models stacked together to 
classify five types of cancer based on The Cancer Genome Atlas (TCGA) RNA-seq data. Jia et al. [18] 
proposed a method that combines variance selection with recursive feature elimination, successfully 
selecting 20 optimal features from over 480,000 dimensions of DNA methylation data. They compared 
the performance of four different estimators and five classifiers and achieved an accuracy of over 93%. 
Furthermore, Lin et al. [19] developed a new cancer prediction model, iCancer-Pred, utilizing deep 
neural networks. This model can classify seven different cancer datasets obtained from the TCGA Hub 



19135 

Mathematical Biosciences and Engineering  Volume 20, Issue 11, 19133–19151. 

database on the University of California Santa Cruz (UCSC) XENA platform [19,20]. The authors 
compared this method with machine learning techniques such as support vector machines (SVM), 
logistic regression (LR) and random forest (RF). By means of 5-fold cross-validation, they achieved 
the highest accuracy of the model to be up to 97%. Although several existing studies have made 
significant progress in cancer classification using various models, there is still a need to overcome model 
limitations and improve the overall performance of cancer classification. 

In this study, we propose an ensemble learning-based classification algorithm called Stacking for 
classifying male tumors. Specifically, we utilize the chi-square test and L1 regularity based logistic 
regression to select features highly associated with the characteristics of the cancer dataset. 
Subsequently, we devised an ensemble learning algorithm to distinguish the five most common cancers 
in males and their corresponding normal tissues. Stacking has been tested on DNA methylation 450K 
cancers data set, where the results demonstrated a significant advantage in the accurate classification 
of cancer. In addition, this study explores the relationship between potential genes and the survival 
rates of these five common cancers through gene ontology analysis, survival analysis, literature review 
and other related methods. Our findings suggest that the SRC gene is associated with bladder urothelial 
carcinoma survival, while RPS2, RPL23A, RPL22, RPL27 and SRC genes are related to liver 
hepatocellular carcinoma survival. Furthermore, KRAS gene is associated with lung adenocarcinoma 
survival, and SRC gene is associated with prostate adenocarcinoma survival. These discoveries may 
assist in the early identification and precise categorization of these cancer types, while also pinpointing 
potential treatment approaches to enhance the survival rates among high-risk males.  

2. Materials and methods 

2.1. Data collection and preprocessing 

UCSC XENA is one of the websites derived from the TCGA database. The site stores several 
large public datasets on cancer, including TCGA, GETX and TARGET, among others with powerful 
and intuitive functionality. 

The DNA methylation 450K data used in this study were downloaded exclusively from the UCSC 
XENA platform, which included datasets for bladder urothelial carcinoma (BLCA), colon 
adenocarcinoma (COAD), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD) and 
prostate adenocarcinoma (PRAD). A total of 2241 samples of both cancer and normal tissue were 
obtained by combining these five datasets, as shown in Table 1. The dataset was then divided into a 
training set and a testing set at a ratio of 9:1. 

Table 1. Number of samples per type of cancer. 

Cancer tumor Number of samples Training (≈90%) Testing (≈10%) 

BLCA 434 390 44 
COAD 337 303 34 

LIHC 429 386 43 

LUAD 492 443 49 

PRAD 549 494 55 

Total 2241 2016 225 
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2.2. Feature selection method 

Given the high-dimensional nature of the data in this study, with more than 480,000 dimensions, 
the sample size seems somewhat limited. However, it is essential to note that not all features hold equal 
importance for the classification model. Therefore, it is crucial to identify and select the most 
informative features to ensure accurate and effective cancer classification. This task is achieved 
through feature selection and dimensionality reduction, where representative features are selected. In 
the training dataset, features containing “NaN” were removed, and in the test dataset, they were 
substituted with 0. 

To select features relevant to the five common tumor classifications, the chi-square test was 
initially employed for feature selection. The chi-square test [21] is a statistical method used to evaluate 
the independence between categorical variables. It is employed to assess the significance of each 
feature in predicting the target variable. We can determine the association between features and cancer 
classifications by utilizing the chi-square test, thereby selecting the crucial features. Specifically, we 
used the SelectKBest [22] function from the scikit-learn library [23] to filter out features with top chi-
square scores. Based on this, through a cross-validation approach, we determined that the performance 
of the chi-square test was significantly improved at a feature count of 22,120. The features selected by 
the chi-square test are highly relevant to cancer classification tasks [24] and thus are of significant 
importance. Consequently, these features were utilized as input features for subsequent classifier 
training and testing. The formula used is as follows: 

𝜒ଶ ൌ ෍ ෍
൫𝑂௜௝ െ 𝐸௜௝൯

ଶ

𝐸௜௝

௠

௝ୀଵ

௡

௜ୀଵ

. ሺ1ሻ 

𝑂௜௝ denotes the observed value of the cross term in row 𝑖, column 𝑗; 𝐸௜௝ represents the expected 
value of the cross term in row 𝑖, column 𝑗；𝑛 denotes the number of rows; 𝑚 denotes the number 
of columns. 

Although approximately 400,000 CpG sites were removed from the cancer dataset using chi-
square testing, which significantly reduced the number of sample features, it is still necessary to further 
reduce the number of features to construct a high-performance predictor. Feature selection can assist 
in reducing model complexity [25], which minimizes the risk of overfitting and enhances model 
interpretability and explainability. By selecting features with strong predictive power for the target 
variable, feature selection can improve the predictive performance of the model [26]. Additionally, 
feature selection can decrease data processing and modeling time and expenses. 

To accomplish this aim, we employed a logistic regression model based on the L1 parametric 
penalty [27], and the SelectFromModel function of the scikit-learn library was used to filter features. 
“L1” refers to L1 regularization, which is a regularization technique used in machine learning models 
like linear regression and logistic regression [28]. This approach helps identify crucial features of the 
classification task by penalizing the model’s complexity, thus preventing overfitting. These features 
not only enhance the model’s performance and predictive power but also its interpretability and 
practical application value. In practical applications, we can perform more nuanced feature selection 
and optimization based on the significance and weight of these features to further improve the model’s 
performance and application. The L1 regularization method naturally possesses feature selection 
properties because of its sparse solution characteristic. 
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The logistic regression model computes the probability of a data point belonging to a specific 
class based on a linear combination of input features [29]. The fundamental logistic regression formula 
without regularization is: 

𝑝ሺ𝑦 ൌ 𝑛|𝑥ሻ ൌ
1

ሺ1 ൅ 𝑒ିሺ௪బା௪భ௫భା௪మ௫మା⋯ା௪೙௫೙ሻሻ
. ሺ2ሻ 

Here, 𝑝ሺ𝑦 ൌ 𝑛|𝑥ሻ  denotes the probability of data point 𝑥  belonging to class 𝑛 , 𝑤௜  represents the 
weights for each feature 𝑥௜ and exp is the exponential function. 

When L1 regularization is applied, the objective function is the sum of the log loss to be 
minimised and the L1 regularization term, which is the absolute sum of the weights. The L1 
regularization term is added with a regularization strength parameter 𝜆. The objective function is: 
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where 𝑦 is the true label of the data points, and the L1 regularized logistic regression model is derived 
by minimizing the objective function 𝐽ሺሻ with respect to the weight 𝑤௜. 

3. Model architecture 

3.1. Overall process 

Stacking is an ensemble method for models [30], where the combination of multiple weaker 
models often yields better performance than a single strong model. This approach involves training 
several base learners and using their predictions as input to a meta-learner. The stacked ensemble 
algorithm offers superior performance, generalization capabilities and flexibility compared to 
individual algorithms by leveraging the advantages of multiple base learners to enhance model 
accuracy and robustness. In this study, we propose a framework combining a chi-square test, logistic 
regression with L1 penalty and stacking ensemble learning to construct a multiclass classifier for five 
types of cancer data. The overall flowchart of this study is presented in Figure 1. 

The approach has trained seven base classification models: random forest (RF), support vector 
machine (SVM), bootstrap aggregated algorithm (Bagging), stochastic gradient descent (SGD), 
multilayer perceptron (MLP), logistic regression (LR) and LightGBM (LGBM) [31–34]. The reason 
for selecting these models is that they are based on different algorithms and can capture different data 
features. The LR, SVM and SGD models are linear models, the RF model captures nonlinear 
relationships and interactions, Bagging and LighTGBM capture nonlinear relationships by boosting 
weak learners and MLP can solve linearly inseparable problems. In this study, the integrated algorithm 
is designed to leverage the strengths of multiple models more effectively than a single algorithm. This 
approach aims to enhance performance robustness and accuracy. 

All base learners were trained on the whole training set and then evaluated with the validation set. 
These predictions were used to train the meta-learner along with the true labels in the validation set. For 
the meta-learner, we chose the LGBM model. The specific prediction process is shown in Figure 2. 

In summary, stacking is an effective method of ensemble learning that combines multiple models 
to achieve higher performance than any single model [35]. By leveraging different base learners and 
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using a meta-learner to find the best way to combine them, stacking can produce better results 
compared to any single model. Our experimental performance demonstrated the effectiveness of the 
stacking approach for this classification task. 

 

Figure 1. Overall workflow diagram. 

 

Figure 2. Stacking ensemble modeling framework. 

3.2. Classifier performance evaluation 

Scientific evaluation metrics are crucial to the performance metrics of a model. We usually use a 
variety of evaluation metrics to measure the performance of a model, such as accuracy and recall. 
These metrics can not only help us understand the predictive ability of the model but also help us 
optimize the parameters and structure of the model to improve its performance. In this study, the 
evaluation of model performance contains five metrics: Accuracy (ACC), Matthews Correlation 
Coefficient (MCC) [36], Precision (PRE), Geometric mean (Gmean), Recall (RECALL) and Kappa 
Coefficient (KAPPA) [37]. 
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In this context, 𝑇𝑃 (True Positive) represents the true positives, indicating the number of times the 
model predicted the positive class correctly; 𝑇𝑁  (True Negative) represents the true negatives, 
indicating the number of times the model predicted the negative class correctly; 𝐹𝑃 (False Positive) 
represents the false positives, indicating the number of times the model predicted the negative class 
as positive; 𝐹𝑁 (False Negative) represents the false negatives, indicating the number of times the 
model predicted the positive class as negative. The kappa coefficient is a measure of agreement 
between a classifier and human classification. It compares the observed classification accuracy with 
the chance agreement. 𝑝௢ is the observed classification accuracy, and 𝑝௘ is the expected classification 
accuracy by chance. They can be expressed as follows: 

𝑝௢ ൌ
𝑇𝑃௜ ൅ 𝑇𝑁௜
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where 𝑇𝑃௜, 𝑇𝑁௜, 𝐹𝑃௜, 𝐹𝑁௜ (𝑖=0,1,2...,5) are 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 for each subset, respectively. 

3.3. Results 

During model training, we performed 10-fold cross-validation on the training set to optimize the 
parameters. In this, 10-fold cross-validation is performed on the training dataset. The original 
dataset is first divided into training and test sets. Then, we further divide the training set into ten 
equal-sized subsets for cross-validation. In each cross-validation, one subset is used as the 
validation set and the remaining nine subsets are used to train the model, ensuring that each subset 
has acted as a validation set. 

Selecting an effective feature selection method improves the performance of predictive models 
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and obtains better explanatory power. For this purpose, a comprehensive comparison of various 
feature selection methods was performed and recursive feature elimination (RFE) [38], elastic 
network (ENET) [39], and a combination of logistic regression with chi-square test based on L1 
regularity were considered. 

During the comparison process, we observed that the combined methods exhibit promising 
performance in the feature selection task. The results presented in Table 2 enable us to clearly compare 
the variations in performance among these methods for the prediction task. In the fourth row of Table 2, 
“99.22  0.004” indicates that in the 10-fold cross-validation, the value of ACC is 99.22 and the 
variance is 0.004.  

Building upon these findings, the chi-square test proves to be highly valuable in categorization 
problems as it allows us to identify features that are significantly associated with the target variable, 
potentially related to cancer in this study. As for the logistic regression method based on L1 
regularization, it induces sparsity in the feature coefficients by applying L1 regularization, and this 
sparsity helps to filter out irrelevant or redundant features, thus improving the generalization ability of 
the model. Consequently, we opted for the combination method to screen features and have continued 
utilizing this approach in subsequent studies. 

Table 2. 10-fold cross-validation results for different feature methods. 

Method ACC (%) PRE (%) RECALL (%) MCC (%) Gmean (%) KAPPA (%) 

RFE 98.36  0.010 97.95  0.013 97.74  0.014 98.01  0.012 98.01  0.012 99.03  0.006

ENET 97.97  0.009 97.07  0.010 96.18  0.016 96.81  0.011 96.79  0.012 98.40  0.006

Ours 99.22  0.004 99.24  0.004 99.23  0.004 99.07  0.005 99.60  0.002 99.07  0.005

Afterwards, we conducted a 10-fold cross-validation of all classification methods. The statistical 
results are shown in Tables 3 and 4. The performance of the stacking ensemble learning method was 
found to be superior to those of the base learners while also exhibiting good stability. Due to the 
instability of independent testing results at each training, we took the average of 10 results in the 
experiment. The data achieved very good results on the stacking ensemble learning model, with over 99% 
in all criteria except RECALL, as shown in Table 4 and Figure 3(b). 

Table 3. 10-fold cross-validation results. 

Method ACC (%) PRE (%) RECALL (%) MCC (%) Gmean (%) KAPPA (%) 

MLP 97.52  0.010 96.85  0.014 97.01  0.013 96.99  0.013 98.54  0.006 96.98  0.013

Bagging 97.62  0.015 96.81  0.020 97.48  0.017 97.13  0.018 98.63  0.009 97.10  0.018

LR 98.01  0.011 97.37  0.015 97.78  0.019 97.60  0.013 98.85  0.006 97.59  0.013

SVM 97.87  0.011 97.17  0.016 97.67  0.012 97.42  0.014 98.76  0.006 97.41  0.014

RF 97.77  0.012 97.03  0.016 97.28  0.014 97.30  0.014 98.70  0.007 97.28  0.014

SGD 97.42  0.013 96.87  0.014 96.93  0.021 96.91  0.015 98.49  0.008 96.86  0.016

LGBM 98.11  0.013 97.56  0.017 97.62  0.015 97.71  0.016 98.89  0.008 97.70  0.016

Stacking 99.22  0.004 99.24  0.004 99.23  0.004 99.07  0.005 99.60  0.002 99.07  0.005
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Table 4. Average results of 10 independent tests. 

Method ACC (%) PRE (%) RECALL (%) MCC (%) Gmean (%) KAPPA (%) 

MLP 98.22  0.003 97.20  0.009 97.25  0.006 97.82  0.004 98.94  0.002 97.82  0.004

Bagging 98.58  0.009 96.89  0.004 97.62  0.001 98.26  0.002 99.20  0.001 98.25  0.002

LR 98.22  0.000 96.73  0.000 97.32  0.000 97.83  0.000 98.97  0.000 97.82  0.000

SVM 98.67  0.000 97.09  0.000 97.69  0.000 98.37  0.000 99.25  0.000 98.36  0.000

RF 98.36  0.005 96.98  0.011 97.35  0.004 97.99  0.005 99.05  0.002 97.98  0.006

SGD 97.73  0.008 97.10  0.016 96.22  0.012 97.24  0.009 98.63  0.005 97.22  0.010

LGBM 99.11  0.000 98.26  0.000 98.07  0.000 98.91  0.000 99.48  0.000 98.91  0.000

Stacking 99.29  0.004 99.21  0.007 98.20  0.007 99.13  0.005 99.56  0.002 99.13  0.005

  

Figure 3. 10-fold cross-validation results and average results of 10 independent test line graphs. 

 

Figure 4. Confusion matrix for independent testing of multiclass predictors. 
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The confusion matrix [40] is shown in Figure 4, and it can be seen that the model performs well 
in distinguishing between the five types of cancer and normal tissue. It can also be observed that out 
of all the samples in the independent testing data, only two were misclassified, where one normal tissue 
sample was incorrectly predicted as a PRAD sample, and another COAD sample was incorrectly 
predicted as a BLCA sample. 

This result is satisfactory, which indicates that the model has high accuracy and reliability and can 
be used in clinical practice. At the same time, although the misclassification rate is low, we still need to 
continue to optimize and improve the model to improve its accuracy and applicability in future research. 

To validate the generalizability of the proposed model, we utilized the dataset and neural network 
employed by Lin et al. [19] to assess the performance of our classifier in this study. By comparing the 
performance of our model with their dataset and methods, our model consistently outperforms theirs, 
as demonstrated in Tables 5 and 6. These results indicate that our model excels not only on the original 
dataset but can also be successfully applied to other datasets with a degree of generality and replicability. 
This, in turn, enhances the reliability and stability of the model for practical medical applications. 

Table 5. Comparison of results using our dataset with the iCancer-Pred approach. 

Method ACC (%) PRE (%) RECALL (%) MCC (%) Gmean (%) KAPPA (%) 

ICancer-Pred 83.56  0.199 78.49  0.229 81.81  0.179 82.50  0.194 80.16  0.236 89.43  0.135

Stacking 99.29  0.004 99.29  0.007 98.20  0.007 99.13  0.005 99.56  0.002 99.13  0.005

Table 6. Comparison of results using iCancer-Pred’s dataset with our approach. 

Method ACC (%) PRE (%) RECALL (%) MCC (%) Gmean (%) KAPPA (%) 

ICancer-Pred 97.27  0.006 97.37  0.005 96.99  0.007 96.82  0.007 ━ 96.81  0.007

Stacking 98.22  0.006 98.18  0.007 97.96  0.009 97.93  0.007 98.35  0.002 97.92  0.007

3.4. Explaining model predictions using LIME 

To achieve interpretable predictions and gain insights into feature contributions, we utilized the 
local interpretable model-agnostic explanations (LIME) [41] model. In this study, we used 9511 CpG 
sites as features for predicting cancer types. Figure 5 shows the LIME prediction results of a sample 
by using the stacking integrated learning model, which screens the top 6 predictive biomarkers most 
helpful in classifying normal tissue, bladder urothelial carcinoma (BLCA), colon adenocarcinoma 
(COAD), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD) and prostate 
adenocarcinoma (PRAD). The prediction probability table in the top-left corner of Figure 5 shows the 
model’s probability of predicting a given sample as one of these types of cancer. In this case, LIME assigns 
a feature weight 0.20 for cg11055493 feature values less than or equal to 0.39 (cg11055493 ≤ 0.39). 

Additionally, we demonstrated the feature weights of other predicted features. We detailed each 
feature’s values and color codes in the “Feature-Value” table, which specifies whether a given feature 
contributes to the prediction. Specifically, normal tissue is displayed in blue, bladder urothelial 
carcinoma (BLCA) is color coded in orange, colon adenocarcinoma (COAD) is color-coded in green, 
liver hepatocellular carcinoma (LIHC) is color coded in purple, lung adenocarcinoma (LUAD) is color 
coded in red and prostate adenocarcinoma (PRAD) is color coded in brown. 
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Figure 5. LIME results of 6 major biomarkers illustrated using stacking ensemble learning 
classifier for normal tissue (Normal), bladder urothelial carcinoma (BLCA), colon 
adenocarcinoma (COAD), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD) and prostate adenocarcinoma (PRAD); LIME: Local Interpretable Model-
Agnostic Explanations. 

4. Genes and biological significance 

We obtained 9511 CpG loci by screening and annotating them into genes and finally obtained 8087 
genes. By comparing these 8087 genes with published CpG biomarkers, we found that Ding et al.’s 
study [42] included data for the five types of cancer used in our study, as well as 3000 CpG biomarker 
genes. At the same time, 863 genes overlapped between the two studies, as shown in Figure 6. 

 

Figure 6. Venn diagram of overlapping genes between the two studies. 

For the list of overlapping genes, we performed pathway and process enrichment analysis by 
using multiple ontology sources, including GO Biological Processes, GO Cellular Components, GO 
Molecular Functions and KEGG Pathway [43]. A series of criteria were applied to screen for 
biologically significant enrichment terms, including p values less than 0.01, minimum counts of 3 and 
enrichment factors greater than 1.5 (enrichment factor refers to the ratio between observed counts and 
randomly expected counts). Based on their membership similarity, we grouped the enriched terms into 
clusters and used Kappa scores as a similarity measure in the hierarchical clustering process, treating 
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subtrees with a similarity greater than 0.3 as a cluster. Finally, in each cluster, the most significant 
enriched terms in terms of the above metrics (p-values, counts, etc.) were selected to represent its 
clusters. For example, for GO:0016570 we filtered the following metrics: count = 34, Log10(P) = -8.09, 
Log10(q) = -4.16. “Count” is the number of genes in the user-provided lists with membership in the 
given ontology term. “Log10(P)” is the p-value in log base 10. “Log10(q)” is the multi-test adjusted 
p-value in log base 10. The results of these enrichment analyses can help us to deeply understand the 
functions of these overlapping genes in different biological processes and pathways, providing 
important clues for further studies. 

 

Figure 7. Heatmap of enriched terms for overlapping genes. The intensity of the color 
indicates the level of enrichment, with darker colors indicating higher levels of enrichment. 
On the right side, there is a wealth of information on terms from the Gene Ontology (GO) 
and KEGG Pathway that can be used to clarify the meaning and function of each 
enrichment term. 

As shown in Figure 7, gene ontology analysis shows that overlapping genes are present in 
biological processes of histone modification (GO:0016570), DNA metabolic process (GO:0006259), 
neuromuscular process (GO:0050905), embryo development ending in birth or egg hatching 
(GO:0009792), localization within membrane (GO:0051668), brain development (GO:0007420), 
modulation of chemical synaptic transmission (GO:0050804), regulation of cell cycle process 
(GO:0010564), developmental maturation (GO:0021700) and other related genes; molecular functions 
exist in transcription coregulator activity (GO:0003712), molecular adaptor activity (GO:0060090), 
protein domain specific binding (GO:0019904) and transcription factor binding (GO:0008134); among 
cellular components, there is extrinsic component of membrane (GO:0019898), dendrite 
(GO:0030425), cell projection membrane (GO:0031253), perinuclear region of cytoplasm 
(GO:0048471) and transporter complex (GO:1990351) were enriched. In addition, growth hormone 
synthesis (hsa04935) secretion and action (hsa04935) and the MAPK signaling pathway (hsa04010) 
were identified in the KEGG pathway. 

In this study, the STRING database was employed to search for potential interactions among 
encoded proteins and investigate their potential interactions. Through this step, we obtained a 
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representation of the protein‒protein interaction network, as shown in Figure 8. This network describes 
the relationships between genes and proteins, such as physical contacts and targeted regulation. Our 
goal was to elucidate the meaningful molecular regulatory networks in living organisms. 

 

Figure 8. Protein‒protein interaction networks generated by overlapping gene lists. The 
genes marked in red are the top 10 key genes scored by the MCC method (RPS2, RPL23A, 
RPL3L, RPL22, RPL27, EEF2, PIK3CA, SRC, KRAS and CREBBP). 

Subsequently, the “cytoHubba” plugin in Cytoscape [44] software calculated the node scores of 
genes in the PPI network and identified the top 10 key genes: RPS2, RPL23A, RPL3L, RPL22, RPL27, 
EEF2, PIK3CA, SRC, KRAS and CREBBP (as shown in Figure 9). 

 

Figure 9. Key genes for scoring the top 10. 

To investigate the effect of these genes on the survival of cancer patients, we performed a survival 
analysis of 10 potential biomarkers screened from the PPI network and used the TIMER database [45] 
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to further draw Kaplan‒Meier survival curves (Figure 10). The Kaplan-Meier survival curve was first 
proposed by Kaplan and Meier in 1958 [46]. It is a non-parametric method used for analyzing survival 
data, capable of estimating survival probabilities at different time points and visualizing the changes 
in survival curves. In the field of cancer research, the Kaplan-Meier survival curve is widely employed 
for analyzing patients’ survival data [47,48]. Recent studies have shown that this method remains 
highly effective in predicting patient survival rates. For instance, Hamid Bakhtiari et al. [49] utilized 
this method to predict the survival rates of hypertensive patients with COVID-19. According to 
statistical significance, a gene was considered to be significantly associated with cancer survival when 
P < 0.05. Our analysis revealed that the SRC gene is significantly associated with the prognosis of 
bladder urothelial carcinoma, liver hepatocellular carcinoma and prostate adenocarcinoma. 
Additionally, the RPS2, RPL23A, RPL22, RPL27 and SRC genes are significantly associated with the 
prognosis of liver hepatocellular carcinoma. Furthermore, we found that the KRAS gene is 
significantly associated with the prognosis of lung adenocarcinoma. These results suggest that these 
genes have potential prognostic value. However, further clinical validation of these potential 
biomarkers is needed before they can be used.  

 

Figure 10. Kaplan‒Meier curve plot showing the genes with p values less than 0.05. 

5. Literature review 

After conducting a comprehensive review of the literature, we found that many of the critical 
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genes associated with cancer survival identified in this study have been previously reported in the 
literature. For example, Sree Karani Kondapuram et al. [50] identified SRC as a central autophagy 
gene associated with LIHC survival, making it a potential drug target. Kowalczyk et al. [51] discovered 
that RPS2 is overexpressed in mouse liver hepatocellular carcinoma samples and may impact the 
accuracy of mRNA translation related to aminoacyl-tRNA binding ribosomes, thus promoting cell 
proliferation. Additionally, Pan et al. [52] identified SRC as a potential therapeutic target for docetaxel-
resistant prostate adenocarcinoma and an effective prognostic indicator that was significantly 
correlated with the immune score, ferroptosis, methylation and OCLR score. Wang et al. [53] found 
that high expression of ribosome-related genes RPL23A and RPL27 significantly reduced the survival 
rate of patients with liver hepatocellular carcinoma. Moreover, Xu et al. [54] identified SRC as a 
prognostic gene for BLCA through multivariate Cox regression analysis [55]. In lung cancer, KRAS 
gene mutation is most common in patients with lung adenocarcinoma, and approximately 33% of 
patients will have this mutation [56]. 

In summary, the comprehensive literature review confirms the importance of the key genes 
identified in this study in cancer survival. Our feature selection method has proven to be effective in 
extracting potential biomarkers. Furthermore, these findings provide additional evidence supporting 
the potential clinical relevance of our model and the importance of integrating machine learning 
methods into cancer research. Further research is needed to validate these findings and explore the 
underlying mechanisms of these genes in cancer development and progression. 

6. Conclusions 

In this paper, we present a novel model for predicting the types of five different cancers and their 
corresponding normal tissues in the DNA methylation 450K dataset. Our proposed model includes a 
stacked ensemble learning approach combined with a feature selection method based on a chi-square 
test and logistic regression with L1 regularization. This framework effectively addresses the challenges 
posed by the high-dimensional nature of the data. Specifically, we utilize a chi-square test for feature 
selection, followed by logistic regression with L1 regularization as the estimator for SelectFromModel 
to create an optimized feature set. These selected features are then employed in our stacking ensemble 
learning model for prediction. Additionally, we have taken steps to mitigate the issue of an unbalanced 
sample distribution between cancer samples and normal tissues by applying SMOTETomek integrated 
sampling to the training set. 

Compared to existing methods, our proposed stacking ensemble learning model consistently 
performs better in classifying different cancer types. Our study establishes a robust multiclass predictor 
capable of identifying a patient’s cancer type. Furthermore, we have conducted survival analysis on 
essential genes to identify potential biomarkers associated with cancer survival, and we have 
performed comprehensive GO and KEGG pathway analyses to underscore the biological relevance of 
our findings. In conclusion, our model has great potential in the field of cancer diagnosis and treatment, 
highlighting the value of combining machine learning methods with DNA methylation data analysis. 
However, despite conducting relevant bioinformatics analyses, our study still has limitations and 
requires further validation and testing on a broader cancer dataset. In order to enhance the robustness 
of our approach, we plan to explore and integrate other types of cancer and related multi-omics data 
in future research efforts. 
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