Research article Special Issues

Global Hopf bifurcation of a cholera model with media coverage


  • Received: 14 July 2023 Revised: 24 September 2023 Accepted: 25 September 2023 Published: 26 September 2023
  • We propose a model for cholera under the impact of delayed mass media, including human-to-human and environment-to-human transmission routes. First, we establish the extinction and uniform persistence of the disease with respect to the basic reproduction number. Then, we conduct a local and global Hopf bifurcation analysis by treating the delay as a bifurcation parameter. Finally, we carry out numerical simulations to demonstrate theoretical results. The impact of the media with the time delay is found to not influence the threshold dynamics of the model, but is a factor that induces periodic oscillations of the disease.

    Citation: Jie He, Zhenguo Bai. Global Hopf bifurcation of a cholera model with media coverage[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18468-18490. doi: 10.3934/mbe.2023820

    Related Papers:

    [1] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [2] M. J. Huntul . Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566
    [3] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [4] Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343
    [5] Junseok Kim . A normalized Caputo–Fabrizio fractional diffusion equation. AIMS Mathematics, 2025, 10(3): 6195-6208. doi: 10.3934/math.2025282
    [6] Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil . Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647
    [7] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [8] Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110
    [9] Jagdev Singh, Jitendra Kumar, Devendra Kumar, Dumitru Baleanu . A reliable numerical algorithm for fractional Lienard equation arising in oscillating circuits. AIMS Mathematics, 2024, 9(7): 19557-19568. doi: 10.3934/math.2024954
    [10] Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of φCaputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278
  • We propose a model for cholera under the impact of delayed mass media, including human-to-human and environment-to-human transmission routes. First, we establish the extinction and uniform persistence of the disease with respect to the basic reproduction number. Then, we conduct a local and global Hopf bifurcation analysis by treating the delay as a bifurcation parameter. Finally, we carry out numerical simulations to demonstrate theoretical results. The impact of the media with the time delay is found to not influence the threshold dynamics of the model, but is a factor that induces periodic oscillations of the disease.



    Ostrowski proved the following interesting and useful integral inequality in 1938, see [18] and [15, page:468].

    Theorem 1.1. Let f:IR, where IR is an interval, be a mapping differentiable in the interior I of I and let a,bI with a<b. If |f(x)|M for all x[a,b], then the following inequality holds:

    |f(x)1babaf(t)dt|M(ba)[14+(xa+b2)2(ba)2] (1.1)

    for all x[a,b]. The constant 14 is the best possible in sense that it cannot be replaced by a smaller one.

    This inequality gives an upper bound for the approximation of the integral average 1babaf(t)dt by the value of f(x) at point x[a,b]. In recent years, such inequalities were studied extensively by many researchers and numerous generalizations, extensions and variants of them appeared in a number of papers, see [1,2,10,11,19,20,21,22,23].

    A function  f:IRR is said to be convex (AAconvex) if the inequality

    f(tx+(1t)y)tf(x)+(1t)f(y)

    holds for all x,yI  and t[0,1].

    In [4], Anderson et al. also defined generalized convexity as follows:

    Definition 1.1. Let f:I(0,) be continuous, where I is subinterval of (0,). Let M and N be any two Mean functions. We say f is MN-convex (concave) if

    f(M(x,y))()N(f(x),f(y))

    for all x,yI.

    Recall the definitions of AGconvex functions, GGconvex functions and GA functions that are given in [16] by Niculescu:

    The AGconvex functions (usually known as logconvex functions) are those functions f:I(0,) for which

    x,yI and λ[0,1]f(λx+(1λ)y)f(x)1λf(y)λ, (1.2)

    i.e., for which logf is convex.

    The GGconvex functions (called in what follows multiplicatively convex functions) are those functions f:IJ (acting on subintervals of (0,)) such that

    x,yI and λ[0,1]f(x1λyλ)f(x)1λf(y)λ. (1.3)

    The class of all GAconvex functions is constituted by all functions f:IR (defined on subintervals of (0,)) for which

    x,yI and λ[0,1]f(x1λyλ)(1λ)f(x)+λf(y). (1.4)

    The article organized three sections as follows: In the first section, some definitions an preliminaries for Riemann-Liouville and new fractional conformable integral operators are given. Also, some Ostrowski type results involving Riemann-Liouville fractional integrals are in this section. In the second section, an identity involving new fractional conformable integral operator is proved. Further, new Ostrowski type results involving fractional conformable integral operator are obtained by using some inequalities on established lemma and some well-known inequalities such that triangle inequality, Hölder inequality and power mean inequality. After the proof of theorems, it is pointed out that, in special cases, the results reduce the some results involving Riemann-Liouville fractional integrals given by Set in [27]. Finally, in the last chapter, some new results for AG-convex functions has obtained involving new fractional conformable integrals.

    Let [a,b] (<a<b<) be a finite interval on the real axis R. The Riemann-Liouville fractional integrals Jαa+f and Jαbf of order αC ((α)>0) with a0 and b>0 are defined, respectively, by

    Jαa+f(x):=1Γ(α)xa(xt)α1f(t)dt(x>a;(α)>0) (1.5)

    and

    Jαbf(x):=1Γ(α)bx(tx)α1f(t)dt(x<b;(α)>0) (1.6)

    where Γ(t)=0exxt1dx is an Euler Gamma function.

    We recall Beta function (see, e.g., [28, Section 1.1])

    B(α,β)={10tα1(1t)β1dt((α)>0;(β)>0)Γ(α)Γ(β)Γ(α+β)             (α,βCZ0). (1.7)

    and the incomplete gamma function, defined for real numbers a>0 and x0 by

    Γ(a,x)=xetta1dt.

    For more details and properties concerning the fractional integral operators (1.5) and (1.6), we refer the reader, for example, to the works [3,5,6,7,8,9,14,17] and the references therein. Also, several new and recent results of fractional derivatives can be found in the papers [29,30,31,32,33,34,35,36,37,38,39,40,41,42].

    In [27], Set gave some Ostrowski type results involving Riemann-Liouville fractional integrals, as follows:

    Lemma 1.1. Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If fL[a,b], then for all x[a,b] and α>0 we have:

    (xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]=(xa)α+1ba10tαf(tx+(1t)a)dt(bx)α+1ba10tαf(tx+(1t)b)dt

    where Γ(α) is Euler gamma function.

    By using the above lemma, he obtained some new Ostrowski type results involving Riemann-Liouville fractional integral operators, which will generalized via new fractional integral operators in this paper.

    Theorem 1.2. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f| is sconvex in the second sense on [a,b] for some fixed s(0,1] and |f(x)|M, x[a,b], then the following inequality for fractional integrals with α>0 holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|Mba(1+Γ(α+1)Γ(s+1)Γ(α+s+1))[(xa)α+1+(bx)α+1α+s+1]

    where Γ is Euler gamma function.

    Theorem 1.3. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f|q is sconvex in the second sense on [a,b] for some fixed s(0,1],p,q>1 and |f(x)|M, x[a,b], then the following inequality for fractional integrals holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|M(1+pα)1p(2s+1)1q[(xa)α+1+(bx)α+1ba]

    where 1p+1q=1, α>0 and Γ is Euler gamma function.

    Theorem 1.4. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f|q is sconvex in the second sense on [a,b] for some fixed s(0,1],q1 and |f(x)|M, x[a,b], then the following inequality for fractional integrals holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|M(1+α)11q(1+Γ(α+1)Γ(s+1)Γ(α+s+1))1q[(xa)α+1+(bx)α+1ba]

    where α>0 and Γ is Euler gamma function.

    Theorem 1.5. Let f:[a,b][0,)R be a differentiable mapping on (a,b) with a<b such that fL[a,b]. If |f|q is sconcave in the second sense on [a,b] for some fixed s(0,1],p,q>1, x[a,b], then the following inequality for fractional integrals holds:

    |(xa)α+(bx)αbaf(x)Γ(α+1)ba[Jαxf(a)+Jαx+f(b)]|2s1q(1+pα)1p(ba)[(xa)α+1|f(x+a2)|+(bx)α+1|f(b+x2)|]

    where 1p+1q=1, α>0 and Γ is Euler gamma function.

    Some fractional integral operators generalize the some other fractional integrals, in special cases, as in the following integral operator. Jarad et. al. [13] has defined a new fractional integral operator. Also, they gave some properties and relations between the some other fractional integral operators, as Riemann-Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral operators etc., with this operator.

    Let βC,Re(β)>0, then the left and right sided fractional conformable integral operators has defined respectively, as follows;

    βaJαf(x)=1Γ(β)xa((xa)α(ta)αα)β1f(t)(ta)1αdt; (1.8)
    βJαbf(x)=1Γ(β)bx((bx)α(bt)αα)β1f(t)(bt)1αdt. (1.9)

    The results presented here, being general, can be reduced to yield many relatively simple inequalities and identities for functions associated with certain fractional integral operators. For example, the case α=1 in the obtained results are found to yield the same results involving Riemann-Liouville fractional integrals, given before, in literatures. Further, getting more knowledge, see the paper given in [12]. Recently, some studies on this integral operators appeared in literature. Gözpınar [13] obtained Hermite-Hadamard type results for differentiable convex functions. Also, Set et. al. obtained some new results for quasiconvex, some different type convex functions and differentiable convex functions involving this new operator, see [24,25,26]. Motivating the new definition of fractional conformable integral operator and the studies given above, first aim of this study is obtaining new generalizations.

    Lemma 2.1. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. Then the following equality for fractional conformable integrals holds:

    (xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]=(xa)αβ+1ba10(1(1t)αα)βf(tx+(1t)a)dt+(bx)αβ+1ba10(1(1t)αα)βf(tx+(1t)b)dt.

    where α,β>0 and Γ is Euler Gamma function.

    Proof. Using the definition as in (1.8) and (1.9), integrating by parts and and changing variables with u=tx+(1t)a and u=tx+(1t)b in

    I1=10(1(1t)αα)βf(tx+(1t)a)dt,I2=10(1(1t)αα)βf(tx+(1t)b)dt

    respectively, then we have

    I1=10(1(1t)αα)βf(tx+(1t)a)dt=(1(1t)αα)βf(tx+(1t)a)xa|10β10(1(1t)αα)β1(1t)α1f(tx+(1t)a)xadt=f(x)αβ(xa)βxa(1(xuxa)αα)β1(xuxa)α1f(u)xaduxa=f(x)αβ(xa)β(xa)αβ+1xa((xa)α(xu)αα)β1(xu)α1f(u)du=f(x)αβ(xa)Γ(β+1)(xa)αβ+1βJαxf(a),

    similarly

    I2=10(1(1t)αα)βf(tx+(1t)b)dt=f(x)αβ(bx)+Γ(β+1)(bx)αβ+1βxJαf(b)

    By multiplying I1 with (xa)αβ+1ba and I2 with (bx)αβ+1ba we get desired result.

    Remark 2.1. Taking α=1 in Lemma 2.1 is found to yield the same result as Lemma 1.1.

    Theorem 2.1. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f| is convex on [a,b] and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba] (2.1)

    where α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.

    Proof. From Lemma 2.1 we can write

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba10(1(1t)αα)β|f(tx+(1t)a)|dt+(bx)αβ+1ba10(1(1t)αα)β|f(tx+(1t)b)|dt(xa)αβ+1ba[10(1(1t)αα)βt|f(x)|dt+10(1(1t)αα)β(1t)|f(a)|dt]+(bx)αβ+1ba[10(1(1t)αα)βt|f(x)|dt+10(1(1t)αα)β(1t)|f(b)|dt]. (2.2)

    Notice that

    10(1(1t)αα)βtdt=1αβ+1[B(1α,β+1)B(2α,β+1)],10(1(1t)αα)β(1t)dt=B(2α,β+1)αβ+1. (2.3)

    Using the fact that, |f(x)|M for x[a,b] and combining (2.3) with (2.2), we get desired result.

    Remark 2.2. Taking α=1 in Theorem 3.1 and s=1 in Theorem 1.2 are found to yield the same results.

    Theorem 2.2. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is convex on [a,b], p,q>1 and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|M[B(βp+1,1α)αβ+1]1p[(xa)αβ+1ba+(bx)αβ+1ba] (2.4)

    where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.

    Proof. By using Lemma 2.1, convexity of |f|q and well-known Hölder's inequality, we have

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)a)|qdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)b)|qdt)1q]. (2.5)

    Notice that, changing variables with x=1(1t)α, we get

    10(1(1t)αα)βp=B(βp+1,1α)αβ+1. (2.6)

    Since |f|q is convex on [a,b] and |f|qMq, we can easily observe that,

    10|f(tx+(1t)a)|qdt10t|f(x)|qdt+10(1t)|f(a)|qdtMq. (2.7)

    As a consequence, combining the equality (2.6) and inequality (2.7) with the inequality (2.5), the desired result is obtained.

    Remark 2.3. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.3 are found to yield the same results.

    Theorem 2.3. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is convex on [a,b], q1 and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba] (2.8)

    where α,β>0, B(x,y) and Γ are Euler Beta and Euler Gamma functions respectively.

    Proof. By using Lemma 2.1, convexity of |f|q and well-known power-mean inequality, we have

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba(10(1(1t)αα)βdt)11q(10(1(1t)αα)β|f(tx+(1t)a)|qdt)1q+(bx)αβ+1ba(10(1(1t)αα)βdt)11q(10(1(1t)αα)β|f(tx+(1t)b)|qdt)1q. (2.9)

    Since |f|q is convex and |f|qMq, by using (2.3) we can easily observe that,

    10(1(1t)αα)β|f(tx+(1t)a)|qdt10(1(1t)αα)β[t|f(x)|q+(1t)|f(a)|q]dtMqαβ+1B(1α,β+1). (2.10)

    As a consequence,

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba(1αβ+1B(1α,β+1))11q(Mqαβ+1B(1α,β+1))1q+(bx)αβ+1ba(1αβ+1B(1α,β+1))11q(Mqαβ+1B(1α,β+1))1q=Mαβ+1B(1α,β+1)[(xa)αβ+1ba+(bx)αβ+1ba]. (2.11)

    This means that, the desired result is obtained.

    Remark 2.4. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.4 are found to yield the same results.

    Theorem 2.4. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is concave on [a,b], p,q>1 and |f(x)|M with x[a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|[B(βp+1,1α)αβ+1]1p[(xa)αβ+1ba|f(x+a2)|+(bx)αβ+1ba|f(x+b2)|] (2.12)

    where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler Beta and Gamma functions respectively.

    Proof. By using Lemma 2.1 and well-known Hölder's inequality, we have

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)a)|qdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(10|f(tx+(1t)b)|qdt)1q]. (2.13)

    Since |f|q is concave, it can be easily observe that,

    |f(tx+(1t)a)|qdt|f(x+a2)|,|f(tx+(1t)b)|qdt|f(b+x2)|. (2.14)

    Notice that, changing variables with x=1(1t)α, as in (2.6), we get,

    10(1(1t)αα)βp=B(βp+1,1α)αβ+1. (2.15)

    As a consequence, substituting (2.14) and (2.15) in (2.13), the desired result is obtained.

    Remark 2.5. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.5 are found to yield the same results.

    Some new inequalities for AG-convex functions has obtained in this chapter. For the simplicity, we will denote |f(x)||f(a)|=ω and |f(x)||f(b)|=ψ.

    Theorem 3.1. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f| is AGconvex on [a,b], then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]||f(a)|(xa)αβ+1αβ(ba)[ω1lnω(ωlnαβ1(ω)(Γ(αβ+1)Γ(αβ+1,lnω)))]+|f(b)|(bx)αβ+1αβ(ba)[ψ1lnψ(ψlnαβ1(ψ)(Γ(αβ+1)Γ(αβ+1,lnψ)))]

    where α>0,β>1, Re(lnω)<0Re(lnψ)<0Re(αβ)>1,B(x,y),Γ(x,y) and Γ are Euler Beta, Euler incomplete Gamma and Euler Gamma functions respectively.

    Proof. From Lemma 2.1 and definition of AGconvexity, we have

    (xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)](xa)αβ+1ba10(1(1t)αα)β|f(tx+(1t)a)|dt+(bx)αβ+1ba10(1(1t)αα)β|f(tx+(1t)b)|dt(xa)αβ+1ba[10(1(1t)αα)β|f(a)|(|f(x)||f(a)|)tdt]+(bx)αβ+1ba[10(1(1t)αα)β|f(b)|(|f(x)||f(b)|)tdt]. (3.1)

    By using the fact that |1(1t)α|β1|1t|αβ for α>0,β>1, we can write

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1αβ(ba)[10(1|1t|αβ)|f(a)|(|f(x)||f(a)|)tdt]+(bx)αβ+1αβ(ba)[10(1|1t|αβ)|f(b)|(|f(x)||f(b)|)tdt].

    By computing the above integrals, we get the desired result.

    Theorem 3.2. Let f:[a,b]R be a differentiable function on (a,b) with a<b and fL[a,b]. If |f|q is AGconvex on [a,b] and p,q>1, then the following inequality for fractional conformable integrals holds:

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(B(βp+1,1α)αβ+1)1p[|f(a)|(xa)αβ+1ba(ωq1qlnω)1q+|f(b)|(bx)αβ+1ba(ψq1qlnψ)1q].

    where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.

    Proof. By using Lemma 2.1, AGconvexity of |f|q and well-known Hölder's inequality, we can write

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(xa)αβ+1ba[(10(1(1t)αα)βp)1p(|f(a)|q10(|f(x)||f(a)|)qtdt)1q]+(bx)αβ+1ba[(10(1(1t)αα)βp)1p(|f(b)|q10(|f(x)||f(b)|)qtdt)1q].

    By a simple computation, one can obtain

    |(xa)αβ+(bx)αβ(ba)αβf(x)Γ(β+1)ba[βxJαf(b)+βJαxf(a)]|(B(βp+1,1α)αβ+1)1p×[|f(a)|(xa)αβ+1ba(ωq1qlnω)1q+|f(b)|(bx)αβ+1ba(ψq1qlnψ)1q].

    This completes the proof.

    Corollary 3.1. In our results, some new Ostrowski type inequalities can be derived by choosing |f|M. We omit the details.

    The authors declare that no conflicts of interest in this paper.



    [1] N. Wang, L. Qi, M. Bessane, M. Hao, Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection, J. Differ. Equations, 369 (2023), 1–40. https://doi.org/10.1016/j.jde.2023.05.036 doi: 10.1016/j.jde.2023.05.036
    [2] Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 7838. http://doi.org/10.1038/srep07838 doi: 10.1038/srep07838
    [3] J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. http://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [4] Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2353–2365. https://doi.org/10.1016/j.cnsns.2008.06.024 doi: 10.1016/j.cnsns.2008.06.024
    [5] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. http://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870
    [6] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
    [7] S. Collinson, J. Heffernan, Modeling the effects of media during an influenza epidemic, BMC Public Health, 14 (2014), 376. https://doi.org/10.1186/1471-2458-14-376 doi: 10.1186/1471-2458-14-376
    [8] Q. Yan, S. Tang, J. Wu, S. Gabriele, Media coverage and hospital notifications: correlation analysis and optimal media impact duration to manage a pandemic, J. Theor. Biol., 390 (2016), 1–13. https://doi.org/10.1016/j.jtbi.2015.11.002 doi: 10.1016/j.jtbi.2015.11.002
    [9] C. Yang, J. Wang, A cholera transmission model incorporating the impact of medical resources, Math. Biosci. Eng., 16 (2019), 5226–5246. https://doi.org/10.3934/mbe.2019261 doi: 10.3934/mbe.2019261
    [10] P. Song, Y. Xiao, Global hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease, J. Math. Biol., 76 (2018), 1249–1267. https://doi.org/10.1007/s00285-017-1173-y doi: 10.1007/s00285-017-1173-y
    [11] T. Zhao, M. Zhao, Global hopf bifurcation analysis of an susceptible-infective-removed epidemic model incorporating media coverage with time delay, J. Biol. Dyn., 11 (2017), 8–24. https://doi.org/10.1080/17513758.2016.1229050 doi: 10.1080/17513758.2016.1229050
    [12] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, J. G. Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767–8772. https://doi.org/10.1073/pnas.1019712108 doi: 10.1073/pnas.1019712108
    [13] J. Wang, X. Wang, D. Gao, Influence of human behavior on cholera dynamics, Math. Biosci., 267 (2015), 41–52. https://doi.org/10.1016/j.mbs.2015.06.009 doi: 10.1016/j.mbs.2015.06.009
    [14] L. Zhang, Z. Wang, Y. Zhang, Dynamics of a reaction-diffusion waterborne pathogen model with direct and indirect transmission, Comput. Math. Appl., 72 (2016), 202–215. https://doi.org/10.1016/j.camwa.2016.04.046 doi: 10.1016/j.camwa.2016.04.046
    [15] G. Sun, J. Xie, S. Huang, Z. Jin, M. Li, L. Liu, Transmission dynamics of cholera: mathematical modeling and control strategies, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 235–244. https://doi.org/10.1016/j.cnsns.2016.10.007 doi: 10.1016/j.cnsns.2016.10.007
    [16] J. Wang, J. Wang, Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population, J. Dyn. Differ. Equations, 33 (2021), 549–575. http://doi.org/10.1007/s10884-019-09820-8 doi: 10.1007/s10884-019-09820-8
    [17] H. Shu, Z. Ma, X. Wang, Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment, J. Math. Biol., 83 (2021), 41. https://doi.org/10.1007/s00285-021-01672-5 doi: 10.1007/s00285-021-01672-5
    [18] J. Wang, Mathematical models for cholera dynamics-a review, Microorganisms, 10 (2022), 2358. https://doi.org/10.3390/microorganisms10122358 doi: 10.3390/microorganisms10122358
    [19] J. Hale, S. Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. Available from: https://link.springer.com/book/10.1007/978-1-4612-4342-7.
    [20] H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995. https://doi.org/10.1090/surv/041
    [21] P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [22] J. Hale, Dynamical systems and stability, J. Math. Anal. Appl., 26 (1969), 39–59. https://doi.org/10.1016/0022-247X(69)90175-9 doi: 10.1016/0022-247X(69)90175-9
    [23] J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 25 (1988). https://doi.org/10.1090/surv/025
    [24] X. Zhao, Dynamical Systems in Population Biology, 2nd edition, Springer, New York, 2017. https://doi.org/10.1007/978-3-319-56433-3
    [25] X. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Q., 3 (1995), 473–495. Available from: https://www.math.mun.ca/~zhao/Selectpapers/Zhao1995CAMQpub.pdf.
    [26] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, D. Knuth, On the LambertW function, Adv. Comput. Math., 5 (1996), 329–359. https://doi.org/10.1007/BF02124750 doi: 10.1007/BF02124750
    [27] M. Y. Li, J. Muldoweny, A geometric approach to the global-stability problems, SIAM J. Math. Anal., 27 (1996), 1070–1083. https://doi.org/10.1137/S0036141094266449 doi: 10.1137/S0036141094266449
    [28] J. Muldowney, Compound matrices and ordinary differential equations, Rocky. Mt. J. Math., 20 (1990), 857–872. Available from: https://www.jstor.org/stable/44237627.
    [29] W. Coppel, Stability and Asymptotic Behavior of Differential Equations, Health, Boston, 1995.
    [30] P. Song, Y. Xiao, Analysis of an epidemic system with two response delays in media impact function, Bull. Math. Biol., 81 (2019), 1582–1612. https://doi.org/10.1007/s11538-019-00586-0 doi: 10.1007/s11538-019-00586-0
    [31] J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Am. Math. Soc., 350 (1998), 4799–4838. https://doi.org/10.1090/S0002-9947-98-02083-2 doi: 10.1090/S0002-9947-98-02083-2
    [32] J. Wei, M. Y. Li, Hopf bifurcation analysis in a delayed Nicholson blowflies equation, Nonlinear Anal., 60 (2005), 1351–1367. https://doi.org/10.1016/j.na.2003.04.002 doi: 10.1016/j.na.2003.04.002
    [33] H. Shu, L. Wang, J. Wu, Global dynamics of Nicholson's blowflies equation revisited: onset and termination of nonlinear oscillations, J. Differ. Equations, 255 (2013), 2565–2586. https://doi.org/10.1016/j.jde.2013.06.020 doi: 10.1016/j.jde.2013.06.020
    [34] H. Shu, G. Fan, H. Zhu, Global hopf bifurcation and dynamics of a stage–structured model with delays for tick population, J. Differ. Equations, 284 (2021), 1–22. https://doi.org/10.1016/j.jde.2021.02.037 doi: 10.1016/j.jde.2021.02.037
    [35] X. Zhang, F. Scarabel, X. Wang, J. Wu, Global continuation of periodic oscillations to a diapause rhythm, J. Dyn. Differ. Equations, 34 (2022), 2819–2839. https://doi.org/10.1007/s10884-020-09856-1 doi: 10.1007/s10884-020-09856-1
    [36] J. Wei, H. Wang, W. Jiang, Bifurcation Theory of Delay Differential Equations, Science Press, 2012.
    [37] K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00: A Matlab package for bifurcation analysis of delay differential equations, Technical Report TW-330, KU Leuven, Belgium, 2001. Available from: https://www.researchgate.net/publication/245840825.
    [38] K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1–21. https://doi.org/10.1145/513001.513002 doi: 10.1145/513001.513002
    [39] H. Shu, X. Hu, L. Wang, J. Watmough, Delay induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015), 1269–1298. https://doi.org/10.1007/s00285-015-0857-4 doi: 10.1007/s00285-015-0857-4
  • This article has been cited by:

    1. Anjali Upadhyay, Surendra Kumar, The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential, 2023, 168, 09600779, 113202, 10.1016/j.chaos.2023.113202
    2. Amadou Diop, Wei-Shih Du, Existence of Mild Solutions for Multi-Term Time-Fractional Random Integro-Differential Equations with Random Carathéodory Conditions, 2021, 10, 2075-1680, 252, 10.3390/axioms10040252
    3. Yong-Kui Chang, Jianguo Zhao, Some new asymptotic properties on solutions to fractional evolution equations in Banach spaces, 2021, 0003-6811, 1, 10.1080/00036811.2021.1969016
    4. Ahmad Al-Omari, Hanan Al-Saadi, António M. Lopes, Impulsive fractional order integrodifferential equation via fractional operators, 2023, 18, 1932-6203, e0282665, 10.1371/journal.pone.0282665
    5. Hiba El Asraoui, Ali El Mfadel, M’hamed El Omari, Khalid Hilal, Existence of mild solutions for a multi-term fractional differential equation via ψ-(γ,σ)-resolvent operators, 2023, 16, 1793-5571, 10.1142/S1793557123502121
    6. Zhiyuan Yuan, Luyao Wang, Wenchang He, Ning Cai, Jia Mu, Fractional Neutral Integro-Differential Equations with Nonlocal Initial Conditions, 2024, 12, 2227-7390, 1877, 10.3390/math12121877
    7. Jia Mu, Zhiyuan Yuan, Yong Zhou, Mild Solutions of Fractional Integrodifferential Diffusion Equations with Nonlocal Initial Conditions via the Resolvent Family, 2023, 7, 2504-3110, 785, 10.3390/fractalfract7110785
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1740) PDF downloads(155) Cited by(1)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog