Research article Special Issues

Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions

  • Received: 15 March 2021 Accepted: 18 May 2021 Published: 26 May 2021
  • MSC : 26A33, 34A08, 34A12, 34B15

  • In this paper, we discuss the existence and uniqueness of boundary value problems for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. The existence results are obtained via the well known Krasnoselskii's fixed point theorem while the uniqueness is demonstrated by using the Banach's contraction mapping principle. Some examples are also given to demonstrate the application of the main results.

    Citation: Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani. Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions[J]. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477

    Related Papers:

  • In this paper, we discuss the existence and uniqueness of boundary value problems for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. The existence results are obtained via the well known Krasnoselskii's fixed point theorem while the uniqueness is demonstrated by using the Banach's contraction mapping principle. Some examples are also given to demonstrate the application of the main results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [2] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [3] K. S. Miller, B. Ross, An Introduction to the fractional calculus and differential equations, New York: Wiley, 1993.
    [4] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives (theory and applications), Yverdon: Gordon & Breach, 1993.
    [6] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2004.
    [7] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [8] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. doi: 10.1016/S0301-0104(02)00670-5
    [9] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318.
    [10] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55 (2018), 1639–1657.
    [11] W. Saengthong, E. Thailert, S. K. Ntouyas, Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions, Adv. Differ. Equ., 2019 (2019), 525. doi: 10.1186/s13662-019-2459-8
    [12] J. V. Da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005
    [13] J. V. Da C. Sousa, K. D. Kucche, E. C. De Oliveira, On the Ulam-Hyers stabilities of the solutions of $\psi$-Hilfer fractional differential equation with abstract Volterra operator, Math. Methods Appl. Sci., 42 (2019), 3021–3032. doi: 10.1002/mma.5562
    [14] J. V. Da C. Sousa, K. D. Kucche, E. C. De Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. doi: 10.1016/j.aml.2018.08.013
    [15] J. P. Kharade, K. D. Kucche, On the impulsive implicit $\psi$-Hilfer fractional differential equations with delay, Math. Methods Appl. Sci., 43 (2020), 1938–1952. doi: 10.1002/mma.6017
    [16] A. D. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521
    [17] K. D. Kucche, A. D. Mali, J. V. Da C. Sousa, On the nonlinear $\psi$-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019), 37. doi: 10.1007/s40314-019-0810-z
    [18] K. D. Kucche, A. D. Mali, Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math., 39 (2020), 31. doi: 10.1007/s40314-019-1004-4
    [19] K. D. Kucche, J. P. Kharade, Analysis of impulsive $\psi$–Hilfer fractional differential equations, Mediterr. J. Math., 17 (2020), 163. doi: 10.1007/s00009-020-01575-7
    [20] K. D. Kucche, J. P. Kharade, Global existence and Ulam-Hyers stability of $\psi$-Hilfer fractional differential equations, DOI: 10.5666/KMJ.2020.60.3.647.
    [21] D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2 (2017), 105–112.
    [22] K. M. Furati, N. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. doi: 10.1016/j.camwa.2012.01.009
    [23] H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. doi: 10.1016/j.amc.2014.10.083
    [24] J. R. Wang, Y. R. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. doi: 10.1016/j.amc.2015.05.144
    [25] S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential $\psi$-Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comenianae., 90 (2021), 171–185.
    [26] K. Deimling, Nonlinear Functional Analysis, New York: Springer-Verlag, 1985.
    [27] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk., 10 (1955), 123–127.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2190) PDF downloads(202) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog