
The current work investigates solitary wave solutions for the fractional modified Degasperis-Procesi equation and the fractional gas dynamics equation with Caputo's derivative by using a modified extended direct algebraic method. This method transforms the targeted fractional partial differential equations (FPDEs) into more manageable nonlinear ordinary differential equations, which are then turned into systems of nonlinear algebraic equations with a series-based solution assumption. Using Maple 13, the solitary wave solutions are then obtained by solving the obtained systems. The method produces multiple innovative solitary wave solutions for both equations, which are graphically depicted as 3D and 2D graphs and provide important insights into their behaviors. These insights help us to comprehend wave behavior and the physical processes represented by these equations. Furthermore, the suggested technique exhibits dependability and efficacy in dealing with complicated FPDEs, which bodes well for future studies on the subject.
Citation: Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan. Innovative approach for developing solitary wave solutions for the fractional modified partial differential equations[J]. AIMS Mathematics, 2023, 8(11): 27775-27819. doi: 10.3934/math.20231422
[1] | Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations. AIMS Mathematics, 2025, 10(4): 8277-8305. doi: 10.3934/math.2025381 |
[2] | Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064 |
[3] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[4] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
[5] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[6] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[7] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[8] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[9] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[10] | Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549 |
The current work investigates solitary wave solutions for the fractional modified Degasperis-Procesi equation and the fractional gas dynamics equation with Caputo's derivative by using a modified extended direct algebraic method. This method transforms the targeted fractional partial differential equations (FPDEs) into more manageable nonlinear ordinary differential equations, which are then turned into systems of nonlinear algebraic equations with a series-based solution assumption. Using Maple 13, the solitary wave solutions are then obtained by solving the obtained systems. The method produces multiple innovative solitary wave solutions for both equations, which are graphically depicted as 3D and 2D graphs and provide important insights into their behaviors. These insights help us to comprehend wave behavior and the physical processes represented by these equations. Furthermore, the suggested technique exhibits dependability and efficacy in dealing with complicated FPDEs, which bodes well for future studies on the subject.
Numerous fractional operators are discussed in the literature [1,2,3], with the Caputo and Riemann-Liouville derivatives being the most significant and widely used [4,5,6]. In 2000, Hilfer [7] generalized the Riemann-Liouville derivative, introducing what is now referred to as the Hilfer fractional derivative (HFrD).
In literature, various authors used HFrD in their research work with fractional differential and integro-differential models; for example, Raghavan et al. [8] found solutions of the fractional differential equations (FrDEs) with HFrD applying the Laplace transform. Li et al. [9] developed results on the existence and uniqueness and also developed solutions for FrDEs by HFrD. Zhu et al. [10] extracted the solutions of fractional integro-differential models with HFrD. Bedi et al. [11] developed results of the existence and uniqueness of solutions for Hilfer FrDEs. Kasinathan et al. [12] developed results related to mild solutions for FrDEs. Lv and Yang [13] established results for the existence and uniqueness of mild solutions for stochastic models applying semigroup theory. Jin et al. [14] researched the existence and uniqueness of mild solutions to the diffusion model. Karthikeyan et al. [15] discussed results about the controllability of delayed FrDEs. Hegade and Bhalekar [16] developed results of stability for FrDEs. For more studies related to work with HFrD, see [17,18].
In recent years, many scholars have actively worked on various topics related to different classes of fractional stochastic differential equations (FSDEs). In [19], Batiha et al. proposed an innovative approach for solving FSDEs. They obtained approximate solutions for these equations and compared the results with solutions obtained by other methods. Chen et al. [20] established the existence and uniqueness of solutions to FSDEs and presented results related to stability. The authors also found solutions using the Euler-Maruyama technique for FSDEs. Moualkia and Xu [21] undertook a theoretical analysis of variable-order FSDEs. They determined approximate solutions for these equations and assessed their accuracy by comparing them with solutions from alternative methods. In [22], Ali et al. investigated the coupled system of FSDEs regarding the existence and uniqueness of solutions and stability and found solutions. Li et al. carried out a stability investigation of a system of FSDEs in [23]. The research analyzes the interaction between fractional calculus, stochastic processes, and time delays to provide a better understanding of system stability. It sheds light on the effective solution of these equations via several numerical methods. Moreover, the paper examined various types of stability in FSDEs. Albalawi et al. [24] conducted existence and uniqueness of solution and stability analysis for FSDEs with conformable derivatives. In [25], Doan et al. established the convergence of the Euler-Maruyama approach for FSDEs, found solutions using this technique, and presented stability results. In [26], Umamaheswari et al. discussed the existence and uniqueness of solutions using the Picard scheme for FSDEs with Lévy noise. In [27], Li et al. studied Hilfer FSDEs with delay concerning the existence and uniqueness of solutions using the Picard method. Moreover, they investigated finite-time stability using various inequalities. For further information on FSDEs, refer to [28,29,30,31,32].
Stochastic fractional delay differential equations (SFDDEs) are a mathematical model that includes fractional derivatives to take into account memory effects, delays in the display of time layer interactions, and stochastic processes for recording randomness or noise. These equations are particularly suitable for systems where past conditions, delay effects, and random variations have a significant impact on dynamics. SFDDEs find applications in various real-life scenarios, such as modeling biological systems with delayed feedback and environmental noise (e.g., population dynamics), engineering systems with memory and delays (e.g., control systems in robotics), finance (e.g., asset pricing with time-lagged market responses), and physics (e.g., viscoelastic materials with delayed stress-strain relationships). By integrating these complex factors, SFDDEs provide a robust framework for analyzing and predicting the behavior of time-dependent, uncertain systems.
The average principle is a valuable way to analyze various systems. Focusing on averaged equations instead of the original complex time-dependent system provides an effective way to simplify the analysis and reduce complexity. The effectiveness of the average principle depends on the identification of conditions in which the system averaged in a particular context corresponds to the original system. Various authors have presented results on the average principle from different perspectives, such as Zou et al. [33], who established the average principle for FSDEs with impulses. Zou and Luo [34] established a novel result regarding the average principle for SFDDEs with the Caputo operator. The authors [35] established a result on the average principle with the Caputo derivative for neutral FSDEs. Mao et al. [36] established averaging principle results for stochastic delay differential equations with jumps. Xu et al. [37] also worked to prove an averaging principle theorem for FSDEs. Guo et al. [38] studied the averaging principle for stochastic differential equations under a general averaging condition, which is weaker than the traditional case. In [39,40], the authors proved the averaging principle for impulsive FSDEs. Ahmed and Zhu [41] presented results regarding the averaging principle for Hilfer FSDEs with Poisson jumps. Xu et al. [42] presented an averaging principle for Caputo FSDEs driven by Brownian motion in the mean square sense. Jing and Li [43] worked on the averaging principle for backward stochastic differential equations. Djaouti et al. [44] presented some generalizations of the averaging principle for neutral FSDEs. Mouy et al. [45] also proved the averaging principle for Caputo-Hadamard FSDEs with a pantograph term. Liu et al. [46] presented results for Caputo FSDEs with Brownian motion and Lévy noise [47]. Yang et al. [48] presented results for FSDEs with Poisson jumps regarding the averaging principle.
Motivated by the above discussion, this paper presents significant findings on the existence and uniqueness of solutions, continuous dependence (Con-D), regularity, and average principle for Hilfer SFDDEs of the pth moment. The pth moment is a crucial tool for studying stochastic systems, helping assess the system's behavior and stability by providing a measure of its response over time. The pth moment can be applied to study the behavior of a stochastic system by analyzing its expected value. Moreover, the pth moment is an essential tool in probability analysis, offering a convenient framework for investigating and verifying the stability of stochastic systems.
This research study uses the contraction mapping principle to determine the existence and uniqueness results of the Hilfer SFDDES solution. Next, we present the Con-D results by assuming that the coefficients correspond to the global Lipschitz condition. Additionally, various inequalities are used to describe regularity and determine average principle results. Finally, examples and graphic illustrations are included to support the results derived from this study.
Remark 1.1. By proving the outcomes of the theoretical analysis regarding well-posedness, regularity, and average principle, we conclude that these results can be generalized to SFDDEs with the Hadamard fractional operator.
Remark 1.2. Unlike traditional fractional models, SFDDEs with HFrD present a fundamental challenge due to the interaction of memory, randomness, and time delay effects. These complexities make it even more difficult to derive analytical or approximate solutions and ensure stability. Furthermore, the relationship between HFrD and probabilistic properties requires careful treatment of functional spaces, noise structures, and solution methods.
Listed below are the main contributions of our study:
(1) This research work establishes results on the well-posedness, regularity, and average principle for SFDDEs concerning HFrD.
(2) Most of the findings related to existence, uniqueness, and average principle for FSDEs have been established in the mean-square sense; however, we obtained these results using the pth moment. Consequently, our study extended the results on well-posedness and average principle for SFDDEs to the case where p=2.
(3) We provide several numerical examples along with their graphical representations to verify the accuracy and reliability of our theoretical findings.
(4) We provide results for FSDEs with a delay term.
In this research, we study the following SFDDEs driven by Brownian motions:
{Dϑ,a0+ϖ(c)=f(c,ϖ(c),ϖ(c−s))+g(c,ϖ(c),ϖ(c−s))dw(c)dc,ϖ(c)=σ(c),−s≤c≤0,I(1−ϑ)(1−a)0+ϖ(0)=σ′, | (1.1) |
where s∈R+ is the delay time, σ(c) is the history function for all c∈[−s,0], and Dϑ,a0+ represents HFrD with orders 0≤ϑ≤1, 12<a<1. The f:[0,M]×Rm×Rm→Rm and g:[0,M]×Rm×Rm→Rm×b are the m-dimensional measurable functions. The stochastic process (wc)c∈[0,∞) follows a standard Brownian trajectory within the b-dimensional complete probability space (Ω,F,P). σ:[−s,0]→Rm is a continuous function. Assume that the norm of Rm is ‖⋅‖ and E‖σ(c)‖p<∞. The operator I(1−ϑ)(1−a)0+ is the Riemann-Liouville fractional integral operator.
The structure of the paper is as follows: The next section, Preliminary, discusses definitions, a lemma, and some assumptions. Section 3 presents the main results regarding Hilfer SFDDEs. Section 4 provides results related to average principle. Then, we present examples to illustrate our established theoretical results in Section 5. Section 6 contains the conclusion, and we discuss future directions.
First, we discuss the most important part of the paper, which serves as the foundation of our established results.
Definition 2.1. [49] Considering a function ϖ(c), the fractional integral operator of order a can be expressed as
Iaϖ(c)=1Γ(a)∫c0ϖ(φ)(c−φ)1−adφ,c>0. |
Definition 2.2 [50] The HFrD of order 0≤ϑ≤1 and 0<a<1 is given as follows:
Dϑ,a0+ϖ(c)=Iϑ(1−a)0+ddcI(1−ϑ)(1−a)0+ϖ(c), |
here, D=ddc.
Lemma 2.1. [50] When a>12 and c>0, we have
ηΓ(2a−1)∫c0(c−φ)2a−2E2a−1(ηφ2a−1)dφ≤E2a−1(ηφ2a−1). |
Definition 2.3. For p≥2 and c∈[0,∞), assume Apc=Lp(Ω,F,P) consists of all Fcth measurable with pth integrable ϖ=(ϖ1,ϖ2,⋯,ϖm)T:Ω→Rm as
‖ϖ‖p=(m∑ȷ=1E(|ϖȷ|p))1p. |
The ϖ(c):[0,M]→Lp(Ω,F,P) is an F−adapted process when ϖ(c)∈Apc and c≥0. For σ′∈Ap0, the ϖ(c) is a solution of Eq (1.1) if
ϖ(c)=σc(ϑ−1)(1−a)Γ(ϑ(1−a)+a)+1Γ(a)∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ+1Γ(a)∫c0(c−φ)a−1g(φ,ϖ(φ),ϖ(φ−s))dw(φ). | (2.1) |
For f and g, assume the following:
● (H1) When ∀ℓ1,ℓ2,ζ1,ζ2∈Rm, there are U1 and U2 such as
‖f(c,ℓ1,ℓ2)−f(c,ζ1,ζ2)‖p≤U1(‖ℓ1−ζ1‖p+‖ℓ2−ζ2‖p). |
‖g(c,ℓ1,ℓ2)−g(c,ζ1,ζ2)‖p≤U2(‖ℓ1−ζ1‖p+‖ℓ2−ζ2‖p). |
● (H2) For f(c,0,0) and g(c,0,0), we have
esssupc∈[0,M]‖f(c,0,0)‖p<ψ,esssupc∈[0,M]‖g(c,0,0)‖p<ψ. |
Now, assume the following:
● (H3) When ∀ℓ1,ℓ2,ζ1,ζ2,ℓ,ζ∈Rm, c∈[0,M], there is U3>0 such as
‖f(c,ℓ1,ℓ2)−f(c,ζ1,ζ2)‖∨‖g(c,ℓ1,ℓ2)−g(c,ζ1,ζ2)‖≤U3(‖ℓ1−ζ1‖+‖ℓ2−ζ2‖). |
● (H4) For f and g in system Eq (1.1), for ℓ,ζ∈Rm, and c∈[0,M], we can find a constant U4>0 such that it satisfies the following:
‖f(c,ℓ,ζ)‖∨‖g(c,ℓ,ζ)‖≤U4(1+‖ℓ‖+‖ζ‖). |
● (H5) There exist functions ˜f and ˜g, along with positive bounded functions ℵ1(M1) and ℵ2(M1) defined for M1∈[0,M], such that for all c∈[0,M], ℓ,ζ∈Rm, and p≥2, the following holds:
1M1∫M10‖f(c,ℓ,ζ)−˜f(ℓ,ζ)‖pdc≤ℵ1(M1)(1+‖ℓ‖p+‖ζ‖p), |
1M1∫M10‖g(c,ℓ,ζ)−˜g(ℓ,ζ)‖pdc≤ℵ2(M1)(1+‖ℓ‖p+‖ζ‖p), |
where limM1→∞ℵ1(M1)=0, limM1→∞ℵ2(M1)=0 and ℵ1(M1), ℵ2(M1) are positively bound functions.
This section establishes the well-posedness and regularity of the solutions to SFDDEs.
First, we present the important results regarding well-posedness for SFDDEs.
We have ℏσ:Hp(0,M)→Hp(0,M) with ℏσ(ϖ(0))=σ′. Then,
ℏσ(ϖ(c))=σ′c(ϑ−1)(1−a)Γ(ϑ(1−a)+a)+1Γ(a)∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ+1Γ(a)∫c0(c−φ)a−1g(φ,ϖ(φ),ϖ(φ−s))dw(φ). | (3.1) |
The main tool for establishing the key results is as follows:
‖ϖ1+ϖ2‖pp≤2p−1(‖ϖ1‖pp+(‖ϖ2‖pp),∀ϖ1,ϖ2∈Rm. | (3.2) |
Lemma 3.1. Assume that (H1) and (H2) hold; then ℏσ is well-defined.
Proof. For ϖ(c)∈Hp[0,M] and c∈[0,M], the following results are derived using Eqs (3.1) and (3.2):
‖ℏσ(ϖ(c))‖pp≤2p−1‖σc(ϑ−1)(1−a)Γ(ϑ(1−a)+a)‖pp+22p−2Γp(a)‖∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ‖pp+22p−2Γp(a)‖∫c0(c−φ)a−1g(φ,ϖ(φ),ϖ(φ−s))dw(φ)‖pp. | (3.3) |
By Hölder's inequality, we have
‖∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ‖pp≤m∑ȷ=1E(∫c0(c−φ)a−1|fı(φ,ϖ(φ),ϖ(φ−s))|dφ)p≤m∑ȷ=1E((∫c0(c−φ)(a−1)p(p−1)dφ)p−1∫c0|fı(φ,ϖ(φ),ϖ(φ−s))|pdφ)≤Map−1(p−1ap−1)p−1∫c0‖f(φ,ϖ(φ),ϖ(φ−s))‖ppdφ. | (3.4) |
From (H1), we obtain
‖f(φ,ϖ(φ),ϖ(φ−s))‖pp≤2p−1(‖f(φ,ϖ(φ),ϖ(φ−s))−f(φ,0,0)‖pp+‖f(φ,0,0)‖pp)≤2p−1(2p−1Up1(‖ϖ(φ)‖pp+‖ϖ(φ−s)‖pp)+‖f(φ,0,0)‖pp). | (3.5) |
Accordingly, we obtain
∫c0‖f(φ,ϖ(φ),ϖ(φ−s))‖ppdφ≤2p−1Up1((esssupφ∈[0,M]‖ϖ(φ)‖p)p+(esssupφ∈[0,M]‖ϖ(φ−s)‖p)p)∫c01dφ+2p−1‖f(φ,0,0)‖pp∫c01dφ≤2p−1MUp1(‖ϖ(φ)‖pHp+‖ϖ(φ−s)‖pHp)+2p−1‖f(φ,0,0)‖pp∫c01dφ. | (3.6) |
By Eqs (3.4) and (3.6), we get the following:
‖∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ‖pp≤Map−1(p−1ap−1)p−12p−1(Up1M(‖ϖ(φ)‖pHp+‖ϖ(φ−s)‖pHp)+∫c0‖f(φ,0,0)‖ppdφ). | (3.7) |
By (H2), we obtain
‖∫c0(c−φ)a−1f(φ,ϖ(φ),ϖ(φ−s))dφ‖pp≤Map−1(p−1ap−1)p−12p−1(Up1M(‖ϖ(φ)‖pHp+‖ϖ(φ−s)‖pHp)+Mψp). | (3.8) |
By Burkholder-Davis-Gundy inequality and Hölder's inequality, we obtain
‖∫c0(c−φ)a−1g(φ,ϖ(φ),ϖ(φ−s))dw(φ)‖pp=m∑ȷ=1E|∫c0(c−φ)a−1(gı(φ,ϖ(φ),ϖ(φ−s))dw(φ)|p≤m∑ȷ=1CpE|∫c0(c−φ)2a−2|gı(φ,ϖ(φ),ϖ(φ−s))|2dφ|p2≤m∑ȷ=1CpE∫c0(c−φ)2a−2|gı(φ,ϖ(φ),ϖ(φ−s))|pdφ(∫c0(c−φ)2a−2dφ)p−22dφ≤Cp(M2a−12a−1)p−22∫c0(c−φ)2a−2‖g(φ,ϖ(φ,ϖ(φ−s))‖ppdφ. | (3.9) |
By utilizing (H1) and (H2), we obtain
‖g(φ,ϖ(φ),ϖ(φ−s))‖pp≤2p−1Up2(‖ϖ(φ)‖pp+‖ϖ(φ−s)‖pp)+2p−1‖g(φ,0,0)‖pp≤2p−1Up2(‖ϖ(φ)‖pp+‖ϖ(φ−s)‖pp)+2p−1ψp. | (3.10) |
So, we get
∫c0(c−φ)2a−2‖g(φ,ϖ(φ),ϖ(φ−s))‖ppdφ≤2p−1Up2∫c0(c−φ)2a−2((esssupφ∈[0,M]‖ϖ(φ)‖p)p+(esssupφ∈[0,M]‖ϖ(φ−s)‖p)p)dφ+2p−1ψp∫c0(c−φ)2a−2dφ≤2p−1M(2a−1)2a−1(Up2(‖ϖ(φ)‖pHp+‖ϖ(φ−s)‖pHp)+ψp). | (3.11) |
So, from above, we have
∫c0(c−φ)2a−2‖g(φ,ϖ(φ),ϖ(φ−s))‖ppdφ≤2p−1M2a−12a−1(Up2(‖ϖ(φ)‖pHp+‖ϖ(φ−s)‖pHp)+ψp). | (3.12) |
By using Eq (3.12) in Eq (3.9), we obtain
‖∫c0(c−φ)a−1g(φ,ϖ(φ),ϖ(φ−s))dw(φ)‖pp≤Cp(M2a−12a−1)p−222p−1M2a−12a−1(Up2(‖ϖ(φ)‖pHp+‖ϖ(φ−s)‖pHp)+ψp). | (3.13) |
By putting Eqs (3.8) and (3.13) into Eq (3.3), we find that ‖ℏσ(ϖ(c))‖Hp<∞. So, the ℏσ is well-defined.
Now, we establish the result regarding existence and uniqueness.
Theorem 3.1. If (H1) and (H2) are satisfied, then Eq (1.1) with ϖ(0)=σ′ has a unique solution.
Proof. Taking η>0:
η>2p−1δΓ(2a−1), | (3.14) |
where
δ=2p−1Γp(a)(2p−1Up1M(pa−2a+1)(p−1)p−1(pa−2a+1)p−1+2p−1(M(2a−1)2a−1)p−22Up2Cp). | (3.15) |
The weighted norm ‖⋅‖η is
‖ϖ(c)‖η=esssupc∈[0,M](‖ϖ(c)‖ppE2a−1(ηc2a−1))1p,∀ϖ(c)∈Hp([0,M]). | (3.16) |
For ϖ(c) and ˜ϖ(c), we obtain
‖ℏσ(ϖ(c))−ℏσ(˜ϖ(c))‖pp≤2p−1Γp(a)‖∫c0(c−φ)a−1(f(φ,ϖ(φ),ϖ(φ−s))−f(φ,˜ϖ(φ),˜ϖ(φ−s)))dφ‖pp+2p−1Γp(a)‖∫c0(c−φ)a−1(g(φ,ϖ(φ),ϖ(φ−s))−g(φ,˜ϖ(φ),˜ϖ(φ−s)))dw(φ)‖pp. | (3.17) |
Using the Hölder's inequality and (H1), we obtain
‖∫c0(c−φ)a−1(f(φ,ϖ(φ),ϖ(φ−s))−f(φ,˜ϖ(φ),˜ϖ(φ−s)))dφ‖pp=m∑ȷ=1E(∫c0(c−φ)a−1(fı(φ,ϖ(φ),ϖ(φ−s))−fı(φ,˜ϖ(φ),˜ϖ(φ−s)))dφ)p≤m∑ȷ=1E((∫c0(c−φ)(a−1)(p−2)p−1dφ)p−1(∫c0(c−φ)2a−2|fı(φ,ϖ(φ),ϖ(φ−s))−fı(φ,˜ϖ(φ),˜ϖ(φ−s))|pdφ))≤2p−1Up1M(pa−2a+1)(p−1)p−1(pa−2a+1)p−1∫c0(c−φ)2a−2(‖ϖ(φ)−˜ϖ(φ))‖pp+‖ϖ(φ−s)−˜ϖ(φ−s))‖pp)dφ. | (3.18) |
Hence, we have
‖∫c0(c−φ)a−1(f(φ,ϖ(φ),ϖ(φ−s))−f(φ,˜ϖ(φ),˜ϖ(φ−s)))dφ‖pp≤2p−1Up1M(pa−2a+1)(p−1)p−1(pa−2a+1)p−1∫c0(c−φ)2a−2(‖ϖ(φ)−˜ϖ(φ))‖pp+‖ϖ(φ−s)−˜ϖ(φ−s))‖pp)dφ. | (3.19) |
However, using (H1) and the Burkholder-Davis-Gundy inequality, we have
‖∫c0(c−φ)a−1(g(φ,ϖ(φ),ϖ(φ−s))−g(φ,˜ϖ(φ),˜ϖ(φ−s)))dw(φ)‖pp=m∑ȷ=1E|∫c0(c−φ)a−1(gı(φ,ϖ(φ),ϖ(φ−s))−gı(φ,˜ϖ(φ),˜ϖ(φ−s)))dw(φ)|p≤m∑ȷ=1CpE|∫c0(c−φ)2a−2|gı(φ,ϖ(φ),ϖ(φ−s))−gı(φ,˜ϖ(φ),˜ϖ(φ−s))|2dφ|p2≤m∑ȷ=1CpE∫c0(c−φ)2a−2|gı(φ,ϖ(φ),ϖ(φ−s))−gı(φ,˜ϖ(φ),˜ϖ(φ−s))|pdφ(∫c0(c−φ)2a−2dφ)p−22≤2p−1(M(2a−1)2a−1)p−22Up2Cp∫c0(c−φ)2a−2(‖ϖ(φ)−˜ϖ(φ)‖pp+‖ϖ(φ−s)−˜ϖ(φ−s)‖pp)dφ. | (3.20) |
So, from above
‖∫c0(c−φ)a−1(g(φ,ϖ(φ),ϖ(φ−s))−g(φ,˜ϖ(φ),˜ϖ(φ−s)))dw(φ)‖pp≤2p−1(M(2a−1)2a−1)p−22Up2Cp∫c0(c−φ)2a−2(‖ϖ(φ)−˜ϖ(φ)‖pp+‖ϖ(φ−s)−˜ϖ(φ−s)‖pp)dφ. | (3.21) |
Thus, ∀c∈[0,M], we have
‖ℏσ(ϖ(c))−ℏσ(˜ϖ(c))‖pp≤δ∫c0(‖ϖ(φ)−˜ϖ(φ)‖pp+‖ϖ(φ−s)−˜ϖ(φ−s)‖pp)(c−φ)2a−2dφ. | (3.22) |
So,
‖ℏσϖ(c)−ℏσ˜ϖ(c)‖ppE2a−1(ηc2a−1)≤1E2a−1(ηc2a−1)δ∫c0(c−φ)2a−2(E2a−1(ηc2a−1)‖ϖ(φ)−˜ϖ(φ)‖ppE2a−1(ηc2a−1)+E2a−1(η(c−s)2a−1)‖ϖ(φ−s)−˜ϖ(φ−s)‖ppE2a−1(η(c−s)2a−1))dφ≤1E2a−1(ηc2a−1)δ∫c0(c−φ)2a−2(E2a−1(ηc2a−1)esssupφ∈[0,M](‖ϖ(φ)−˜ϖ(φ)‖ppE2a−1(ηc2a−1))+E2a−1(η(c−s)2a−1)esssupφ∈[0,M](‖ϖ(φ−s)−˜ϖ(φ−s)‖ppE2a−1(η(c−s)2a−1)))dφ≤‖ϖ(φ)−˜ϖ(φ)‖pηE2a−1(ηc2a−1)δ∫c0(c−φ)2a−2(E2a−1(ηc2a−1)+E2a−1(η(c−s)2a−1))dφ≤2‖ϖ(φ)−˜ϖ(φ)‖pηE2a−1(ηc2a−1)δ∫c0(c−φ)2a−2E2a−1(ηc2a−1)dφ. | (3.23) |
Now, we use the following:
1Γ(2a−1)∫c0(c−φ)2a−2E2a−1(ηc2a−1)dφ≤1ηE2a−1(ηc2a−1). |
We obtain the required result from Eq (3.23).
‖ℏσ(ϖ(c))−ℏσ(˜ϖ(c))‖η≤(2δΓ(2a−1)η)1p‖ϖ(φ)−˜ϖ(φ)‖η. | (3.24) |
From Eq (3.14), we obtain 2δΓ(2a−1)η<1.
Theorem 3.2. If ξa(c,σ) is a solution that is Con-D on a, then
lima→˜aesssupc∈[0,M]‖ξa(c,σ)−ξ˜a(c,σ)‖p=0. | (3.25) |
Proof. Assume a, ˜a∈(12,1). Then,
ξa(c,σ)−ξ˜a(c,σ)=1Γ(a)∫c0(c−φ)a−1(f(φ,ξa(φ,σ),ξa(φ−s,σ))−f(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ)))dφ+∫c0(1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1)f(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dφ+1Γ(a)∫c0(c−φ)a−1(g(φ,ξa(φ,σ),ξa(φ−s,σ))−g(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ)))dw(φ)+∫c0(1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1)g(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dw(φ). | (3.26) |
We extract the subsequent outcome from Eq (3.26) by employing Eq (3.2).
‖ξa(c,σ)−ξ˜a(c,σ)‖pp≤2pδ∫c0(c−φ)2a−2‖ξa(c,σ)−ξ˜a(c,σ)‖ppdφ+22p−2‖∫c0(1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1)f(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dφ‖pp+22p−2‖∫c0(1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1)g(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dw(φ)‖pp. | (3.27) |
Suppose the following:
Φ(c,φ,a,˜a)=|1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1|. | (3.28) |
By Hölder's inequality, (H1), (H2), and Eq (3.2), we have
‖∫c0(1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1)f(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dφ‖pp≤∑mι=1E(∫c0Φ(c,φ,a,˜a)|fı(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))|dφ)p≤∑mι=1E((∫c0(Φ(c,φ,a,˜a))pp−1dφ)p−1∫c0|fı(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))|pdφ)≤(∫c0(Φ(c,φ,a,˜a))2dφ)p2(∫c01dφ)p−22∫c0‖f(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))‖ppdφ≤(∫c0(Φ(c,φ,a,˜a))2dφ)p2Mp−22∫c02p−1(Up1(‖ξ˜a(φ,σ)‖pp+‖ξ˜a(φ−s,σ)‖pp)+‖f(φ,0)‖pp)dφ≤(∫c0(Φ(c,φ,a,˜a))2dφ)p2Mp22p−1(2p−1Up1(esssupc∈[0,M]‖ξ˜a(φ,σ)‖pp+esssupc∈[0,M]‖ξ˜a(φ−s,σ)‖pp)+ψp). | (3.29) |
Now, by Burkholder-Davis-Gundy inequality, Eq (3.28), (H1), and (H2), we obtain
‖∫c0(1Γ(a)(c−φ)a−1−1Γ(˜a)(c−φ)˜a−1)g(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dw(φ)‖pp=∑mι=1E|∫c0Φ(c,φ,a,˜a)gı(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))dw(φ)|p≤∑mι=1CpE|∫c0Φ2(c,φ,a,˜a)|gı(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))|2dw(φ)|p2≤∑mι=1CpE[(∫c0Φ2(c,φ,a,˜a)|gı(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))|pdφ)2p(∫c0Φ2(c,φ,a,˜a)dφ)p−2p]p2=Cp∫c0Φ2(c,φ,a,˜a)‖g(φ,ξ˜a(φ,σ),ξ˜a(φ−s,σ))‖ppdφ(∫c0Φ2(c,φ,a,˜a)dφ)p−22≤Cp(∫c0Φ2(c,φ,a,˜a)dφ)p22p−1(2p−1Up2(esssupc∈[0,M]‖ξ˜a(φ,σ)‖pp+esssupc∈[0,M]‖ξ˜a(φ−s,σ)‖pp)+ψp). | (3.30) |
Thus, we obtain the following:
‖ξa(c,σ)−ξ˜a(c,σ)‖ppE2a−1(ηc2a−1)≤2pδ∫c0(c−φ)2a−2‖ξa(φ,σ)−ξ˜a(φ,σ)‖ppE2a−1(ηc2a−1)E2a−1(ηc2a−1)dφE2a−1(ηc2a−1)+23p−3(2p−1Up1(esssupc∈[0,M]‖ξ˜a(φ,σ)‖pp+esssupc∈[0,M]‖ξ˜a(φ−s,σ)‖pp)+ψp)(∫c0(Φ(c,φ,a,˜a))2dφ)p2Mp2+23p−3(2p−1Up2(esssupc∈[0,M]‖ξ˜a(φ,σ)‖pp+esssupc∈[0,M]‖ξ˜a(φ−s,σ)‖pp)+ψp)Cp(∫c0(Φ(c,φ,a,˜a))2dφ)p2≤2pδΓ(2a−1)η‖ξa(c,σ)−ξ˜a(c,σ)‖pη+23p−3(2p−1Up1(esssupc∈[0,M]‖ξ˜a(φ,σ)‖pp+esssupc∈[0,M]‖ξ˜a(φ−s,σ)‖pp)+ψp)(∫c0(Φ(c,φ,a,˜a))2dφ)p2Mp2+23p−3(2p−1Up2(esssupc∈[0,M]‖ξ˜a(φ,σ)‖pp+esssupc∈[0,M]‖ξ˜a(φ−s,σ)‖pp)+ψp)Cp(∫c0(Φ(c,φ,a,˜a))2dφ)p2. | (3.31) |
From the above, we have
\begin{align} &\bigg(1-\frac{2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)}{\eta}\bigg)\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\tilde{\mathfrak{a}}} (\mathfrak{c},\sigma)\big\Vert_{\eta}^{\mathrm{p}}\\ \leq& 2^{3\mathrm{p}-3} \bigg( 2^{\mathrm{p}-1} \mathscr{U}_{1}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg) \bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}} \mathbb{M}^{\frac{\mathrm{p}}{2}}\\& + 2^{3\mathrm{p}-3}\bigg(2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}( \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi,\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}} + \underset{\mathfrak{c}\in[0,\mathbb{M}]}{esssup}\Vert\xi_{\tilde{\mathfrak{a}}}(\varphi-\mathrm{s},\sigma)\Vert_{\mathrm{p}}^{\mathrm{p}}) +\psi^{\mathrm{p}}\bigg) \mathscr{C}_{\mathrm{p}}\bigg(\int_{0}^{\mathfrak{c}}\big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}})\big)^{2}\mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}}{2}}. \end{align} | (3.32) |
Now, we prove the following:
\begin{equation*} \underset{\tilde{\mathfrak{a}}\rightarrow \mathfrak{a}}{lim}\underset{\mathfrak{c}\in[0,\mathbb{M}]}{sup}\int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big)^{2}\mathrm{d}\varphi = 0. \end{equation*} |
We possess the following:
\begin{align} \int_{0}^{\mathfrak{c}} \big(\Phi(\mathfrak{c},\varphi,\mathfrak{a},\tilde{\mathfrak{a}}) \big)^{2}\mathrm{d}\varphi = & \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}}{\Gamma^{2}(\mathfrak{a})} \mathrm{d}\varphi + \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{2\tilde{\mathfrak{a}}-2}} {{\Gamma^{2}(\tilde{\mathfrak{a}})}} \mathrm{d}\varphi - 2 \int_{0}^{\mathfrak{c}}\frac{(\mathfrak{c}-\varphi)^{\mathfrak{a}+\tilde{\mathfrak{a}}-2}}{{\Gamma(\mathfrak{a})}\Gamma(\tilde{\mathfrak{a}})} \mathrm{d}\varphi \\ = &\; \bigg(\frac{\mathbb{M}^{(2\mathfrak{a}-1)}}{(2\mathfrak{a}-1)}\bigg) \frac{1}{\Gamma^{2}(\mathfrak{a})} + \bigg(\frac{\mathbb{M}^{(2\tilde{\mathfrak{a}}-1)}}{(2\tilde{\mathfrak{a}}-1)}\bigg) \frac{1}{\Gamma^{2}(\tilde{\mathfrak{a}})} - \frac{2\mathbb{M}^{(\mathfrak{a}+\tilde{\mathfrak{a}}-1)}}{(\mathfrak{a}+\tilde{\mathfrak{a}}-1){\Gamma(\mathfrak{a})\Gamma(\tilde{\mathfrak{a}})}}. \end{align} | (3.33) |
It thereby demonstrated the necessary outcome.
Theorem 3.3. For \sigma, \Psi\in\mathbb{A}^{\mathrm{p}}_{0} , we have
\begin{equation} \Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\Vert_{\mathrm{p}}\leq \mathscr{U} \Vert\sigma-\Psi\Vert_{\mathrm{p}},\; \forall\; \mathfrak{c}\in[0,\; \mathbb{M}]. \end{equation} | (3.34) |
Proof. As we have
\begin{align} &\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\\ = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})} \\&+ \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg(\mathfrak{f}(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) - \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg)\mathrm{d}\varphi \\& + \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\big(\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) - \mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big) \mathrm{d}\mathrm{w}{(\varphi)}. \end{align} | (3.35) |
By applying Eq (3.2), we obtain
\begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi) \big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq&2^{\mathrm{p}-1}\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert _{\mathrm{p}}^{\mathrm{p}}\\&+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})}\bigg\Vert \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{2^{2\mathrm{p}-2}}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \bigg\Vert \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \big)-\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \bigg) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.36) |
By Hölder's inequality and (\mathbb{H}_{1}) , we obtain
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))-\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) -\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg)^{\mathrm{p}} \\\leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\Biggl(\bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\frac{(\mathfrak{a}-1) (\mathrm{p}-2)}{\mathrm{p}-1}} \mathrm{d}\varphi\bigg)^{\mathrm{p}-1} \\& \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big|\mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{f}_{\imath}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big| \mathrm{d}\varphi\bigg)\Biggl) \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \\& \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} | (3.37) |
Hence, we have
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))-\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\\leq& 2^{\mathrm{p}-1} \frac{\mathscr{U}_{1}^{\mathrm{p}}\mathbb{M}^{(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)}(\mathrm{p}-1)^{\mathrm{p}-1}} {(\mathrm{p}\mathfrak{a}-2\mathfrak{a}+1)^{\mathrm{p}-1}} \\& \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} | (3.38) |
Now, utilizing (\mathbb{H}_{1}) , Hölder's inequality, and Burkholder–Davis–Gundy inequality, we derive
\begin{align} &\bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \bigg) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\ = & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- \mathfrak{g}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\bigg) \mathrm{d}\mathrm{w}({\varphi})\bigg|^{\mathrm{p}} \\ \leq& \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\bigg|\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\big| \mathfrak{g}_{\imath}\big(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- {\mathfrak{g}}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi))\big|^{2} \mathrm{d}\varphi\bigg|^{\frac{\mathrm{p}}{2}} \\\leq & \sum\limits_{\jmath = 1}^{\mathfrak{m}}\mathscr{C}_{\mathrm{p}}\mathrm{E}\int_{0}^{\mathfrak{c}}(\mathfrak{c}- \varphi)^{2\mathfrak{a}-2}\big|\mathfrak{g}_{\imath}\big(\varphi, \xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))- {\mathfrak{g}}_{\imath}\big(\varphi,\xi_{\mathfrak{a}}(\varphi,\Psi),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)) \big|^{\mathrm{p}} \mathrm{d}\varphi \\& \bigg(\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\ \leq& 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}\mathscr{C}_{\mathrm{p}} \bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)-\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg) \mathrm{d}\varphi. \end{align} | (3.39) |
By substituting Eqs (3.37) and (3.39) into Eq (3.36), we obtain
\begin{align} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \\ \leq&2^{\mathrm{p}-1} \bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert _{\mathrm{p}}^{\mathrm{p}} +2^{\mathrm{p}}\delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2}\bigg(\big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma)-\xi_{\mathfrak{a}}(\varphi,\Psi) \big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg) \mathrm{d}\varphi. \end{align} | (3.40) |
By referring to the Grönwall inequality, we conclude
\begin{align*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\exp\Bigg( 2^{\mathrm{p}}\delta \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\Bigg)\bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align*} |
Thus, we obtain the following result:
\begin{align*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}}^{\mathrm{p}} \leq2^{\mathrm{p}-1}\mathbb{E}_{2\mathfrak{a}-1}\bigg( 2^{\mathrm{p}}\delta\Gamma(2\mathfrak{a}-1)\mathfrak{c}^{(2\mathfrak{a}-1)}\bigg) \bigg\Vert\frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}- \frac{\Psi\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align*} |
Hence, we
\begin{align*} \underset{\sigma\rightarrow \Psi}{\lim}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\mathfrak{c},\Psi)\big\Vert_{\mathrm{p}} = 0. \end{align*} |
The proof is so done.
The following result pertains to regularity.
Theorem 3.4. If (\mathbb{H}_{1}) and (\mathbb{H}_{2}) are valid, then for \mathscr{S} > 0 , we have
\begin{equation} \Vert\xi_{\mathfrak{a}}(\sigma,\mathfrak{c})-\xi_{\mathfrak{a}}(\sigma,\varsigma)\Vert_{\mathrm{p}}\leq\mathscr{S}|\mathfrak{c}-\varsigma|^{\mathfrak{a}-\frac{1}{2}},\; \forall\mathfrak{c},\varsigma\in[0,\mathbb{M}]. \end{equation} | (3.41) |
Proof. For \mathfrak{c} > \varsigma , then from Eq (3.2):
\begin{align} \label {eq300} &\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}- \varphi)^{\mathfrak{a}-1}\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)({\varphi})\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- (\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\varphi\bigg\Vert_{\mathrm{p}}^{\mathrm{p}} \\&+ \frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}} \bigg\Vert\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}- (\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \mathrm{d}\mathrm{w}(\varphi)\bigg\Vert_{\mathrm{p}}^{\mathrm{p}}. \end{align} | (3.42) |
By Hölder's inequality and Burkholder-Davis-Gundy inequality, we obtain
\begin{align} &\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)- \xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{(\mathrm{p}-1)^{\mathrm{p}-1}}{(\mathrm{p}\mathfrak{a}-1)^{\mathrm{p}-1}(\mathfrak{c}-\varsigma)^{1-\mathrm{p}}} \big\Vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma), \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{\varsigma}^{\mathfrak{c}}1 \mathrm{d}\varphi \\&+ \mathscr{C}_{p} \bigg(\big\Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \int_{\varsigma}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg) \bigg(\int_{\varsigma}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\bigg)^{\frac{\mathrm{p}-2}{2}} \\&+ \frac{\Vert\mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma)) \Vert_{\mathrm{p}}^{\mathrm{p}}}{\mathbb{M}^{\frac{2-\mathrm{p}}{2}}}\int_{0}^{\varsigma}1 \mathrm{d}\varphi \Big(\int_{0}^{\varsigma}\big\vert(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\big\vert^{2} \mathrm{d}\varphi\Big)^{\frac{\mathrm{p}}{2}} \\&+ \Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma),\xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\Vert_{\mathrm{p}}^{\mathrm{p}} \mathscr{C}_{p} \int_{0}^{\varsigma}\bigg((\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi \\&\times \Bigg(\int_{0}^{\varsigma}\bigg((\mathfrak{c}-\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi\Bigg)^{\frac{\mathrm{p}-2}{2}}. \end{align} |
We have
\begin{equation*} \big\Vert \mathfrak{f}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1}\mathscr{U}_{1}^{\mathrm{p}} \bigg(\big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}+ \big\Vert\xi_{\mathfrak{a}}(\varphi,\sigma-\mathrm{s}))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)+ \Vert \mathfrak{f}(\varphi,0)\Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\leq2^{\mathrm{p}-1}\big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big). \end{equation*} |
And also
\begin{equation*} \big\Vert\mathfrak{g}(\varphi,\xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}}\leq2^{\mathrm{p}-1}\bigg( 2^{\mathrm{p}-1} \mathscr{U}_{2}^{\mathrm{p}}\bigg( \big\Vert \xi_{\mathfrak{a}}(\varphi,\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} +\big\Vert \xi_{\mathfrak{a}}(\varphi-\mathrm{s},\sigma))\big\Vert_{\mathrm{p}}^{\mathrm{p}} \bigg)+\Vert\mathfrak{g}(\varphi,0) \Vert_{\mathrm{p}}^{\mathrm{p}}\bigg)\leq2^{\mathrm{p}-1}\big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big). \end{equation*} |
Furthermore,
\begin{align} \int_{0}^{\varsigma}\bigg((\mathfrak{c}-&\varphi)^{\mathfrak{a}-1}-(\varsigma-\varphi)^{\mathfrak{a}-1}\bigg)^{2} \mathrm{d}\varphi \leq \frac{(\mathfrak{c}-\varsigma)^{(2\mathfrak{a}-1)}}{(2\mathfrak{a}-1)}. \end{align} | (3.43) |
So,
\begin{align} &\Gamma^{\mathrm{p}}(\mathfrak{a})2^{2-2\mathrm{p}}\big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}^{\mathrm{p}}\\ \leq& \frac{(2\mathrm{p}-2)^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}}\big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}}\big( 2^{\mathrm{p}} \mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}} \\&+ \frac{2^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}}\big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(\mathfrak{c}-\varsigma\big)^{\frac{(2\mathfrak{a}-1)\mathrm{p}}{2}}\big( 2^{\mathrm{p}} \mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}. \end{align} |
Hence,
\begin{equation*} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}}\leq\mathscr{S}(\mathfrak{c}-\varsigma)^{\mathfrak{a}-\frac{1}{2}}, \end{equation*} |
where
\begin{align*} \mathscr{S}^{\mathrm{p}} = &2^{2\mathrm{p}-2}\bigg( \frac{(2\mathrm{p}-2)^{\mathrm{p}-1}}{(\mathrm{p}\mathfrak{a}-1)^{\mathrm{p}-1}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}\bigg)\frac{1}{\Gamma^{\mathrm{p}}(\mathfrak{a})} \nonumber\\&+ 2^{2\mathrm{p}-2}\bigg(\frac{2^{\mathrm{p}-1}}{(2\mathfrak{a}-1)^{\mathrm{p}-1}} \big(2^{\mathrm{p}}\mathscr{U}_{1}^{\mathrm{p}}K_{1}+K^{\mathrm{p}}\big)\mathbb{M}^{\frac{\mathrm{p}}{2}} + \frac{1}{(2\mathfrak{a}-1)^{\frac{\mathrm{p}}{2}}} \big(2^{\mathrm{p}}\mathscr{U}_{2}^{\mathrm{p}}K_{1}+\psi^{\mathrm{p}}\big) 2^{\mathrm{p}-1}\mathscr{C}_{\mathrm{p}}\bigg){\Gamma^{\mathrm{p}}(\mathfrak{a})}. \end{align*} |
Thus, we obtain the following:
\begin{equation*} \underset{\varsigma\rightarrow \mathfrak{c}}{\lim} \big\Vert\xi_{\mathfrak{a}}(\mathfrak{c},\sigma)-\xi_{\mathfrak{a}}(\varsigma,\sigma)\big\Vert_{\mathrm{p}} = 0. \end{equation*} |
Now, we establish results concerning the average principle in the \mathrm{p} th moment for SFDDEs within the framework of the HFrD.
Lemma 4.1. For \widetilde{\mathfrak{g}} , when \mathbb{M}_{1}\in[0, \mathbb{M}] , we obtain
\begin{equation} \notag \Vert\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}} \leq \mathscr{U}_{6}\left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert^{\mathrm{p}}\right), \end{equation} |
where \mathscr{U}_{6} = \left(2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)+6^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}\right) .
Proof. By \left(\mathbb{H}_{4}\right), \left(\mathbb{H}_{5}\right) , and Eq (3.2),
\begin{align*} \Vert\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}} &\leq 2^{\mathrm{p}-1}\Vert\mathfrak{g}(\mathfrak{c},\ell,\zeta)-\widetilde{\mathfrak{g}}(\ell,\zeta)\Vert^{\mathrm{p}}+ 2^{\mathrm{p}-1}\Vert\mathfrak{g}(\mathfrak{c},\ell,\zeta)\Vert^{\mathrm{p}} \\&\leq 2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)\left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert^{\mathrm{p}}\right)+ 2^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}(1+\Vert\ell\Vert+\Vert\zeta\Vert )^{\mathrm{p}} \\&\leq \left(2^{\mathrm{p}-1}\aleph_{2}\left(\mathbb{M}_{1}\right)+6^{\mathrm{p}-1}\mathscr{U}_{4}^{\mathrm{p}}\right) \left(1+\Vert\ell\Vert^{\mathrm{p}}+\Vert\zeta\Vert ^{\mathrm{p}}\right). \end{align*} |
The following is a lemma regarding the time-scale property of the HFrD.
Lemma 4.2. Suppose the time scale \mathfrak{c} = \mu\gamma , then
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}}\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}). \end{equation*} |
Proof. The HFrD of order 0\leq\vartheta\leq1 and 0 < \mathfrak{a} < 1 is defined as
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\gamma}\frac{1}{(\gamma-\varphi)^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\varphi} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\gamma}\frac{1}{(\gamma-\varphi)^{1-(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mu\varphi)\mathrm{d}\varphi \mathrm{d}\varphi. \end{equation*} |
Let \mu\varphi = \mathscr{A} , and by the chain rule, \frac{\mathrm{d}}{\mathrm{d}\varphi} = \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}}.\frac{\mathrm{d}\mathscr{A}}{\mathrm{d}\varphi} = \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}}.\frac{\mathrm{d}}{\mathrm{d}\varphi}(\mu\varphi) = \mu\frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} . So, we have
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\gamma-\frac{\mathscr{A}}{\mu})^{1-\vartheta(1-\mathfrak{a})}} \mu\frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\gamma-\frac{\mathscr{A}}{\mu})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \frac{\mathrm{d}\mathscr{A}}{\mu} \frac{\mathrm{d}\mathscr{A}}{\mu}. \end{equation*} |
From the above, we have
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\mu\gamma-\mathscr{A})^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mu\gamma}\frac{1}{(\mu\gamma-\mathscr{A})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \mathrm{d}\mathscr{A} \mathrm{d}\mathscr{A}, \end{equation*} |
likewise, we obtain
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}\frac{1}{(\mathfrak{c}-\mathscr{A})^{1-\vartheta(1-\mathfrak{a})}} \frac{\mathrm{d}}{\mathrm{d}\mathscr{A}} \frac{1}{\Gamma(\mathfrak{a})}\int_{0}^{\mathfrak{c}}\frac{1}{(\mathfrak{c}-\mathscr{A})^{(1-\vartheta)(1-\mathfrak{a})}}\varpi(\mathscr{A}) \mathrm{d}\mathscr{A} \mathrm{d}\mathscr{A}. \end{equation*} |
So, we have the following result:
\begin{equation*} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mu\gamma) = \mu^{\mathfrak{a}} \mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}). \end{equation*} |
Now, we establish an important result concerning average principle.
\begin{equation} \begin{cases} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\mathfrak{c}) = \mathfrak{f}\big(\frac{\mathfrak{c}}{\varepsilon},\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})\big) + \mathfrak{g}\big(\frac{\mathfrak{c}}{\varepsilon},\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})\big)\frac{\mathrm{d}\mathrm{w}(\mathfrak{c})}{\mathrm{d}\mathfrak{c}}, \\& \varpi(0) = \sigma^{\prime}. \end{cases} \end{equation} | (4.1) |
Suppose \frac{\mathfrak{c}}{\varepsilon} = \nu . By Lemma 4.2 and from Eq (4.1):
\begin{align*} &\varepsilon^{-\mathfrak{a}}\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi(\varepsilon\nu) = \mathfrak{f}\big(\nu,\varpi(\varepsilon\nu),\varpi(\varepsilon\nu-\varepsilon\mathrm{s})\big) + \mathfrak{g}\big(\nu,\varpi(\varepsilon\nu),\varpi(\varepsilon\nu-\varepsilon\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\varepsilon\nu)}}{\varepsilon\mathrm{d}\nu}. \end{align*} |
By considering \mathrm{d}\mathrm{w}{(\varepsilon\nu)} = \sqrt{\varepsilon}\mathrm{d}\mathrm{w}{(\nu)} and representing \varpi({\varepsilon\nu}) = \varpi_{\varepsilon}({\nu}) and \varpi(\varepsilon\nu-\varepsilon\mathrm{s}) = \varpi_{\varepsilon}(\nu-\mathrm{s}) , we get
\begin{align*} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi_{\varepsilon}(\nu) = \varepsilon^{\mathfrak{a}} \mathfrak{f}\big(\nu,\varpi_{\varepsilon}(\nu),\varpi_{\varepsilon}(\nu-\mathrm{s})\big) + \varepsilon^{\mathfrak{a}-\frac{1}{2}}\mathfrak{g}\big(\nu,\varpi_{\varepsilon}(\nu),\varpi_{\varepsilon}(\nu-\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\nu)}}{\mathrm{d}\nu}. \end{align*} |
Despite the loss of generality, \nu = \mathfrak{c} can be stated. The standard form of Eq (1.1) can be obtained by applying \frac{\mathfrak{c}}{\varepsilon} \rightarrow \mathfrak{c} .
\begin{equation} \begin{cases} &\mathbb{D}_{0+}^{\vartheta,\mathfrak{a}}\varpi_{\varepsilon}(\mathfrak{c}) = \varepsilon^{\mathfrak{a}} \mathfrak{f}\big(\sigma,\varpi_{\varepsilon}(\mathfrak{c}),\varpi_{\varepsilon}(\mathfrak{c}-\mathrm{s})\big) + \varepsilon^{\mathfrak{a}-\frac{1}{2}}\mathfrak{g}\big(\sigma,\varpi_{\varepsilon}(\mathfrak{c}),\varpi_{\varepsilon}(\mathfrak{c}-\mathrm{s})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{\mathrm{d}\mathfrak{c}}, \\& \varpi_{\varepsilon}(0) = \sigma. \end{cases} \end{equation} | (4.2) |
Thus, Eq (4.2) can be expressed integrally as
\begin{align} \varpi_{\varepsilon}(\mathfrak{c}) = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})} + \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\mathrm{w}(\varphi), \end{align} | (4.3) |
for \varepsilon\in(0, \varepsilon_{0}] . The average of Eq (3.35) is as
\begin{align} \varpi^{*}_{\varepsilon}(\sigma) = & \frac{\sigma\mathfrak{c}^{(\vartheta-1)(1-\mathfrak{a})}}{\Gamma(\vartheta(1-\mathfrak{a})+\mathfrak{a})}+ \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\sigma} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \widetilde{\mathfrak{f}}\big(\varpi^{*}_{\varepsilon}(\varphi),\varpi^{*}_{\varepsilon}(\varphi-\mathrm{s})\big)\mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}} (\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \widetilde{\mathfrak{g}}\big(\varpi^{*}_{\varepsilon}(\varphi),\varpi^{*}_{\varepsilon}(\tau-\mathrm{s})\big) \mathrm{d}{\mathrm{w}}(\varphi), \end{align} | (4.4) |
where \widetilde{\mathfrak{f}}:\mathbb{R}^{\mathfrak{m}}\times\mathbb{R}^{\mathfrak{m}}\rightarrow \mathbb{R}^{\mathfrak{m}}, \widetilde{\mathfrak{g}}:\mathbb{R}^{\mathfrak{m}}\times\mathbb{R}^{\mathfrak{m}}\rightarrow \mathbb{R}^{\varkappa\times\mathfrak{b}} .
Theorem 4.1. When \mho > 0 and \varrho > 0 , and \varepsilon_{1} \in \left(0, \varepsilon_{0}\right] with \kappa \in \left(0, \mathfrak{a}\mathrm{p} - \frac{\mathrm{p}}{2}\right) , then
\begin{equation} \mathrm{E}\Big[\sup\limits_{\mathfrak{c}\in[-\mathrm{s},\; \varrho\varepsilon^{-\kappa}]} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\Big] \leq\mho,\; \varepsilon\in(0,\varepsilon_{1}]. \end{equation} | (4.5) |
Proof. By Eqs (3.35) and (4.4), for \mathfrak{c} \in [0, \mathfrak{u}] \subseteq [0, \mathbb{M}] , we have
\begin{align} &\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c}) \\ = & \varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi \\&+ \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}({\varphi}). \end{align} | (4.6) |
Via Jensen's inequality, we have
\begin{align} &\big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}} \\ \leq& 2^{\mathrm{p}-1} \bigg\Vert\varepsilon^{\mathfrak{a}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}} \\&+ 2^{\mathrm{p}-1} \bigg\Vert \varepsilon^{\mathfrak{a}-\frac{1}{2}} \frac{1}{\Gamma(\mathfrak{a})} \int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}({\varphi})\bigg\Vert^{\mathrm{p}} \\ \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{\mathrm{p}\mathfrak{a}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}} \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert^{\mathrm{p}}. \end{align} | (4.7) |
Utilizing Eq (4.7) in Eq (4.5),
\begin{align} &\mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\varphi \bigg\Vert^{\mathrm{p}}\Bigg] \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{\mathrm{p}-1}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \bigg(\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}} \big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*} (\varphi-\mathrm{s})\big)\bigg) \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert^{\mathrm{p}}\Bigg] \\ = &\mathscr{Q}_{1}+\mathscr{Q}_{2}. \end{align} | (4.8) |
From \mathscr{Q}_{1} , we have
\begin{align} \mathscr{Q}_{1} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \Big(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)-\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\Big) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}}\Bigg] \\&+ \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1} \Big(\mathfrak{f}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)-\widetilde{\mathfrak{f}}\big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\Big) \mathrm{d}\varphi\bigg\Vert^{\mathrm{p}}\Bigg] \\ = &\mathscr{Q}_{11}+\mathscr{Q}_{12}. \end{align} | (4.9) |
By Hölder's inequality, Jensen's inequality, and (\mathbb{H}_{3}) applied to \mathscr{Q}_{11} :
\begin{align} \mathscr{Q}_{11} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \left( \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{\frac{(\mathfrak{a}-1)\mathrm{p}}{\mathrm{p}-1}} \mathrm{d}\varphi\right)^{\mathrm{p}-1} \\& \mathrm{E}\left[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}} \left\Vert\mathfrak{f}\left(\varphi, \varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\right)- \mathfrak{f}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{\mathrm{p}} \mathrm{d}\varphi\right] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathscr{U}_{3}^{\mathrm{p}} \big({\mathfrak{u}^{\frac{(\mathfrak{a}\mathrm{p}-1)}{\mathrm{p}-1}}}\big)^{\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1} \\& \Bigg(\mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}} \left\Vert \varpi_{\varepsilon}(\varphi)-\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}\mathrm{d}\varphi\bigg]+\mathrm{E}\bigg[ \sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}}\left\Vert\varpi_{\varepsilon}(\varphi-\mathrm{s}) -\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}} \mathrm{d}\varphi\bigg]\Bigg) \\ = & \mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} \Bigg(\int_{0}^{\mathfrak{u}} \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert \varpi_{\varepsilon}(\Lambda) -\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert ^{\mathrm{p}} \bigg]\mathrm{d}\varphi \\&+ \int_{0}^{\mathfrak{u}} \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi} \Vert \varpi_{\varepsilon}(\Lambda-\mathrm{s}) -\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\Vert^{\mathrm{p}}\bigg] \mathrm{d}\varphi\Bigg), \end{align} | (4.10) |
here, \mathscr{Q}_{11} = \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1}\big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\mathscr{U}_{3}^{\mathrm{p}} .
By Hölder's inequality, Jensen's inequality, and (\mathbb{H}_{5}) on \mathscr{Q}_{12} ,
\begin{align} \mathscr{Q}_{12} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \Big(\int_{0}^{\mathfrak{u}} (\mathfrak{u}-\varphi)^{\frac{(\mathfrak{a}-1)\mathrm{p}}{\mathrm{p}-1}} \mathrm{d}\varphi\Big)^{\mathrm{p}-1} \\& \mathrm{E}\bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \int_{0}^{\mathfrak{c}}\bigg\Vert\mathfrak{f} \big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{f}} \big(\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg\Vert^{\mathrm{p}} \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{\mathrm{p}\mathfrak{a}} \big({\mathfrak{u}^{\frac{(\mathfrak{a}\mathrm{p}-1)}{\mathrm{p}-1}}}\big)^{\mathrm{p}-1} \bigg(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\bigg)^{\mathrm{p}-1} \aleph_{1}(\mathfrak{u}) \mathfrak{u}\big(1+\mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi)\big\Vert ^{\mathrm{p}}+ \mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}\big) \\ = & \mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{\mathfrak{a}\mathrm{p}}, \end{align} | (4.11) |
where \mathscr{Q}_{12} = \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2} \big(\frac{\mathrm{p}-1}{(\mathfrak{a}\mathrm{p}-1)}\big)^{\mathrm{p}-1} \aleph_{1}(\mathfrak{u}) \big(1+\mathrm{E}\big\Vert \varpi_{\varepsilon}^{*}(\varphi)\big\Vert^{\mathrm{p}}+ \mathrm{E}\big\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big\Vert^{\mathrm{p}}\big) .
The following is provided by \mathscr{Q}_{2} via Jensen's inequality:
\begin{align} \mathscr{Q}_{2}\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \Bigg(\mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg[\mathfrak{g}\big(\varphi,\varpi_{\varepsilon}(\varphi), \varpi_{\varepsilon}(\varphi-\mathrm{s})\big)- \mathfrak{g}\big(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg] \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert ^{\mathrm{p}}\Bigg]\Bigg) \\+& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \Bigg(\mathrm{E}\Bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \bigg\Vert\int_{0}^{\mathfrak{c}}(\mathfrak{c}-\varphi)^{\mathfrak{a}-1}\bigg[\mathfrak{g}\big(\varphi,\varpi^{*}_{\varepsilon}(\varphi), \varpi^{*}_{\varepsilon}(\varphi-\mathrm{s})\big)- \widetilde{\mathfrak{g}}\big(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\big)\bigg] \mathrm{d}\mathrm{w}{(\varphi)}\bigg\Vert ^{\mathrm{p}}\Bigg]\Bigg) \\ = & \mathscr{Q}_{21}+\mathscr{Q}_{22}. \end{align} | (4.12) |
By applying (\mathbb{H}_{3}) , Hölder's inequality, and Burkholder-Davis-Gundy inequality on \mathscr{Q}_{21} ,
\begin{align} \mathscr{Q}_{21}\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \left(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\right)^{\frac{\mathrm{p}}{2}} \\& \mathrm{E}\left[\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{2\mathfrak{a}-2} \left\Vert\mathfrak{g}\left(\varphi,\varpi_{\varepsilon}(\varphi),\varpi_{\varepsilon}(\varphi-\mathrm{s})\right)- \mathfrak{g}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{2} \mathrm{d}\varphi\right]^{\frac{\mathrm{p}}{2}} \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \mathscr{U}_{3}^{\mathrm{p}} \big(\mathrm{p}^{\mathrm{p}+1}2(1-\mathrm{p})^{\mathrm{p}-1}\big)^{\frac{\mathrm{p}}{2}} \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left[\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right \Vert^{\mathrm{p}}+\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}}\right] \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{3\mathrm{p}-3}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \mathscr{U}_{3}^{\mathrm{p}} \big(\mathrm{p}^{\mathrm{p}+1}2(1-\mathrm{p})^{\mathrm{p}-1}\big)^{\frac{\mathrm{p}}{2}} \int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left[\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right \Vert^{\mathrm{p}}+\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}}\right] \mathrm{d}\varphi\bigg] \\ = &\mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \Bigg(\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda)-\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert^{\mathrm{p}}\bigg] \mathrm{d}\varphi \\& +\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}} \bigg] \mathrm{d}\varphi\Bigg), \end{align} | (4.13) |
where \mathscr{Q}_{21} = 2^{3\mathrm{p}-3}\mathscr{U}_{3}^{\mathrm{p}} \left(\frac{\mathrm{p}^{\mathrm{p}+1}}{2(\mathrm{p}-1)^{\mathrm{p}-1}}\right)^{\frac{\mathrm{p}}{2}} \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} .
By Hölder's inequality and Burkholder-Davis-Gundy inequality,
\begin{align} \mathscr{Q}_{22} \leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2}\big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \\& \mathrm{E}\left[\int_{0}^{\mathfrak{u}}\left\Vert\mathfrak{f} \left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)- \widetilde{\mathfrak{g}}\left(\varphi,\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right) \right\Vert^{2}(\mathfrak{u}-\varphi)^{2\mathfrak{a}-2} \mathrm{d}\varphi\right]^{\frac{\mathrm{p}}{2}} \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} 2^{2\mathrm{p}-2} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} \big(2(\mathrm{p}-1)^{\mathrm{p}-1}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \mathrm{E}\bigg[\int_{0}^{\mathfrak{u}}(\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \\& \left(\left\Vert\mathfrak{g} \left(\varphi,\varpi_{\varepsilon}^{*}(\varphi), \varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right)\right\Vert^{\mathrm{p}}+ \big\Vert\widetilde{\mathfrak{g}} \left(\varpi_{\varepsilon}^{*}(\varphi),\varpi_{\varepsilon}^{*} (\varphi-\mathrm{s})\right)\big\Vert^{\mathrm{p}}\right) \mathrm{d}\varphi\bigg] \\\leq& \big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}} \frac{2^{3\mathrm{p}-3}3^{\mathrm{p}-1} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{((\mathfrak{a}-1)\mathrm{p}+1)} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1}\mathscr{U}_{4}^{\mathrm{p}}\left(\mathscr{U}_{4}^{\mathrm{p}}+ \mathscr{U}_{6}\right)^{\mathrm{p}}} {((\mathfrak{a}-1)\mathrm{p}+1)} \\& \big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}} \big(1+\mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}]+ \mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}}]\big) \\ = & \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}, \end{align} | (4.14) |
where
\begin{align*} \mathscr{Q}_{22} = & 2^{3{\mathrm{p}}-3}3^{{\mathrm{p}}-1}\mathscr{U}_{4}^{\mathrm{p}} \left(\mathscr{U}_{4}^{\mathrm{p}}+ \mathscr{U}_{6}\right)^{\mathrm{p}} \frac{1} {(\vartheta(\mathfrak{a}-1)\mathrm{p}+1)} \big(2(\mathrm{p}-1)^{1-\mathrm{p}}\mathrm{p}^{\mathrm{p}+1}\big)^{\frac{\mathrm{p}}{2}}\\& \big(1+\mathrm{E}[\left\Vert\varpi_{\varepsilon}^{*}(\varphi)\right\Vert^{\mathrm{p}}]+\mathrm{E}[ \left\Vert\varpi_{\varepsilon}^{*}(\varphi-\mathrm{s})\right\Vert^{\mathrm{p}}]\big)\big(\frac{1}{\Gamma(\mathfrak{a})}\big)^{\mathrm{p}}. \end{align*} |
Using Eqs (4.9) to (4.14) in (4.8),
\begin{align} &\mathrm{E} \bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})- \varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg]\\ \leq& \mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}} \mathfrak{u}^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} + \int_{0}^{\mathfrak{u}} \bigg(\mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} + \mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} (\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \mathrm{d}\varphi \bigg) \\& \mathrm{E}\bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert \varpi_{\varepsilon}(\Lambda) -\varpi_{\varepsilon}^{*}(\Lambda)\right\Vert^{\mathrm{p}} \bigg]\mathrm{d}\varphi\\& + \int_{0}^{\mathfrak{u}} \bigg( \mathscr{Q}_{11}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{(\mathfrak{a}\mathrm{p}-1)} + \mathscr{Q}_{21}\varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{\frac{\mathrm{p}}{2}-1} (\mathfrak{u}-\varphi)^{(\mathfrak{a}-1)\mathrm{p}} \bigg) \mathrm{E} \bigg[\sup\limits_{0\leq\Lambda\leq\varphi}\left\Vert\varpi_{\varepsilon}(\Lambda-\mathrm{s})-\varpi_{\varepsilon}^{*}(\Lambda-\mathrm{s})\right\Vert^{\mathrm{p}} \bigg] \mathrm{d}\varphi. \end{align} | (4.15) |
From Eq (4.15),
\begin{align*} &\mathrm{E} \bigg[\sup\limits_{0\leq\mathfrak{c}\leq\mathfrak{u}} \big\Vert\varpi_{\varepsilon}(\mathfrak{c})-\varpi_{\varepsilon}^{*}(\mathfrak{c})\big\Vert^{\mathrm{p}}\bigg] \\\leq& \Bigg(\mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}\mathfrak{u}^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\Bigg) \exp\left(2\mathscr{Q}_{11} \varepsilon^{\mathrm{p}\mathfrak{a}} \mathfrak{u}^{\mathfrak{a}\mathrm{p}}+ \frac{2\mathscr{Q}_{21}}{((\mathfrak{a}-1)\mathrm{p}+1)} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} \mathfrak{u}^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\right). \end{align*} |
So, for \varrho > 0 and \kappa\in(0, \mathfrak{a}\mathrm{p}-\frac{\mathrm{p}}{2}) with \mathfrak{c}\in\left[-\mathrm{s}, \varrho\varepsilon^{-\kappa}\right]\subseteq[0, \mathbb{M}] , we obtain
\begin{equation} \mathrm{E}\left[\sup\limits_{-\mathrm{s}\leq\mathfrak{c}\leq \varrho\varepsilon^{-\kappa}}\left\Vert\varpi_{\varepsilon}(\mathfrak{c})- \varpi_{\varepsilon}^{*}(\mathfrak{c})\right\Vert^{\mathrm{p}}\right]\leq\mathscr{Z}\varepsilon^{1-\kappa}, \end{equation} | (4.16) |
where
\begin{align*} \mathscr{Z} = \varepsilon^{\kappa-1}&\Bigg(\mathscr{Q}_{12}\varepsilon^{\mathrm{p}\mathfrak{a}}(\varrho\varepsilon^{-\kappa})^{\mathfrak{a}\mathrm{p}} + \mathscr{Q}_{22} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} (\varrho\varepsilon^{-\kappa})^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\Bigg) \\& \exp\left(2\mathscr{Q}_{11} \varepsilon^{\mathrm{p}\mathfrak{a}} (\varrho\varepsilon^{-\kappa})^{\mathfrak{a}\mathrm{p}}+ \frac{2\mathscr{Q}_{21}}{((\mathfrak{a}-1)\mathrm{p}+1)} \varepsilon^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}} (\varrho\varepsilon^{-\kappa})^{(\mathfrak{a}-\frac{1}{2})\mathrm{p}}\right). \end{align*} |
So, proved the required result.
To better understand the theoretical results established in this research, we present examples along with graphical comparisons of the original and averaged solutions. Figures 1–4 illustrate these comparisons, supporting the validity of our theoretical findings.
Example 1. Consider the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = 6\varepsilon^{0.95}\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+\varepsilon^{0.95}\varpi_{\varepsilon} (\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c}) \\ \quad\quad\quad\quad\quad\quad+3\varepsilon^{0.95-\frac{1}{2}} \varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2}) \cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma, \end{array}\right. \end{align} | (5.1) |
where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{1}{2} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = 6\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c}), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = 3\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})). \end{align*} |
The criteria of existence and uniqueness are fulfilled by \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) .
The averages of \mathfrak{f} and \mathfrak{g} are as
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi} \bigg(6\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})+\varpi_{\varepsilon}(\mathfrak{c})\cos^{2}\big(\frac{1}{2}\mathfrak{c}\big)\bigg)d\mathfrak{c} = \frac{7}{2}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi(\mathfrak{c}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}3\varpi_{\varepsilon}(\mathfrak{c})\cos^{2}(\mathfrak{c})\sin(\varpi_{\varepsilon}(\mathfrak{c})) d\mathfrak{c} = \frac{3}{2}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\sin(\varpi^{*}_{\varepsilon}(\mathfrak{c})). \end{align*} |
The corresponding average is
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{7}{2}\varepsilon^{0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})+ \frac{3}{2}\varepsilon^{0.95-\frac{1}{2}} \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{2})\sin(\varpi^{*}_{\varepsilon}(\mathfrak{c})) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi^{*}_{\varepsilon}(0) = \sigma. \end{array}\right. \end{align} | (5.2) |
All conditions in Theorem 4.1 are satisfied by system (5.1). As a result, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 1 presents a graphical comparison between solutions of the original system (5.1) and averaged system (5.2), demonstrating a strong agreement between solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and confirming the accuracy of our theoretical conclusions.
Example 2. Take the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.90}\varpi_{\varepsilon}(\mathfrak{c}) = 3\varepsilon^{0.90}\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})\\ \quad\quad\quad\quad\quad\quad+ \varepsilon^{0.90-\frac{1}{2}} \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} | (5.3) |
where \mathfrak{a} = 0.90 , \mathrm{s} = \frac{1}{3} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = 3\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c}), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
The criteria of existence and uniqueness are fulfilled by \mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) .
The averages of \mathfrak{f} and \mathfrak{g} are as
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi}3\sin\big(\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\sin^{2}(\mathfrak{c})\varpi_{\varepsilon}(\mathfrak{c})d\mathfrak{c} = \frac{3}{2} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
The corresponding average is
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.90}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{3}{2} \varepsilon^{0.90}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{3})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c})+ \varepsilon^{0.90-\frac{1}{2}} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big){d\mathfrak{c}}, \\ \varpi^{*}_{\varepsilon}(0) = \sigma^{\prime}. \end{array}\right. \end{align} | (5.4) |
All requirements in Theorem 4.1 are fulfilled by Example 2. Consequently, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 2 provides a graphical comparison between solutions of the original system (5.3) and the averaged system (5.4), illustrating a strong agreement between \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and validating the accuracy of our theoretical findings.
Example 3. Examine the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = \frac{1}{3}\varepsilon^{0.95}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \\ \quad\quad\quad\quad\quad\quad+ \frac{3\pi}{4} \varepsilon^{0.95-\frac{1}{2}} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} | (5.5) |
where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{1}{4} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{3}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big), \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{3\pi}{4} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c})\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
\mathfrak{f}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) and \mathfrak{g}(\mathfrak{c}, \varpi(\mathfrak{c}), \varpi(\mathfrak{c}-\mathrm{s})) satisfy the needs of existence and uniqueness.
The following are the averages:
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi}\frac{1}{3}\varpi_{\varepsilon}(\mathfrak{c}-\frac{1}{4}) \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)d\mathfrak{c} = \frac{1}{3}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{4})\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) , \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi} \frac{3\pi}{4} \sin^{3}\mathfrak{c} \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c})\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}). \end{align*} |
Thus,
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \frac{1}{3}\varepsilon^{0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{1}{4})\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\\ \quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)\varpi^{*}_{\varepsilon}(\mathfrak{c}) \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi_{\varepsilon}^{*}(0) = \sigma^{\prime}. \end{array}\right. \end{align} | (5.6) |
All conditions stated in Theorem 4.1 are satisfied by Example 3. As a result, solutions \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) are equivalent at the \mathrm{p} th moment in the limit as \varepsilon\rightarrow0 . Figure 3 depicts a graphical comparison between solutions of the original system (5.5) and the averaged system (5.6), demonstrating a strong agreement between \varpi_{\varepsilon}(\mathfrak{c}) and \varpi^{*}_{\varepsilon}(\mathfrak{c}) and confirming the accuracy of our theoretical results.
Example 4. Take the following:
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi_{\varepsilon}(\mathfrak{c}) = \frac{9}{2}\varepsilon^{0.95}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}} \\\quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3}) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}},\; \mathfrak{c}\in[0,\pi], \\ \varpi(0) = \sigma^{\prime}, \end{array}\right. \end{align} | (5.7) |
where \mathfrak{a} = 0.95 , \mathrm{s} = \frac{2}{3} , and
\begin{align*} \mathfrak{f}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}}, \\ \mathfrak{g}(\mathfrak{c},\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
The \frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}} and \sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) satisfy the conditions of existence and uniqueness.
The averages of \mathfrak{f} and \mathfrak{g} :
\begin{align*} \widetilde{\mathfrak{f}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s})) & = \frac{1}{\pi}\int_{0}^{\pi} \bigg(\frac{9}{2}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big)\exp^{-\mathfrak{c}}\bigg)d\mathfrak{c} \nonumber\\& = \frac{9}{2\pi}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big)(1-\exp^{-\pi}), \\ \widetilde{\mathfrak{g}}(\varpi(\mathfrak{c}),\varpi({\mathfrak{c}}-\mathrm{s}))& = \frac{1}{\pi}\int_{0}^{\pi}\sin\big(\varpi_{\varepsilon}(\mathfrak{c})\big) \varpi_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi_{\varepsilon}(\mathfrak{c})\big) d\mathfrak{c} = \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big). \end{align*} |
So, we get
\begin{align} \left\{\begin{array}{l} \mathbb{D}_{0+}^{\vartheta,0.95}\varpi^{*}_{\varepsilon}(\mathfrak{c}) = \varepsilon^{0.95}\frac{9}{2\pi}\sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c}))\big)(1-\exp^{-\pi})\\ \quad\quad\quad\quad\quad\quad+\varepsilon^{0.95-\frac{1}{2}} \sin\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \varpi^{*}_{\varepsilon}(\mathfrak{c}-\frac{2}{3})\cos\big(\varpi^{*}_{\varepsilon}(\mathfrak{c})\big) \frac{\mathrm{d}\mathrm{w}{(\mathfrak{c})}}{d\mathfrak{c}}, \\ \varpi_{\varepsilon}^{*}(0) = \sigma^{\prime}. \end{array}\right. \end{align} | (5.8) |
Figure 4 presents the same results as in Examples 1–3.
Our research work is important as follows: First, by proving results of existence and uniqueness, Con-D, regularity, and average principle in the \mathrm{p} th moment, we extend the outcomes for \mathrm{p} = 2 . Secondly, for the first time in the literature, we construct well-posedness and average principle results in the context of HFrD of SFDDEs. Third, we consider SFDDEs, which represent a more generalized class of FSDEs, and we present some graphical results to prove the validity of our results.
The following are the main points we can work on in the future: We can explore the important concept of controllability for SFDDEs concerning HFrD. We can establish well-posedness, regularity, and average principle results for stochastic Volterra-Fredholm integral equations.
W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar and A. H. Abdel-Aty: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing–original draft preparation, Writing–review and editing, Visualization, Resources, Funding acquisition. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The research work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.
The authors declare no conflicts of interest.
[1] |
H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
![]() |
[2] |
P. Liu, J. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Cont. Dyn. S., 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
![]() |
[3] |
H. Khan, R. Shah, P. Kumam, M. Arif, Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method, Entropy, 21 (2022), 597. https://doi.org/10.3390/e21060597 doi: 10.3390/e21060597
![]() |
[4] | H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, arXiv Preprint, 2019. |
[5] |
L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network, IEEE T. Cybernetics, 53 (2022), 4015–4028. https://doi.org/10.1109/TCYB.2022.3225106 doi: 10.1109/TCYB.2022.3225106
![]() |
[6] |
A. M. Zidan, A. Khan, M. K. Alaoui, W. Weera, Evaluation of time-fractional Fishers equations with the help of analytical methods, AIMS Math., 7 (2022), 18746–18766. https://doi.org/10.3934/math.20221031 doi: 10.3934/math.20221031
![]() |
[7] |
R. Luo, Z. Peng, J. Hu, On model identification based optimal control and it's applications to multi-agent learning and control, Mathematics, 11 (2023), 906. https://doi.org/10.3390/math11040906 doi: 10.3390/math11040906
![]() |
[8] |
X. Lyu, X. Wang, C. Qi, R. Sun, Characteristics of cavity dynamics, forces, and trajectories on vertical water entries with two spheres side-by-side, Phys. Fluids, 35 (2023). https://doi.org/10.1063/5.0166794 doi: 10.1063/5.0166794
![]() |
[9] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Space., 2022 (2022), 1–18. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[10] |
M. Ekici, A. Sonmezoglu, E. M. Zayed, A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics, Comput. Methods Diffe., 2 (2014), 153–170. https://doi.org/10.9734/BJMCS/2013/2908 doi: 10.9734/BJMCS/2013/2908
![]() |
[11] |
H. Khan, R. Shah, J. F. G. Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Pheno., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
![]() |
[12] |
A. Ara, N. A. Khan, O. A. Razzaq, T. Hameed, M. A. Z. Raja, Wavelets optimization method for evaluation of fractional partial differential equations: An application to financial modelling, Adv. Differ. Equ., 2018 (2018), 1–13. https://doi.org/10.1186/s13662-017-1461-2 doi: 10.1186/s13662-017-1461-2
![]() |
[13] |
H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
![]() |
[14] |
P. Sunthrayuth, N. H. Aljahdaly, A. Ali, I. Mahariq, A. M. Tchalla, \psi-Haar wavelet operational matrix method for fractional relaxation-oscillation equations containing \psi-Caputo fractional derivative, J. Funct. Space., 2021 (2021), 1–14. https://doi.org/10.1155/2021/7117064 doi: 10.1155/2021/7117064
![]() |
[15] |
M. K. Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, Analytical investigation of fractional-order cahn-hilliard and gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
![]() |
[16] |
N. J. Ford, J. Xiao, Y. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), 454–474. https://doi.org/10.2478/s13540-011-0028-2 doi: 10.2478/s13540-011-0028-2
![]() |
[17] |
D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys. Rev. E, 77 (2008), 021122. https://doi.org/10.1103/PhysRevE.77.021122 doi: 10.1103/PhysRevE.77.021122
![]() |
[18] |
A. R. Alharbi, M. B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
![]() |
[19] |
M. B. Almatrafi, A. Alharbi, K. Lotfy, A. A. El-Bary, Exact and numerical solutions for the GBBM equation using an adaptive moving mesh method, Alex. Eng. J., 60 (2021), 4441–4450. https://doi.org/10.1016/j.aej.2021.03.023 doi: 10.1016/j.aej.2021.03.023
![]() |
[20] |
A. R. Alharbi, M. B. Almatrafi, M. A. Abdelrahman, Analytical and numerical investigation for Kadomtsev-Petviashvili equation arising in plasma physics, Phys. Scripta, 95 (2020), 045215. https://doi.org/10.1088/1402-4896/ab6ce4 doi: 10.1088/1402-4896/ab6ce4
![]() |
[21] |
M. A. Abdelrahman, M. B. Almatrafi, A. Alharbi, Fundamental solutions for the coupled KdV system and its stability, Symmetry, 12 (2020), 429. https://doi.org/10.3390/sym12030429 doi: 10.3390/sym12030429
![]() |
[22] |
A. R. Alharbi, M. B. Almatrafi, Analytical and numerical solutions for the variant Boussinseq equations, J. Taibah Univ. Sci., 14 (2020), 454–462. https://doi.org/10.1080/16583655.2020.1746575 doi: 10.1080/16583655.2020.1746575
![]() |
[23] |
A. M. Zidan, A. Khan, M. K. Alaoui, W. Weera, Evaluation of time-fractional Fishers equations with the help of analytical methods, AIMS Math., 7 (2022), 18746–18766. https://doi.org/10.3934/math.20221031 doi: 10.3934/math.20221031
![]() |
[24] |
K. Xu, Y. Guo, Y. Liu, X. Deng, Q. Chen, Z. Ma, 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology, IEEE Electr. Device L., 42 (2021), 1120–1123. https://doi.org/10.1109/LED.2021.3091277 doi: 10.1109/LED.2021.3091277
![]() |
[25] |
Z. Li, K. Wang, W. Li, S. Yan, F. Chen, S. Peng, Analysis of surface pressure pulsation characteristics of centrifugal pump magnetic liquid sealing film, Front. Energy Res., 10 (2022), 937299. https://doi.org/10.3389/fenrg.2022.937299 doi: 10.3389/fenrg.2022.937299
![]() |
[26] |
H. Chen, W. Chen, X. Liu, X. Liu, Establishing the first hidden-charm pentaquark with strangeness, Eur. Phys. J. C, 81 (2021), 409. https://doi.org/10.1140/epjc/s10052-021-09196-4 doi: 10.1140/epjc/s10052-021-09196-4
![]() |
[27] |
M. Ayata, O. Ozkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
![]() |
[28] |
H. Khan, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
![]() |
[29] |
B. Q. Li, Y. L. Ma, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31 (2018), 1773–1778. https://doi.org/10.1007/s10948-017-4406-9 doi: 10.1007/s10948-017-4406-9
![]() |
[30] |
B. Q. Li, Y. L. Ma, The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer–Kaup equations with variable coefficients, Commun. Nonlinear Sci., 16 (2011), 144–149. https://doi.org/10.1016/j.cnsns.2010.02.011 doi: 10.1016/j.cnsns.2010.02.011
![]() |
[31] |
S. Mukhtar, S. Noor, The numerical investigation of a fractional-order multi-dimensional Model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102
![]() |
[32] |
S. Duran, Exact solutions for time-fractional Ramani and Jimbo-Miwa equations by direct algebraic method, Adv. Sci. Eng. Medicine, 12 (2020), 982–988. https://doi.org/10.1166/asem.2020.2663 doi: 10.1166/asem.2020.2663
![]() |
[33] |
R. Y. Molliq, M. S. M. Noorani, I. Hashim, R. R. Ahmad, Approximate solutions of fractional Zakharov-Kuznetsov equations by VIM, J. Comput. Appl. Math., 233 (2009), 103–108. https://doi.org/10.1016/j.cam.2009.03.010 doi: 10.1016/j.cam.2009.03.010
![]() |
[34] |
B. Zheng, Exp-function method for solving fractional partial differential equations, The Scientific World J., 2013 (2013). https://doi.org/10.1186/1687-1847-2013-199 doi: 10.1186/1687-1847-2013-199
![]() |
[35] |
Y. L. Ma, B. Q. Li, Y. Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Method. Appl. Sci., 41 (2018), 3316–3322. https://doi.org/10.1002/mma.4818 doi: 10.1002/mma.4818
![]() |
[36] |
Y. L. Ma, B. Q. Li, C. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036
![]() |
[37] |
B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149–155. https://doi.org/10.1016/j.ijleo.2017.06.114 doi: 10.1016/j.ijleo.2017.06.114
![]() |
[38] |
M. Zhang, Y. L. Ma, B. Q. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
![]() |
[39] |
Y. L. Ma, B. Q. Li, Novel optical soliton structures for a defocusing Lakshmanan-Porsezian-Daniel optical system, Optik, 284 (2023), 170931. https://doi.org/10.1016/j.ijleo.2023.170931 doi: 10.1016/j.ijleo.2023.170931
![]() |
[40] |
B. Q. Li, Y. L. Ma, Hybrid soliton and breather waves, solution molecules and breather molecules of a (3+1)-dimensional Geng equation in shallow water waves, Phys. Lett. A, 463 (2023), 128672. https://doi.org/10.1016/j.physleta.2023.128672 doi: 10.1016/j.physleta.2023.128672
![]() |
[41] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
![]() |
[42] |
Q. Al-Mdallal, K. A. Abro, I. Khan, Analytical solutions of fractional Walter's B fluid with applications, Complexity, 2018 (2018), 1–10. https://doi.org/10.1155/2018/8131329 doi: 10.1155/2018/8131329
![]() |
[43] |
H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 64 (2012), 3377–3388. https://doi.org/10.1016/j.camwa.2012.02.042 doi: 10.1016/j.camwa.2012.02.042
![]() |
[44] |
B. Zheng, Exp-function method for solving fractional partial differential equations, The Scientific World J., 2013 (2013). https://doi.org/10.1186/1687-1847-2013-199 doi: 10.1186/1687-1847-2013-199
![]() |
[45] |
H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
![]() |
[46] |
Y. Tian, J. Liu, Direct algebraic method for solving fractional Fokas equation, Thermal Sci., 25 (2021), 2235–2244. https://doi.org/10.2298/TSCI200306111T doi: 10.2298/TSCI200306111T
![]() |
[47] |
H. Gnerhan, F. S. Khodadad, H. Rezazadeh, M. M. Khater, Exact optical solutions of the (2+1) dimensions Kundu-Mukherjee-Naskar model via the new extended direct algebraic method, Mod. Phys. Lett. B, 34 (2020), 2050225. https://doi.org/10.1142/S0217984920502255 doi: 10.1142/S0217984920502255
![]() |
[48] |
M. Younis, M. Iftikhar, Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct algebraic method, J. Comput. Methods Sci., 15 (2015), 359–365. https://doi.org/10.3233/JCM-150548 doi: 10.3233/JCM-150548
![]() |
[49] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686
![]() |
[50] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
![]() |
[51] |
T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 2023. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
![]() |
[52] |
Y. Fang, H. Min, X. Wu, W. Wang, X. Zhao, G. Mao, On-ramp merging strategies of connected and automated vehicles considering communication delay, IEEE Intel. Transp. Sy., 23 (2022), 15298–15312. https://doi.org/10.1109/TITS.2022.3140219 doi: 10.1109/TITS.2022.3140219
![]() |
[53] |
W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou, Y. Zhao, Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications, Acta Mater., 159, (2018), 16–30. https://doi.org/10.1016/j.actamat.2018.08.008 doi: 10.1016/j.actamat.2018.08.008
![]() |
[54] |
A. M. Wazwaz, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Appl. Mathe. Comput., 186 (2007), 130–141. https://doi.org/10.1016/j.amc.2006.07.092 doi: 10.1016/j.amc.2006.07.092
![]() |
[55] |
D. Li, S. S. Ge, T. H. Lee, Fixed-Time-Synchronized consensus control of multiagent systems, IEEE T. Control Netw., 8 (2021), 89–98. https://doi.org/10.1109/TCNS.2020.3034523 doi: 10.1109/TCNS.2020.3034523
![]() |
[56] |
Q. Meng, Q. Ma, Y. Shi, Adaptive Fixed-time stabilization for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 2023 (2023). https://doi.org/10.1109/TAC.2023.3244151 doi: 10.1109/TAC.2023.3244151
![]() |
[57] |
H. Yuan, B. Yang, System dynamics approach for evaluating the interconnection performance of Cross-Border transport infrastructure, J. Manag. Eng., 38 (2022). https://doi.org/10.1061/(ASCE)ME.1943-5479.0001015 doi: 10.1061/(ASCE)ME.1943-5479.0001015
![]() |
[58] |
V. P. Dubey, R. Kumar, J. Singh, D. Kumar, An efficient computational technique for time-fractional modified Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves, J. Ocean Eng. Sci., 6 (2021), 30–39. https://doi.org/10.1016/j.joes.2020.04.006 doi: 10.1016/j.joes.2020.04.006
![]() |
[59] |
K. Zhang, A. S. Alshehry, N. H. Aljahdaly, R. Shah, N. A. Shah, M. R. Ali, Efficient computational approaches for fractional-order Degasperis-Procesi and Camassa-Holm equations, Results Phys., 50 (2023), 106549. https://doi.org/10.1016/j.rinp.2023.106549 doi: 10.1016/j.rinp.2023.106549
![]() |
[60] |
S. Das, R. Kumar, Approximate analytical solutions of fractional gas dynamic equations, Appl. Math. Comput., 217 (2011), 9905–9915. https://doi.org/10.1016/j.amc.2011.03.144 doi: 10.1016/j.amc.2011.03.144
![]() |
[61] | M. A. Dokuyucu, Caputo and Atangana-Baleanu-Caputo fractional derivative applied to garden equation, Turk. J. Sci., 5 (2020), 1–7. |
[62] |
S. M. M. Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94 (2020), 1–12. https://doi.org/10.1007/s12043-020-1921-1 doi: 10.1007/s12043-020-1921-1
![]() |