Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article Special Issues

Bulgarian community in Chicago: A model of development

  • This paper presents the first comprehensive model of development of the Bulgarian settlement in the Chicago area from its earliest traces to the present day, from historical and anthropological perspectives. In the process, we distinguish five periods of Bulgarian presence spanning more than a century and discuss the patterns of Bulgarian settlement, economic profiles and community life for each of those periods. The paper highlights the struggle for survival and recognition of early Bulgarian migrants during the late nineteenth and early twentieth century, the political rivalry of the Cold War Bulgarian refugees preventing their consolidation and the contemporary, post-1989, Bulgarian economic mass migration which becomes increasingly visible and emancipated, claiming Chicago as the Bulgarian City. In the process, we seek to explain why this long history of Bulgarian immigration has not resulted in the community's overt visibility, either in the literature and studies of Chicago's ethnic landscape or through the creation of an ethnic enclave with vernacular urban centralized space distinct from other ethnic migrant groups and their neighborhoods such as Little Italy, Ukrainian Village, Greek Town and Chinatown.

    Citation: Dilyana Ivanova Zieske, William F. Zieske. Bulgarian community in Chicago: A model of development[J]. AIMS Geosciences, 2023, 9(3): 528-554. doi: 10.3934/geosci.2023029

    Related Papers:

    [1] Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
    [2] Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas . Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402. doi: 10.3934/math.20241284
    [3] Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Computing quaternion matrix pseudoinverse with zeroing neural networks. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164
    [4] Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation ki=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181
    [5] Abdur Rehman, Cecilia Castro, Víctor Leiva, Muhammad Zia Ur Rahman, Carlos Martin-Barreiro . Solving two-sided Sylvester quaternionic matrix equations: Theoretical insights, computational implementation, and practical applications. AIMS Mathematics, 2025, 10(7): 15663-15697. doi: 10.3934/math.2025702
    [6] Yang Chen, Kezheng Zuo, Zhimei Fu . New characterizations of the generalized Moore-Penrose inverse of matrices. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242
    [7] Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974
    [8] Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280
    [9] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [10] Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
  • This paper presents the first comprehensive model of development of the Bulgarian settlement in the Chicago area from its earliest traces to the present day, from historical and anthropological perspectives. In the process, we distinguish five periods of Bulgarian presence spanning more than a century and discuss the patterns of Bulgarian settlement, economic profiles and community life for each of those periods. The paper highlights the struggle for survival and recognition of early Bulgarian migrants during the late nineteenth and early twentieth century, the political rivalry of the Cold War Bulgarian refugees preventing their consolidation and the contemporary, post-1989, Bulgarian economic mass migration which becomes increasingly visible and emancipated, claiming Chicago as the Bulgarian City. In the process, we seek to explain why this long history of Bulgarian immigration has not resulted in the community's overt visibility, either in the literature and studies of Chicago's ethnic landscape or through the creation of an ethnic enclave with vernacular urban centralized space distinct from other ethnic migrant groups and their neighborhoods such as Little Italy, Ukrainian Village, Greek Town and Chinatown.



    In this paper, we establish the following four symmetric quaternion matrix systems:

    {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1H11+X2F22=G11, (1.1)
    {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+H11X2F22=G11, (1.2)
    {A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+H11X2F22=G11, (1.3)
    {A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+X2F22=G11, (1.4)

    where Aii, Bii, Cii, Dii, Eii, Fii(i=¯1,2), H11, and G11 are known matrices, while Xi(i=¯1,2) are unknown.

    In this paper, R and Hm×n denote the real number field and the set of all quaternion matrices of order m×n, respectively.

    H={v0+v1i+v2j+v3k|i2=j2=k2=ijk=1,v0,v1,v2,v3R}.

    Moreover, r(A), 0 and I represent the rank of matrix A, the zero matrix of suitable size, and the identity matrix of suitable size, respectively. The conjugate transpose of A is A. For any matrix A, if there exists a unique solution X such that

    AXA=A,XAX=X,(AX)=AX,(XA)=XA,

    then X is called the Moore-Penrose (MP) inverse. It should be noted that A is used to represent the MP inverse of A. Additionally, LA=IAA and RA=IAA denote two projectors toward A.

    H is known to be an associative noncommutative division algebra over R with extensive applications in computer science, orbital mechanics, signal and color image processing, control theory, and so on (see [1,2,3,4]).

    Matrix equations, significant in the domains of descriptor systems control theory [5], nerve networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.

    The study of matrix equations in H has garnered the attention of various researchers; consequently they have been analyzed by many studies (see, e.g., [9,10,11,12]). Among these the system of symmetric matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some necessary and sufficient conditions for the three symmetric matrix systems in terms of MP inverses and rank equalities:

    {A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4W+ZB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Z+YB2+A5VB5=C5,A4Z+WB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4Z+WB4=C4. (1.5)

    Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to the following three symmetric coupled matrix equations and the expressions for their general solutions:

    {A1X+YB1=C1,A2Y+ZB2=C2,A3W+ZB3=C3,{A1X+YB1=C1,A2Z+YB2=C2,A3Z+WB3=C3,{A1X+YB1=C1,A2Y+ZB2=C2,A3Z+WB3=C3. (1.6)

    It is noteworthy that the following matrix equation plays an important role in the analysis of the solvability conditions of systems (1.1)–(1.4):

    A1U+VB1+A2XB2+A3YB3+A4ZB4=B. (1.7)

    Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix equation (1.7) using the ranks of coefficient matrices and MP inverses. Wang et al. [16] derived the following quaternion equations after obtaining some solvability conditions for the quaternion equation presented in Eq (1.8) in terms of MP inverses:

    {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+X2F22=G11. (1.8)

    To our knowledge, so far, there has been little information on the solvability conditions and an expression of the general solution to systems (1.1)–(1.4).

    In mathematical research and applications, the concept of η-Hermitian matrices has gained significant attention [17]. An η-Hermitian matrix, for η{i,j,k}, is defined as a matrix A such that A=Aη, where Aη=ηAη. These matrices have found applications in various fields including linear modeling and the statistics of random signals [1,17]. As an application of (1.1), this paper establishes some necessary and sufficient conditions for the following matrix equation:

    {A11X1=B11,C11X1Cη11=E11,F11X1Fη11+(F22X1)η=G11 (1.9)

    to be solvable.

    Motivated by the study of Systems (1.8), symmetric matrix equations, η-Hermitian matrices, and the widespread use of matrix equations and quaternions as well as the need for their theoretical advancements, we examine the solvability conditions of the quaternion systems presented in systems (1.1)–(1.4) by utilizing the rank equalities and the MP inverses of coefficient matrices. We then obtain the general solutions for the solvable quaternion equations in systems (1.1)–(1.4). As an application of (1.1), we utilize the MP inverse and the rank equality of matrices to investigate the necessary and sufficient conditions for the solvability of quaternion matrix equations involving η-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).

    The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3 examines some solvability conditions of the quaternion equation presented in System (1.1) using the MP inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4 establishes some solvability conditions for matrix systems (1.2)–(1.4) to be solvable. Section 5 investigates some necessary and sufficient conditions for matrix equation (1.9) to have common solutions. Section 6 concludes the paper.

    Marsaglia and Styan [18] presented the following rank equality lemma over the complex field, which can be generalized to H.

    Lemma 2.1. [18] Let AHm×n, BHm×k, CHl×n, DHj×k, and EHl×i be given. Then, the following rank equality holds:

     r(ABLDREC0)=r(AB0C0E0D0)r(D)r(E).

    Lemma 2.2. [19] Let AHm×n be given. Then,

    (1)(Aη)=(A)η,(Aη)=(A)η;(2)r(A)=r(Aη)=r(Aη);(3)(LA)η=η(LA)η=(LA)η=LAη=RAη,(4)(RA)η=η(RA)η=(RA)η=RAη=LAη;(5)(AA)η=(A)ηAη=(AA)η=Aη(A)η;(6)(AA)η=Aη(A)η=(AA)η=(A)ηAη.

    Lemma 2.3. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation A1X=A2 is solvable if, and only if, A2=A1A1A2. In this case, the general solution to this equation can be expressed as

    X=A1A2+LA1U1,

    where U1 is any matrix with appropriate size.

    Lemma 2.4. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation XA1=A2 is solvable if, and only if, A2=A2A1A1. In this case, the general solution to this equation can be expressed as

    X=A2A1+U1RA1,

    where U1 is any matrix with appropriate size.

    Lemma 2.5. [21] Let A,B, and C be known quaternion matrices with appropriate sizes. Then, the matrix equation

    AXB=C

    is consistent if, and only if,

    RAC=0,CLB=0.

    In this case, the general solution to this equation can be expressed as

    X=ACB+LAU+VRB,

    where U and V are any quaternion matrices with appropriate sizes.

    Lemma 2.6. [15] Let Ci,Di, and Z(i=¯1,4) be known quaternion matrices with appropriate sizes.

    C1X1+X2D1+C2Y1D2+C3Y2D3+C4Y3D4=Z. (2.1)

    Denote

    RC1C2=C12,RC1C3=C13,RC1C4=C14,D2LD1=D21,D31LD21=N32,D3LD1=D31,D4LD1=D41,RC12C13=M23,S12=C13LM23,RC1ZLD1=T1,C32=RM23RC12,A1=C32C14,A2=RC12C14,A3=RC13C14,A4=C14,D13=LD21LN32,B1=D41,B2=D41LD31,B3=D41LD21,B4=D41D13,E1=C32T1,E2=RC12T1LD31,E3=RC13T1LD21,E4=T1D13,A24=(LA2,LA4),B13=(RB1RB3),A11=LA1,B22=RB2,A33=LA3,B44=RB4,E11=RA24A11,E22=RA24A33,E33=B22LB13,E44=B44LB13,N=RE11E22,M=E44LE33,K=K2K1,E=RA24KLB13,S=E22LN,K11=A2LA1,G1=E2A2A1E1B1B2,K22=A4LA3,G2=E4A4A3E3B3B4,K1=A1E1B1+LA1A2E2B2,K2=A3E3B3+LA3A4E4B4.

    Then, the following statements are equivalent:

    (1) Equation (2.1) is consistent.

    (2)

    RAiEi=0,EiLBi=0(i=¯1,4),RE11ELE44=0.

    (3)

    r(ZC2C3C4C1D10000)=r(D1)+r(C2,C3,C4,C1),r(ZC2C4C1D3000D1000)=r(C2,C4,C1)+r(D3D1),r(ZC3C4C1D2000D1000)=r(C3,C4,C1)+r(D2D1),r(ZC4C1D200D300D100)=r(D2D3D1)+r(C4,C1),r(ZC2C3C1D4000D1000)=r(C2,C3,C1)+r(D4D1),r(ZC2C1D300D400D100)=r(D3D4D1)+r(C2,C1),r(ZC3C1D200D400D100)=r(D2D4D1)+r(C3,C1),r(ZC1D20D30D40D10)=r(D2D3D4D1)+r(C1),r(ZC2C1000C4D3000000D1000000000ZC3C1C4000D2000000D1000D400D4000)=r(D30D100D20D1D4D4)+r(C2C100C400C3C1C4).

    Under these conditions, the general solution to the matrix equation (2.1) is

    X1=C1(ZC2Y1D2C3Y2D3C4Y3D4)C1U1D1+LC1U2,X2=RC1(ZC2Y1D2C3Y2D3C4Y3D4)D1+C1C1U1+U3RD1,Y1=C12TD21C12C13M23TD21C12S12C13TN32D31D21C12S12U4RN32D31D21+LC12U5+U6RD21,Y2=M23TD31+S12S12C13TN32+LM23LS12U7+U8RD31+LM23U4RN32,Y3=K1+LA2V1+V2RB1+LA1V3RB2, or Y3=K2LA4W1W2RB3LA3W3RB4,

    where T=T1C4Y3D4,Ui(i=¯1,8) are arbitrary matrices with appropriate sizes over H,

    V1=(Im,0)[A24(KA11V3B22A33W3B44)A24U11B13+LA24U12],W1=(0,Im)[A24(KA11V3B22A33W3B44)A24U11B13+LA24U12],W2=[RA24(KA11V3B22A33W3B44)B13+A24A24U11+U21RB13](0In),V2=[RA24(KA11V3B22A33W3B44)B13+A24A24U11+U21RB13](In0),V3=E11KE33E11E22NKE33E11SE22KME44E33E11SU31RME44E33+LE11U32+U33RE33,W3=NKE44+SSE22KM+LNLSU41+LNU31RMU42RE44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are arbitrary quaternion matrices with appropriate sizes, and m and n denote the column number of C4 and the row number of D4, respectively.

    Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide an example to illustrate our main results.

    Theorem 3.1. Let Aii,Bii,Cii,Dii,Eii,Fii,H11, and G11 (i = 1, 2) be given quaternion matrices. Put

    {A1=C11LA11,P1=E11C11A11B11D11,B2=RA22D22,P2=E22C22B22A22D22,^B1=RB2RA22F22,^A2=F11LA11LA1,^A3=F11LA11,^B3=RD11H11,^A4=LC22,^B4=RA22F22,H11L^B1=^B11,P=G11F11A11B11H11F11LA11A1P1D11H11B22A22F22C22P2B2RA22F22, (3.1)
    {^B22L^B11=N1,^B3L^B1=^B22,^B4L^B1=^B33,R^A2^A3=^M1,S1=^A3L^M1,T1=PL^B1,C=R^M1R^A2,C1=C^A4,C2=R^A2^A4,C3=R^A3^A4,C4=^A4,D=L^B11LN1,D1=^B33,D2=^B33L^B22,D4=^B33D,E1=CT1,E2=R^A2T1L^B22,E3=R^A3T1L^B11,E4=T1D,^C11=(LC2,LC4),D3=^B33L^B11,^D11=(RD1RD3),^C22=LC1,^D22=RD2,^C33=LC3,^D33=RD4,^E11=R^C11^C22,^E22=R^C11^C22,^E33=^D22L^D11,^E44=^D33L^D11,M=R^E11^E22,N=^E44L^E33,F=F2F1,E=R^C11FL^D11,S=^E22LM,^F11=C2LC1,G1=E2C2C1E1D1D2,^F22=C4LC3,G2=E4C4C3E3D3D4,F1=C1E1D1+LC1C2E2D2,F2=C3E3D3+LC3C4E4D4. (3.2)

    Then, the following statements are equivalent:

    (1) System (1.1) is solvable.

    (2)

    RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11), (3.3)
    r(E11D11)=r(D11),r(B22A22)=r(A22), (3.4)
    r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22), (3.5)
    r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11), (3.6)
    r(H110D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22), (3.7)
    r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11), (3.8)
    r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22), (3.9)
    r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22), (3.10)
    r(G11F110B22H110D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11), (3.11)
    r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11), (3.12)
    r(G11B22H110F22A22)=r(H110F22A22), (3.13)
    r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11). (3.14)

    Proof. (1)(2): The System (1.1) can be written as follows.

    A11X1=B11, X2A22=B22, (3.15)
    C11X1D11=E11, C22X2D22=E22, (3.16)

    and

    F11X1H11+X2F22=G11. (3.17)

    Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17) are given by the following steps:

    Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,

    RA11B11=0, B22LA22=0. (3.18)

    When condition (3.18) holds, the general solution of System (3.15) is

    X1=A11B11+LA11U1, X2=B22A22+U2RA22. (3.19)

    Step 2: Substituting (3.19) into (3.16) yields,

    A1U1D11=P1, C22U2B2=P2, (3.20)

    where A1,P1,B2,P2 are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,

    RA1P1=0, P1LD11=0, RC22P2=0, P2LB2=0. (3.21)

    When (3.21) holds, the general solution to System (3.20) is

    U1=A1P1D11+LA1W1+W2RD11,U2=C22P2B2+LC22W3+W4RB2. (3.22)

    Comparing (3.22) and (3.19), hence,

    X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22. (3.23)

    Step 3: Substituting (3.23) into (3.17) yields

    W4^B1+^A2W1H11+^A3W2^B3+^A4W3^B4=P, (3.24)

    where ^Bi,^Aj(i=¯1,4,j=¯2,4) are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is solvable if, and only if,

    RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. (3.25)

    When (3.25) holds, the general solution to matrix equation (3.24) is

    W1=^A2T^B11^A2^A3^M1T^B11^A2S1^A3TN1^B22^B11^A2S1V4RN1^B22^B11+L^A2V5+V6R^B11,W2=^M1T^B22+S1S1^A3TN1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2LC4V1V2RD3LC3V3RD4,W4=(P^A2W1H11^A3W2^B3^A4W3^B4)^B1+V3R^B1,

    where Ci,Ei,Di(i=¯1,4),^E11,^E44 are defined as (3.2), T=T1^A4W3^B4,Vi(i=¯1,8) are arbitrary matrices with appropriate sizes over H,

    ^V1=(Im,0)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V1=(0,Im)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](0In),^V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](In0),^V3=^E11F^E33^E11^E22MF^E33^E11S^E22FN^E44^E33^E11SU31RN^E44^E33+L^E11U32+U33R^E33,V3=MF^E44+SS^E22FN+LMLSU41+LMU31RNU42R^E44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively. We summarize that System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a solution if, and only if, (2) holds.

    (2)(3): We prove the equivalence in two parts. In the first part, we want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25) is equivalent to (3.6) to (3.14). It is easy to know that there exist X01,X02,U01, and U02 such that

    A11X01=B11, X02A22=B22,A1U01D11=P1, C22U02B2=P2

    holds, where

    X01=A11B11,U01=A1P1D11,X02=B22A22,U02=C22P2B2,

    P1=E11C11X01D11,P2=E22C22X02D22, and P=G11F11X01H11F11LA11U01H11X02F22U02RA22F22.

    Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It follows from Lemma 2.1 and elementary transformations that

    (3.18)r(RA11B11)=0r(B11,A11)=r(A11)(3.3),(3.21)r(RA1P1)=0r(P1,A1)=r(A1)r(E11C11A11B11D11,C11LA11)=r(C11LA11)r(E11C11B11D11A11)=r(C11A11)(3.3),(3.21)r(P1LD11)=0r(P1D11)=r(D11)r(E11C11A11B11D11D11)=r(D11)r(E11D11)=r(D11)(3.4),(3.18)r(B22LA22)=0r(B22A22)=r(A22)(3.4).

    Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3) and (3.5), respectively.

    Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to Lemma 2.6, we have that (3.25) is equivalent to the following:

    r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4), (3.26)
    r(P^A2^A4^B300^B100)=r(^A2,^A4)+r(^B3^B1), (3.27)
    r(P^A3^A4H1100^B100)=r(^A3,^A4)+r(H11^B1), (3.28)
    r(P^A4H110^B30^B10)=r(H11^B3^B1)+r(^A4), (3.29)
    r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1), (3.30)
    r(P^A2^B30^B40^B10)=r(^B3^B4^B1)+r(^A2), (3.31)
    r(P^A3H110^B40^B10)=r(H11^B4^B1)+r(^A3), (3.32)
    r(PH11^B3^B4^B1)=r(H11^B3^B4^B1), (3.33)
    r(P^A200^A4^B30000^B1000000P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4), (3.34)

    respectively. Hence, we only prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14) when we prove that (3.25) is equivalent to (3.6)–(3.14). Now, we prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10), and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary transformations, we have that

    (3.26)=r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4)r(G11F11X01H11F11LA11U01H11X02F22U02RA22F22F11LA11LA1F11LA11LC22RB2RA22F22000)=r(RB2RA22F22)+r(F11LA11LA1,F11LA11,LC22)r(G11F11X01H11X02F22U02RA22F22F11I0RA22F2200B20A110000C220)=r(RA22F22,B2)+r(F11IA1100C22)r(G11F11IU02B20F2200B2A22B11H11A11000C22X02F220C2200)=r(F22,D22,A22)+r(F11IA1100C22)r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11F11C22)(3.6).

    Similarly, we have that (3.27)(3.7),(3.28)(3.8),(3.29)(3.9).

    (3.30)=r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1)r(G11F11X01H11F11LA11U01H11X02F22U02RA22F22F11LA11LA1F11LA1RA22F2200RB2RA22F2200)=r(F11LA11LA1,F11LA11)+r(RA22F22RB2RA22F22)r(G11F11X01H11F11B22F220A220A110)=r(F11A11)+r(F22,A22)r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)(3.10).

    Similarly, we have that (3.31)(3.11),(3.32)(3.12),(3.33)(3.13).

    (3.34)=r(P^A200^A4^B30000^B1000000P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4)r(PF11LA11LA100LC22RD11H110000RB2RA22F22000000PF11LA11LC2200H110000RB2RA22F2200RA22F220RA22F2200)=r(RD11H110RB2RA22F2200H110RB2RA22F22RA22F22RA22F22)+r(F11LA11LA10LC220F11LA11LC22)r(PF11LA1100LC22000H110000D1100RA22F2200000B2000G11+X02F22+U02RA22F22F11LA11LC2200000H110000000RA22F220000B2RA22F220RA22F22000000A1000000)=r(H110D1100RA2200B200H110000RA22F2200B2RA22F22RA22F22000)+r(F11LA110LC220F11LA11LC22A100)r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)(3.14).

    Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is

    X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22,

    where

    W1=^A2T^B11^A2^A3^M1T^B11^A2S1^A3TN1^B22^B11^A2S1V4RN1^B22^B11+L^A2V5+V6R^B11,W2=^M1T^B22+S1S1^A3TN1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2LC4V1V2RD3LC3V3RD4,W4=(P^A2W1H11^A3W2^B3^A4W3^B4)^B1+V3R^B1,^V1=(Im,0)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V1=(0,Im)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](0In),^V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](In0),^V3=^E11F^E33^E11^E22MF^E33^E11S^E22FN^E44^E33^E11SU31RN^E44^E33+L^E11U32+U33R^E33,V3=MF^E44+SS^E22FN+LMLSU41+LMU31RNU42R^E44,

    T=T1^A4W3^B4,Vi(i=¯4,8) are arbitrary matrices with appropriate sizes over H, U11,U12,U21, U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively.

    Next, we consider a special case of the System (1.1).

    Corollary 3.3. [16] Let Aii,Bii,Cii,Dii,Eii,Fii(i=1,2), and G11 be given matrices with appropriate dimensions over H. Denote

    T=C11LA11,K=RA22D22, B1=RKRA22F22,A1=F11LA11LT,C3=F11LA11,D3=RD11,C4=LC22,D4=RA22F22,Aα=RA1C3,Bβ=D3LB1,Cc=RAαC4,Dd=D4LB1,E=RA1E1LB1,A=A11B11+LA11T(E11C11A11B11D11)D,B=B22A22+C22(E22C22B22A22D22)KRA22,E1=G11F11ABF22,M=RAαCc,N=DdLBβ,S=CcLM.

    Then, the following statements are equivalent:

    (1) Equation (1.8) is consistent.

    (2)

    RA11B11=0,B22LA22=0,RC22E22=0,E11LD11=0,RT(E11C11A11B11D11)=0,(E22C22B22A22D22)LK=0,RMRAαE=0,ELBβLN=0,RAαELDd=0,RCcELBβ=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(F220D22A22B11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11),r(0F22D11D22A22C11E1100A11B11D1100C22F11C22G11D11E22C22B22)=r(C11A11C22F11)+r(F22D11,D22,A22),r(G11F11B22F220A22B11A110)=r(F11A11)+r(F22,A22),r(F11G11D11B220F22D11A22C11E110A11B11D110)=r(F22D11,A22)+r(F11C11A11).

    Finally, we provide an example to illustrate the main results of this paper.

    Example 3.4. Conside the matrix equation (1.1)

    A11=(a111a121),B11=(b111b112b121b122),C11=(c111c121),D11=(d111d121),E11=(e111e121),A22=(a211a212),B22=(b211b212b221b222),C22=(c211c212c221c222),D22=(d211),E22=(e211e221),F11=(f111f121),H11=(h111h112h121h122),F22=(f211f212),G11=(g111g112g121g122),

    where

    \begin{align*} &a_{111} = 0.9787+0.5005\boldsymbol{i}+0.0596\boldsymbol{j}+0.0424\boldsymbol{k}, a_{121} = 0.7127+0.4711\boldsymbol{i}+0.6820\boldsymbol{j}+0.0714\boldsymbol{k},\\&b_{111} = 0.5216+ 0.8181\boldsymbol{i}+0.7224\boldsymbol{j}+0.6596\boldsymbol{k}, b_{112} = 0.9730+0.8003\boldsymbol{i}+0.4324\boldsymbol{j}+0.0835\boldsymbol{k},\\ &b_{121} = 0.0967+0.8175\boldsymbol{i}+ 0.1499\boldsymbol{j}+0.5186\boldsymbol{k}, b_{122} = 0.6490+0.4538\boldsymbol{i} 0.8253\boldsymbol{j}+0.1332\boldsymbol{k},\\&c_{111} = 0.1734+0.8314\boldsymbol{i}+0.0605\boldsymbol{j}+0.5269\boldsymbol{k}, c_{121} = 0.3909+0.8034\boldsymbol{i}+0.3993\boldsymbol{j}+0.4168\boldsymbol{k},\\&d_{111} = 0.6569+0.2920\boldsymbol{i}+0.0159\boldsymbol{j}+0.1671\boldsymbol{k},d_{121} = 0.6280+0.4317\boldsymbol{i}+0.9841\boldsymbol{j}+0.1062\boldsymbol{k},\\&e_{111} = 0.3724+0.4897\boldsymbol{i}+0.9516\boldsymbol{j}+0.0527\boldsymbol{k},e_{121} = 0.1981+0.3395\boldsymbol{i}+0.9203\boldsymbol{j}+0.7379\boldsymbol{k},\\&a_{211} = 0.2691+0.4228\boldsymbol{i}+0.5479\boldsymbol{j}+0.9427\boldsymbol{k},a_{212} = 0.4177+0.9831\boldsymbol{i}+0.3015\boldsymbol{j}+0.7011\boldsymbol{k},\\&b_{211} = 0.6663+0.6981\boldsymbol{i}+0.1781\boldsymbol{j}+0.9991\boldsymbol{k},b_{212} = 0.0326+0.8819\boldsymbol{i}+0.1904\boldsymbol{j}+0.4607\boldsymbol{k},\\ &b_{221} = 0.5391+0.6665\boldsymbol{i}+0.1280\boldsymbol{j}+0.1711\boldsymbol{k},b_{222} = 0.5612+0.6692\boldsymbol{i}+0.3689\boldsymbol{j}+0.9816\boldsymbol{k},\\ &c_{211} = 0.1564+0.6448\boldsymbol{i}+0.1909\boldsymbol{j}+0.4820\boldsymbol{k},c_{212} = 0.5895+0.3846\boldsymbol{i}+0.2518\boldsymbol{j}+0.6171\boldsymbol{k},\\ &c_{221} = 0.8555+0.3763\boldsymbol{i}+0.4283\boldsymbol{j}+0.1206\boldsymbol{k},c_{222} = 0.2262+0.5830\boldsymbol{i}+0.2904\boldsymbol{j}+0.2653\boldsymbol{k},\\&d_{211} = 0.8244+0.9827\boldsymbol{i}+0.7302\boldsymbol{j}+0.3439\boldsymbol{k},e_{211} = 0.5847+0.9063\boldsymbol{i}+0.8178\boldsymbol{j}+0.5944\boldsymbol{k},\\ &e_{221} = 0.1078+0.8797\boldsymbol{i}+0.2607\boldsymbol{j}+0.0225\boldsymbol{k},f_{111} = 0.4253+0.1615\boldsymbol{i}+0.4229\boldsymbol{j}+0.5985\boldsymbol{k},\\&f_{121} = 0.3127+0.1788\boldsymbol{i}+0.0942\boldsymbol{j}+0.4709\boldsymbol{k},h_{111} = 0.6959+0.6385\boldsymbol{i}+0.0688\boldsymbol{j}+0.5309\boldsymbol{k},\\ &h_{112} = 0.4076+0.7184\boldsymbol{i}+0.5313\boldsymbol{j}+0.1056\boldsymbol{k},h_{121} = 0.6999+0.0336\boldsymbol{i}+0.3196\boldsymbol{j}+0.6544\boldsymbol{k},\\&h_{122} = 0.8200+0.9686\boldsymbol{i}+0.3251\boldsymbol{j}+0.6110\boldsymbol{k},f_{211} = 0.7788+0.4235\boldsymbol{i}+0.0908\boldsymbol{j}+0.2665\boldsymbol{k},\\&f_{212} = 0.1537+0.2810\boldsymbol{i}+0.4401\boldsymbol{j}+0.5271\boldsymbol{k},g_{111} = 0.4574+0.5181\boldsymbol{i}+0.6377\boldsymbol{j}+0.2407\boldsymbol{k},\\&g_{112} = 0.2891+0.6951\boldsymbol{i}+0.2548\boldsymbol{j}+0.6678\boldsymbol{k},g_{121} = 0.8754+0.9436\boldsymbol{i}+0.9577\boldsymbol{j}+0.6761\boldsymbol{k},\\&g_{122} = 0.6718+0.0680\boldsymbol{i}+0.2240\boldsymbol{j}+0.8444\boldsymbol{k}. \end{align*}

    Computing directly yields the following:

    \begin{align*} &r\begin{pmatrix} B_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} A_{11} \end{pmatrix} = 2,r\begin{pmatrix} E_{11}&C_{11}\\B_{11}D_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix} = 2,\\ &r\begin{pmatrix} E_{11}\\D_{11} \end{pmatrix} = r\begin{pmatrix} D_{11} \end{pmatrix} = 1,r\begin{pmatrix} B_{22}\\A_{22} \end{pmatrix} = r\begin{pmatrix} A_{22} \end{pmatrix} = 2,\\ &r\begin{pmatrix} E_{22}&C_{22} \end{pmatrix} = r\begin{pmatrix} C_{22} \end{pmatrix} = 2,r\begin{pmatrix} E_{22}&C_{22}B_{22}\\D_{22}&A_{22} \end{pmatrix} = r\begin{pmatrix} D_{22}&A_{22} \end{pmatrix} = 3,\\ &r\begin{pmatrix} F_{22}&0&D_{22}&A_{22}\\B_{11}H_{11}&A_{11}&0&0\\C_{22}G_{11}&C_{22}F_{11}&E_{22}&C_{22}B_{22} \end{pmatrix} = r\begin{pmatrix} F_{22}&D_{22}&A_{22} \end{pmatrix}+r\begin{pmatrix} A_{11}\\C_{22}F_{11} \end{pmatrix} = 5,\\ &r\begin{pmatrix} H_{11}&0&-D_{11}&0&0\\F_{22}&0&0&D_{22}&A_{22}\\0&C_{11}&E_{11}&0&0\\0&A_{11}&B_{11}D_{11}&0&0\\C_{22}G_{11}&C_{22}F_{11}&0&E_{22}&C_{22}B_{22} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11}\\C_{22}F_{11} \end{pmatrix}+r\begin{pmatrix} H_{11}&D_{11}&0&0\\F_{22}&0&D_{22}&A_{22} \end{pmatrix} = 7,\\ &r\begin{pmatrix} H_{11}&0&0&0\\F_{22}&0&D_{22}&A_{22}\\0&A_{11}&0&0\\C_{22}G_{11}&C_{22}F_{11}&E_{22}&C_{22}B_{22} \end{pmatrix} = r\begin{pmatrix} H_{11}&0&0\\F_{22}&D_{22}&A_{22} \end{pmatrix}+r\begin{pmatrix} A_{11}\\C_{22}F_{11} \end{pmatrix} = 6,\\ &r\begin{pmatrix} H_{11}&0&0\\F_{22}&D_{22}&A_{22}\\C_{22}G_{11}&E_{22}&C_{22}B_{22} \end{pmatrix} = r\begin{pmatrix} H_{11}&0&0\\F_{22}&D_{22}&A_{22} \end{pmatrix} = 5,\\ &r\begin{pmatrix} G_{11}&F_{11}&B_{22}\\F_{22}&0&A_{22}\\B_{11}H_{11}&A_{11}&0 \end{pmatrix} = r\begin{pmatrix} F_{11}\\A_{11} \end{pmatrix}+r\begin{pmatrix} F_{22},A_{22} \end{pmatrix} = 5,\\ &r\begin{pmatrix} G_{11}&F_{11}&0&B_{22}\\H_{11}&0&-D_{11}&0\\F_{22}&0&0&A_{22}\\0&C_{11}&E_{11}&0\\0&A_{11}&B_{11}D_{11}&0 \end{pmatrix} = r\begin{pmatrix} H_{11}&D_{11}&0\\F_{22}&0&A_{22} \end{pmatrix} +r\begin{pmatrix} F_{11}\\C_{11}\\A_{11} \end{pmatrix} = 6,\\ &r\begin{pmatrix} G_{11}&F_{11}&B_{22}\\H_{11}&0&0\\F_{22}&0&A_{22}\\0&A_{11}&0 \end{pmatrix} = r\begin{pmatrix} H_{11}&0\\F_{22}&A_{22} \end{pmatrix}+r\begin{pmatrix} F_{11}\\A_{11} \end{pmatrix} = 5,\ r\begin{pmatrix} G_{11}&B_{22}\\H_{11}&0\\F_{22}&A_{22} \end{pmatrix} = r\begin{pmatrix} H_{11}&0\\F_{22}&A_{22} \end{pmatrix} = 4,\\ &r\begin{pmatrix} H_{11}&0&0&0&0&0&0&D_{11}&0\\F_{22}&0&0&0&0&D_{22}&A_{22}&0&0\\0&0&H_{11}&0&0&0&0&0&0\\0&0&F_{22}&D_{22}&A_{22}&0&0&0&0\\F_{22}&0&F_{22}&0&0&0&0&0&A_{22}\\ 0&C_{11}&0&0&0&0&0&-E_{11}&0\\0&A_{11}&0&0&0&0&0&-B_{11}D_{11}&0\\C_{22}G_{11}&C_{22}F_{11}&0&0&0&E_{22}&C_{22}B_{22}&0&0 \end{pmatrix}\\ & = r\begin{pmatrix} H_{11}&0&0&0&0&0&D_{11}&0\\F_{22}&0&0&0&D_{22}&A_{22}&0&0\\0&H_{11}&0&0&0&0&0&0\\0&F_{22}&D_{22}&A_{22}&0&0&0&0\\F_{22}&F_{22}&0&0&0&0&0&A_{22} \end{pmatrix}+r\begin{pmatrix} C_{11}\\A_{11}\\C_{22}F_{11} \end{pmatrix} = 11.\quad\quad\quad\quad\quad\quad\quad\quad\quad \end{align*}

    All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as

    \begin{align*} X_{1} = &\begin{pmatrix} 0.4946+0.1700\boldsymbol{i}-0.1182\boldsymbol{j}-0.3692\boldsymbol{k}&0.4051-0.0631\boldsymbol{i}-0.2403\boldsymbol{j}-0.1875\boldsymbol{k} \end{pmatrix},\\ X_{2} = &\begin{pmatrix} -0.0122+0.2540\boldsymbol{i}-0.3398\boldsymbol{j}-0.3918\boldsymbol{k}\\0.7002-0.3481\boldsymbol{i}-0.2169\boldsymbol{j}+0.0079\boldsymbol{k} \end{pmatrix}. \end{align*}

    In this section, we use the same method and technique as in Theorem 3.1 to study the three systems of Eqs (1.2)–(1.4). We only present their results and omit their proof.

    Theorem 4.1. Consider the matrix equation (1.2) over \mathbb{H} , where A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}, G_{11} , and H_{11} (i = \overline{1, 2}) are given. Put

    \begin{align*} &A_{1} = C_{11}L_{A_{11}},P_{1} = E_{11}-C_{11}A_{11}^{\dagger}B_{11}D_{11},B_{2} = R_{A_{22}}D_{22}, P_{2} = E_{22}-C_{22}B_{22}A_{22}^{\dagger}D_{22},\\ &\hat{A_{1}} = F_{11}L_{A_{11}}L_{A_{1}},\hat{A_{2}} = F_{11}L_{A_{1}},\hat{B_{2}} = R_{D_{11}},\hat{A_{3}} = H_{11}L_{C_{22}},\hat{B_{3}} = R_{A_{22}}F_{22},\hat{B_{4}} = R_{B_{2}}R_{A_{22}}F_{22},\\ &B = G_{11}-F_{11}A_{11}^{\dagger}B_{11}-F_{11}L_{A_{11}}A_{1}^{\dagger}P_{1}D_{11}^{\dagger}-H_{11}B_{22}A_{22}^{\dagger}F_{22}-H_{11}C_{22}^{\dagger}P_{2}B_{2}^{\dagger}R_{A_{22}}F_{22},R_{\hat{A_{1}}}\hat{A_{2}} = A_{12},\\&R_{\hat{A_{1}}}\hat{A_{3}} = A_{13},R_{\hat{A_{1}}}H_{11} = A_{14},\hat{B_{3}}L_{\hat{B_{2}}} = N_{1}, R_{A_{12}}A_{13} = M_{1},S_{1} = A_{13}L_{M_{1}},R_{\hat{A_{1}}}B = T_{1},\\ &C = R_{M_{1}}R_{A_{12}},\hat{C_{1}} = CA_{14}, \hat{C_{2}} = R_{A_{12}}A_{14},\hat{C_{3}} = R_{A_{13}}A_{14},\hat{C_{4}} = A_{14},D = L_{\hat{B_{2}}}L_{N_{1}},\hat{D_{1}} = \hat{B_{4}},\\ &\hat{D_{2}} = \hat{B_{4}}L_{\hat{B_{3}}},\hat{D_{3}} = \hat{B_{4}}L_{\hat{B_{2}}},\hat{D_{4}} = \hat{B_{4}}D,\hat{E_{1}} = CT_{1},\hat{E_{2}} = R_{A_{12}}T_{1}L_{\hat{B_{3}}},\hat{E_{3}} = R_{A_{13}}T_{1}L_{\hat{B_{2}}},\hat{E_{4}} = T_{1}D,\\ &C_{24} = (L_{\hat{C_{2}}},L_{\hat{C_{4}}}),D_{13} = \begin{pmatrix} R_{\hat{D_{1}}}\\ R_{\hat{D_{3}}} \end{pmatrix}, C_{12} = L_{\hat{C_{1}}},D_{12} = R_{\hat{D_{2}}},C_{33} = L_{\hat{C_{3}}},D_{33} = R_{\hat{D_{4}}},E_{24} = R_{C_{24}}C_{12},\\ &E_{13} = R_{C_{24}}C_{33},E_{33} = D_{12}L_{D_{13}},E_{44} = D_{33}L_{D_{13}},M = R_{E_{24}}E_{13},N = E_{44}L_{E_{33}},F = F_{2}-F_{1},\\ &E = R_{C_{24}}FL_{D_{13}},S = E_{13}L_{M},\hat{F_{11}} = \hat{C_{2}}L_{\hat{C_{1}}},\hat{G_{1}} = \hat{E_{2}}-\hat{C_{2}}\hat{C_{1}}^{\dagger}\hat{E_{1}}\hat{D_{1}}^{\dagger}\hat{D_{2}},F_{33} = \hat{C_{4}}L_{\hat{C_{3}}},\\ &\hat{G_{2}} = \hat{E_{4}}-\hat{C_{4}}\hat{C_{3}}^{\dagger}\hat{E_{3}}\hat{D_{3}}^{\dagger}\hat{D_{4}},F_{1} = \hat{C_{1}}^{\dagger}\hat{E_{1}}\hat{D_{1}}^{\dagger}+L_{\hat{C_{1}}}\hat{C_{2}}^{\dagger}\hat{E_{2}}\hat{D_{2}}^{\dagger},F_{2} = \hat{C_{3}}^{\dagger}\hat{E_{3}}\hat{D_{3}}^{\dagger}+L_{\hat{C_{3}}}\hat{C_{4}}^{\dagger}\hat{E_{4}}\hat{D_{4}}^{\dagger}. \end{align*}

    Then, the following statements are equivalent:

    \mathrm{(1)} System (1.2) is consistent.

    \mathrm{(2)}

    \begin{align*} &R_{A_{11}}B_{11} = 0,R_{A_{1}}P_{1} = 0,P_{1}L_{D_{11}} = 0,B_{22}L_{A_{22}} = 0,R_{C_{22}}P_{2} = 0,\\ &P_{2}L_{B_{2}} = 0,R_{\hat{C_{i}}}\hat{E_{i}} = 0,\hat{E_{i}}L_{\hat{D_{i}}} = 0(i = \overline{1,4}),R_{E_{24}}EL_{E_{44}} = 0. \end{align*}

    \mathrm{(3)}

    \begin{align*} &r(B_{11},A_{11}) = r(A_{11}), r\begin{pmatrix} E_{11}&C_{11}\\ B_{11}D_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix},r\begin{pmatrix} E_{11}\\D_{11} \end{pmatrix} = r(D_{11}), \\ &r(B_{22},A_{22}) = r(A_{22}),r(E_{22},C_{22}) = r(C_{22}), r\begin{pmatrix} E_{22}&C_{22}B_{22}\\D_{22}&A_{22} \end{pmatrix} = r(D_{22},A_{22}),\\ &r\begin{pmatrix} G_{11}D_{11}&F_{11}&H_{11}\\E_{11}&C_{11}&0\\B_{11}D_{11}&A_{11}&0 \end{pmatrix} = r\begin{pmatrix} F_{11}&H_{11}\\C_{11}&0\\A_{11}&0 \end{pmatrix},\\ &r\begin{pmatrix} G_{11}D_{11}&F_{11}&H_{11}&0\\F_{22}D_{11}&0&0&A_{22}\\E_{11}&C_{11}&0&0\\B_{11}D_{11}&A_{11}&0&0 \end{pmatrix} = r(F_{22},A_{22})+r\begin{pmatrix} F_{11}&H_{11}\\C_{11}&0\\A_{11}&0 \end{pmatrix},\\ &r\begin{pmatrix} H_{11}&F_{11}&G_{11}D_{11}\\0&C_{11}&E_{11}\\0&A_{11}&B_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} H_{11}&F_{11}\\0&C_{11}\\0&A_{11} \end{pmatrix},\\ &r\begin{pmatrix} H_{11}&F_{11}&0&G_{11}D_{11}\\0&0&A_{22}&F_{22}D_{11}\\0&C_{11}&0&E_{11}\\0&A_{11}&0&B_{11}D_{11} \end{pmatrix} = r(F_{22}D_{11},A_{22})+r\begin{pmatrix} H_{11}&F_{11}\\0&C_{11}\\0&A_{11} \end{pmatrix},\\ &r\begin{pmatrix} G_{11}D_{11}&F_{11}&H_{11}&0&0\\F_{22}D_{11}&0&0&D_{22}&A_{22}\\E_{11}&C_{11}&0&0&0&\\0&0&C_{22}&-E_{22}&-C_{22}B_{22}\\B_{11}D_{11}&A_{11}&0&0&0 \end{pmatrix} = r\begin{pmatrix} F_{11}&H_{11}\\C_{11}&0\\0&C_{22}\\A_{11}&0 \end{pmatrix}+r(F_{22},D_{22},A_{22}),\quad\quad\quad\quad\\ &r\begin{pmatrix} G_{11}D_{11}&F_{11}&H_{11}B_{22}\\F_{22}D_{11}&0&A_{22}\\E_{11}&C_{11}&0\\B_{11}D_{11}&A_{11}&0 \end{pmatrix} = r\begin{pmatrix} F_{11}\\C_{11}&A_{11} \end{pmatrix}+r(F_{22},A_{22}),\\ &r\begin{pmatrix} H_{11}&F_{11}&0&0&G_{11}D_{11}\\0&0&D_{22}&A_{22}&F_{22}D_{11}\\0&C_{11}&0&0&E_{11}\\0&A_{11}&0&0&B_{11}D_{11}\\C_{22}&0&-E_{22}&-C_{22}B_{22}&0 \end{pmatrix} = r\begin{pmatrix} H_{11}&F_{11}\\0&C_{11}\\0&A_{11}\\C_{22}&0 \end{pmatrix}+r(D_{22},A_{22},F_{22}D_{11}),\\ &r\begin{pmatrix} F_{11}&H_{11}B_{22}&G_{11}D_{11}\\0&A_{22}&F_{22}D_{11}\\C_{11}&0&E_{11}\\A_{11}&0&B_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} F_{11}\\C_{11}\\A_{11} \end{pmatrix}+r (A_{22},F_{22}D_{11}),\\ &r\begin{pmatrix} G_{11}&F_{11}&0&0&H_{11}&0&0&H_{5}B_{22}&0\\F_{22}&0&0&0&0&0&0&A_{22}&0\\0&0&H_{11}&F_{11}&H_{11}&0&-H_{11}B_{22}&0&G_{11}D_{11}\\0&0&0&0&0&D_{22}&A_{22}&0&-F_{22}D_{11}\\ 0&0&C_{22}&0&0&E_{22}&0&0&0\\0&0&0&C_{11}&0&0&0&0&E_{11}\\0&0&0&A_{11}&0&0&0&0&B_{11}D_{11}\\B_{11}&A_{11}&0&0&0&0&0&0&0 \end{pmatrix}\\ & = r\begin{pmatrix} F_{22}&0&0&A_{22}&0\\0&D_{22}&A_{22}&0&F_{22}D_{11} \end{pmatrix}+r\begin{pmatrix} F_{11}&0&0&H_{11}\\0&H_{11}&F_{11}&H_{11}\\0&C_{22}&0&0\\0&0&C_{11}&0\\0&0&A_{11}&0\\A_{11}&0&0&0 \end{pmatrix}.\quad\quad\quad\quad\quad\quad\quad\quad \end{align*}

    Under these conditions, the general solution of System (1.2) is

    \begin{align*} &X_{1} = A_{11}^{\dagger}B_{11}+L_{A_{11}}A_{1}^{\dagger}P_{1}D_{11}^{\dagger}+L_{A_{11}}L_{A_{1}}W_{1}+L_{A_{11}}W_{2}R_{D_{11}},\\ &X_{2} = B_{22}A_{22}^{\dagger}+C_{22}^{\dagger}P_{2}B_{2}^{\dagger}R_{A_{22}}+L_{C_{22}}W_{3}R_{A_{22}}+W_{4}R_{B_{2}}R_{A_{22}}, \end{align*}

    where

    \begin{align*} &W_{1} = \hat{A_{1}}^{\dagger}(B-\hat{A_{2}}W_{1}\hat{B_{2}}-\hat{A_{3}}W_{3}\hat{B_{3}}-H_{11}W_{4}\hat{B_{4}})+L_{\hat{A_{1}}}U_{1},\quad\quad\quad\quad\quad\quad\quad\\ &W_{2} = A_{12}^{\dagger}T\hat{B_{2}}^{\dagger}-A_{12}^{\dagger}A_{13}M_{1}^{\dagger}T\hat{B_{2}}^{\dagger}-A_{12}^{\dagger}S_{1}A_{13}^{\dagger}TN_{1}^{\dagger}\hat{B_{3}}\hat{B_{2}}^{\dagger}\\ &\quad\quad-A_{12}^{\dagger}S_{1}U_{2}R_{N_{1}}\hat{B_{3}}\hat{B_{2}}^{\dagger}+L_{A_{12}}U_{3}+U_{4}R_{\hat{B_{2}}},\\ &W_{3} = M_{1}^{\dagger}T\hat{B_{3}}^{\dagger}+S_{1}^{\dagger}S_{1}A_{13}^{\dagger}TN_{1}^{\dagger}+L_{M_{1}}L_{S_{1}}U_{5}+U_{6}R_{\hat{B_{3}}}+L_{M_{1}}U_{2}R_{N_{1}},\\ &W_{4} = F_{1}+L_{\hat{C_{2}}}V_{1}+V_{2}R_{\hat{D_{1}}}+L_{\hat{C_{1}}}V_{3}R_{\hat{D_{2}}},\ or\ W_{4} = F_{2}-L_{\hat{C_{4}}}\hat{V_{1}}-\hat{V_{2}}R_{\hat {D_{3}}}-L_{\hat{C_{3}}}\hat{V_{3}}R_{\hat{D_{4}}}, \end{align*}

    where T = T_{1}-H_{11}W_{4}\hat{B_{4}}, U_{i}(i = \overline{1, 6}) are arbitrary matrices with appropriate sizes over \mathbb{H} ,

    \begin{align*} &V_{1} = (I_{m},0)[C_{24}^{\dagger}(F-C_{12}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})-C_{24}^{\dagger}U_{11}D_{13}+L_{C_{24}}U_{12}],\\&\hat{V_{1}} = (0,I_{m})[C_{24}^{\dagger}(F-C_{12}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})-C_{24}^{\dagger}U_{11}D_{13}+L_{C_{24}}U_{12}], \quad \quad \quad \quad \quad \quad\\ &\hat{V_{2}} = [R_{C_{24}}(F-C_{12}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})D_{13}^{\dagger}+C_{24}C_{24}^{\dagger}U_{11}+U_{21}R_{D_{13}}]\begin{pmatrix} 0\\ I_{n} \end{pmatrix},\\ &V_{2} = [R_{C_{24}}(F-C_{12}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})D_{13}^{\dagger}+C_{24}C_{24}^{\dagger}U_{11}+U_{21}R_{D_{13}}]\begin{pmatrix} I_{n}\\ 0 \end{pmatrix},\\ &V_{3} = E_{24}^{\dagger}FE_{33}^{\dagger}-E_{24}^{\dagger}E_{13}M^{\dagger}FE_{33}^{\dagger}-E_{24}^{\dagger}SE_{13}^{\dagger}FN^{\dagger}E_{44}E_{33}^{\dagger}\\ &\quad\quad-E_{24}^{\dagger}SU_{31}R_{N}E_{44}E_{33}^{\dagger}+L_{E_{24}}U_{32}+U_{33}R_{E_{33}},\\ &\hat{V_{3}} = M^{\dagger}FE_{44}^{\dagger}+S^{\dagger}SE_{13}^{\dagger}FN^{\dagger}+L_{M}L_{S}U_{41}+L_{M}U_{31}R_{N}-U_{42}R_{E_{44}},\quad\quad\quad\quad\quad\quad\quad \end{align*}

    U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, and U_{42} are any quaternion matrices with appropriate sizes, and m and n denote the column number of H_{11} and the row number of A_{22} , respectively.

    Theorem 4.2. Consider the matrix equation (1.3) over \mathbb{H} , where A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}, G_{11} \; H_{11} (i = \overline{1, 2}) are given. Put

    \begin{align*} &A_{1} = C_{11}L_{A_{11}},P_{1} = E_{11}-C_{11}A_{11}^{\dagger}B_{11}D_{11},A_{2} = C_{22}L_{A_{22}},P_{2} = E_{22}-C_{22}A_{22}^{\dagger}B_{22}D_{22},\\ &\hat{A_{1}} = F_{11}L_{A_{11}}L_{A_{1}},\hat{A_{2}} = F_{11}L_{A_{11}},\hat{B_{2}} = R_{D_{11}},\hat{A_{11}} = H_{11}L_{A_{22}}L_{A_{2}},\hat{A_{22}} = H_{11}L_{A_{22}},\hat{B_{4}} = R_{D_{22}}F_{22},\\ &B = G_{11}-F_{11}A_{11}^{\dagger}B_{11}-F_{11}L_{A_{11}}A_{1}^{\dagger}P_{1}D_{11}^{\dagger}-H_{11}A_{22}^{\dagger}B_{22}F_{22}-H_{11}L_{A_{22}}A_{2}^{\dagger}P_{2}D_{22}^{\dagger}F_{22},\\ &R_{\hat{A_{1}}}\hat{A_{2}} = A_{12},R_{\hat{A_{1}}}\hat{A_{11}} = A_{13},R_{\hat{A_{1}}}\hat{A_{22}} = A_{33},F_{22}L_{\hat{B_{2}}} = N_{1},R_{A_{12}}A_{13} = M_{1},S_{1} = A_{13}L_{M_{1}},\\ &R_{\hat{A_{1}}}B = T_{1},C = R_{M_{1}}R_{A_{12}},\hat{C_{1}} = CA_{33},\hat{C_{2}} = R_{A_{12}}A_{33},\hat{C_{11}} = R_{A_{13}}A_{33},\hat{C_{22}} = A_{33},\\ &D = L_{\hat{B_{2}}}L_{N_{1}},\hat{D_{1}} = \hat{B_{4}},\hat{D_{2}} = \hat{B_{4}}L_{F_{22}},\hat{D_{11}} = \hat{B_{4}}L_{\hat{B_{2}}},\hat{D_{22}} = \hat{B_{4}}D,\hat{E_{1}} = CT_{1},\\ &\hat{E_{2}} = R_{A_{12}}T_{1}L_{F_{22}},\hat{E_{11}} = R_{A_{13}}T_{1}L_{\hat{B_{2}}},\hat{E_{4}} = T_{1}D,C_{24} = (L_{\hat{C_{2}}},L_{\hat{C_{22}}}),D_{13} = \begin{pmatrix} R_{\hat{D_{1}}}\\ R_{\hat{D_{11}}} \end{pmatrix},\\ &C_{21} = L_{\hat{C_{1}}},D_{12} = R_{\hat{D_{2}}},C_{33} = L_{\hat{C_{11}}},D_{33} = R_{\hat{D_{22}}},E_{11} = R_{C_{24}}C_{21},E_{22} = R_{C_{24}}C_{33},\\ &E_{33} = D_{12}L_{D_{13}},E_{44} = D_{33}L_{D_{13}},M = R_{E_{11}}E_{22},N = E_{44}L_{E_{33}},\\ &F = F_{2}-F_{1},E = R_{C_{24}}FL_{D_{13}},S = E_{22}L_{M},\hat{F_{11}} = \hat{C_{2}}L_{\hat{C_{1}}},\\ &\hat{G_{1}} = \hat{E_{2}}-\hat{C_{2}}\hat{C_{1}}^{\dagger}\hat{E_{1}}\hat{D_{1}}^{\dagger}\hat{D_{2}},\hat{F_{22}} = \hat{C_{22}}L_{\hat{C_{11}}},\hat{G_{2}} = \hat{E_{4}}-\hat{C_{22}}\hat{C_{11}}^{\dagger}\hat{E_{11}}\hat{D_{11}}^{\dagger}\hat{D_{22}},\\ &F_{1} = \hat{C_{1}}^{\dagger}\hat{E_{1}}\hat{D_{1}}^{\dagger}+L_{\hat{C_{1}}}\hat{C_{2}}^{\dagger}\hat{E_{2}}\hat{D_{2}}^{\dagger},F_{2} = \hat{C_{11}}^{\dagger}\hat{E_{11}}\hat{D_{11}}^{\dagger}+L_{\hat{C_{11}}}\hat{C_{22}}^{\dagger}\hat{E_{4}}\hat{D_{22}}^{\dagger}. \end{align*}

    Then, the following statements are equivalent:

    \mathrm{(1)} System (1.3) is consistent.

    \mathrm{(2)}

    \begin{align*} &R_{A_{11}}B_{11} = 0,R_{A_{1}}P_{1} = 0,P_{1}L_{D_{11}} = 0,R_{A_{22}}B_{22} = 0,R_{A_{2}}P_{2} = 0,P_{2}L_{D_{22}} = 0,\\ &R_{\hat{C_{i}}}\hat{E_{i}} = 0,R_{\hat{C_{11}}}\hat{E_{11}} = 0,R_{\hat{C_{22}}}\hat{E_{4}} = 0,\hat{E_{i}}L_{\hat{D_{i}}} = 0(i = \overline{1,2}),\\ &\hat{E_{11}}L_{\hat{D_{11}}} = 0, \hat{E_{4}}L_{\hat{D_{22}}} = 0,R_{E_{11}}EL_{E_{44}} = 0. \end{align*}

    \mathrm{(3)}

    \begin{align*} &r(B_{11},A_{11}) = r(A_{11}),r\begin{pmatrix} E_{11}&C_{11}\\ B_{11}D_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix},r\begin{pmatrix} E_{11}\\D_{11} \end{pmatrix} = r(D_{11}),\\ &r(B_{22},A_{22}) = r(A_{22}),r\begin{pmatrix} E_{22}&C_{22}\\B_{4}D_{22}&A_{22} \end{pmatrix} = r\begin{pmatrix} C_{22}\\A_{22} \end{pmatrix},r\begin{pmatrix} E_{22}\\D_{22} \end{pmatrix} = r(D_{22}),\\ &r\begin{pmatrix} G_{11}&F_{11}&H_{11}\\B_{11}&A_{11}&0\\B_{22}F_{22}&0&A_{22} \end{pmatrix} = r\begin{pmatrix} F_{11}&H_{11}\\A_{11}&0\\0&A_{22} \end{pmatrix},\\ &r\begin{pmatrix} G_{11}&F_{11}&H_{11}\\F_{22}&0&0\\B_{11}&A_{11}&0\\0&0&A_{22} \end{pmatrix} = r(F_{22})+r\begin{pmatrix} F_{11}&H_{11}\\A_{11}&0\\0&A_{22} \end{pmatrix},\\ &r\begin{pmatrix} H_{11}&F_{11}&G_{11}D_{11}\\A_{22}&0&B_{22}F_{22}D_{11}\\0&C_{11}&E_{11}\\0&A_{11}&B_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} H_{11}&F_{11}\\0&C_{11}\\0&A_{11}\\A_{22}&0 \end{pmatrix},\\ &r\begin{pmatrix} H_{11}&F_{11}&G_{11}D_{11}\\0&0&F_{22}D_{11}\\0&C_{11}&E_{11}\\0&A_{11}&B_{11}D_{11}\\A_{22}&0&0 \end{pmatrix} = r\begin{pmatrix} H_{11}&F_{11}\\0&C_{11}\\0&A_{11}\\A_{22}&0 \end{pmatrix}+r(F_{22}D_{11}),\\ &r\begin{pmatrix} G_{11}&F_{11}&H_{11}&0\\F_{22}&0&0&D_{22}\\B_{11}&A_{11}&0&0\\0&0&C_{22}&-E_{22}\\0&0&A_{22}&-B_{22}D_{22} \end{pmatrix} = r\begin{pmatrix} F_{11}&H_{11}\\A_{11}&0\\0&C_{22}\\0&A_{22} \end{pmatrix}+r(F_{22},D_{22}),\\ &r\begin{pmatrix} G_{11}&F_{11}\\F_{22}&0\\B_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} F_{11}\\A_{11} \end{pmatrix}+r(F_{22}),\\ &r\begin{pmatrix} H_{11}&F_{11}&0&G_{11}D_{11}\\0&0&D_{22}&F_{22}D_{11}\\C_{22}&0&-E_{22}&0\\0&C_{11}&0&E_{11}\\A_{22}&0&0&B_{22}F_{22}D_{11}\\0&A_{11}&0&B_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} H_{11}&F_{11}\\C_{22}&0\\0&C_{11}\\A_{22}&0\\0&A_{11} \end{pmatrix}+r(D_{22},F_{22}D_{11}),\\ &r\begin{pmatrix} F_{11}&G_{11}D_{11}\\0&F_{22}D_{11}\\C_{11}&E_{11}\\A_{11}&B_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} F_{11}\\C_{11}\\A_{11} \end{pmatrix}+r(F_{22}D_{11}),\\ &r\begin{pmatrix} G_{11}&F_{11}&0&0&0&H_{11}&0\\ F_{22}&0&0&0&0&0&0\\ 0&0&-G_{11}D_{11}&H_{11}&F_{11}&H_{11}&0\\ 0&0&F_{22}D_{11}&0&0&0&B_{22}\\ B_{11}&A_{11}&0&0&0&0&0\\ 0&0&0&C_{22}&0&0&E_{22}\\ 0&0&-E_{11}&0&C_{11}&0&0\\ 0&0&-B_{22}F_{22}D_{11}&A_{22}&0&0&0\\ 0&0&-B_{11}D_{11}&0&A_{11}&0&0\\ 0&0&0&0&0&A_{22}&0 \end{pmatrix}\\ & = r\begin{pmatrix} F_{22}&0&0\\0&D_{22}&F_{22}D_{11} \end{pmatrix}+r\begin{pmatrix} F_{11}&0&0&H_{11}\\0&H_{11}&F_{11}&H_{11}\\0&C_{22}&0&0\\0&A_{22}&0&0\\0&0&C_{11}&0\\0&0&A_{11}&0\\A_{11}&0&0&0\\0&0&0&A_{22} \end{pmatrix}.\quad\quad\quad\quad\quad\quad\quad \end{align*}

    Under these conditions, the general solution of System (1.3) is

    \begin{align*} &X_{1} = A_{11}^{\dagger}B_{11}+L_{A_{11}}A_{1}^{\dagger}P_{1}D_{11}^{\dagger}+L_{A_{11}}L_{A_{1}}W_{1}+L_{A_{11}}W_{2}R_{D_{11}},\\ &X_{2} = A_{22}^{\dagger}B_{4}+L_{A_{22}}A_{2}^{\dagger}P_{2}D_{22}^{\dagger}+L_{A_{22}}L_{A_{2}}W_{3}+L_{A_{22}}W_{4}R_{D_{22}}, \end{align*}

    where

    \begin{align*} &W_{1} = \hat{A_{1}}^{\dagger}(B-\hat{A_{2}}W_{1}\hat{B_{2}}-\hat{A_{11}}W_{3}F_{22}-\hat{A_{22}}W_{4}\hat{B_{4}})+L_{\hat{A_{1}}}U_{1},\\ &W_{2} = A_{12}^{\dagger}T\hat{B_{2}}^{\dagger}-A_{12}^{\dagger}A_{13}M_{1}^{\dagger}T\hat{B_{2}}^{\dagger}-A_{12}^{\dagger}S_{1}A_{13}^{\dagger}TN_{1}^{\dagger}F_{22}\hat{B_{2}}^{\dagger}\\ &\quad\quad-A_{12}^{\dagger}S_{1}U_{2}R_{N_{1}}F_{22}\hat{B_{2}}^{\dagger}+L_{A_{12}}U_{3}+U_{4}R_{\hat{B_{2}}},\\ &W_{3} = M_{1}^{\dagger}TF_{22}^{\dagger}+S_{1}^{\dagger}S_{1}A_{13}^{\dagger}TN_{1}^{\dagger}+L_{M_{1}}L_{S_{1}}U_{5}+U_{6}R_{F_{22}}+L_{M_{1}}U_{2}R_{N_{1}},\\ &W_{4} = F_{1}+L_{\hat{C_{2}}}V_{1}+V_{2}R_{\hat{D_{1}}}+L_{\hat{C_{1}}}V_{3}R_{\hat{D_{2}}},\ or\ W_{4} = F_{2}-L_{\hat{C_{22}}}\hat{V_{1}}-\hat{V_{2}}R_{\hat {D_{11}}}-L_{\hat{C_{11}}}\hat{V_{3}}R_{\hat{D_{22}}}, \end{align*}

    where T = T_{1}-\hat{A_{22}}W_{4}\hat{B_{4}}, U_{i}(i = \overline{1, 6}) are arbitrary matrices with appropriate sizes over \mathbb{H} ,

    \begin{align*} &V_{1} = (I_{m},0)[C_{24}^{\dagger}(F-C_{21}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})-C_{24}^{\dagger}U_{11}D_{13}+L_{C_{24}}U_{12}],\quad \quad \quad \quad \quad \quad\\ &\hat{V_{1}} = (0,I_{m})[C_{24}^{\dagger}(F-C_{21}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})-C_{24}^{\dagger}U_{11}D_{13}+L_{C_{24}}U_{12}],\\ &\hat{V_{2}} = [R_{C_{24}}(F-C_{21}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})D_{13}^{\dagger}+C_{24}C_{24}^{\dagger}U_{11}+U_{21}R_{D_{13}}]\begin{pmatrix} 0\\ I_{n} \end{pmatrix},\quad\quad\quad\quad\quad\\ &V_{2} = [R_{C_{24}}(F-C_{21}V_{3}D_{12}-C_{33}\hat{V_{3}}D_{33})D_{13}^{\dagger}+C_{24}C_{24}^{\dagger}U_{11}+U_{21}R_{D_{13}}]\begin{pmatrix} I_{n}\\ 0 \end{pmatrix},\\ &V_{3} = E_{11}^{\dagger}FE_{33}^{\dagger}-E_{11}^{\dagger}E_{22}M^{\dagger}FE_{33}^{\dagger}-E_{11}^{\dagger}SE_{22}^{\dagger}FN^{\dagger}E_{44}E_{33}^{\dagger}\\ &\quad\quad-E_{11}^{\dagger}SU_{31}R_{N}E_{44}E_{33}^{\dagger}+L_{E_{11}}U_{32}+U_{33}R_{E_{33}},\\ &\hat{V_{3}} = M^{\dagger}FE_{44}^{\dagger}+S^{\dagger}SE_{22}^{\dagger}FN^{\dagger}+L_{M}L_{S}U_{41}+L_{M}U_{31}R_{N}-U_{42}R_{E_{44}},\quad\quad\quad\quad\quad\quad\quad\quad \end{align*}

    U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, and U_{42} are any matrices with appropriate sizes, and m and n denote the column number of H_{11} and the row number of D_{22} , respectively.

    Theorem 4.3. Consider the matrix equation (1.4) over \mathbb{H} , where A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}(i = \overline{1, 2}), and G_{11} are given. Put

    \begin{align*} &\hat{A_{1}} = C_{11}L_{A_{11}},P_{1} = E_{11}-C_{11}A_{11}^{\dagger}B_{11}D_{11},\hat{A_{2}} = C_{22}L_{A_{22}},P_{2} = E_{22}-C_{22}A_{22}^{\dagger}B_{22}D_{22},\\ &A_{5} = F_{11}L_{A_1}L_{\hat{A_{1}}},A_{6} = F_{11}L_{A_{11}},A_{7} = L_{A_{22}}L_{\hat{A_{2}}},A_{8} = L_{A_{22}},B_{5} = R_{D_{11}},B_{7} = R_{D_{22}}F_{22},\quad\quad\quad\quad\\ &B = G_{11}-F_{11}A_{11}^{\dagger}B_{11}-F_{11}L_{A_1}\hat{A_{1}}^{\dagger}P_{1}D_{11}^{\dagger}-A_{22}^{\dagger}B_{22}F_{22}-L_{A_{22}}\hat{A_{2}}^{\dagger}P_{2}D_{22}^{\dagger}F_{22},\\ &R_{A_{5}}A_{6} = A_{11},R_{A_{5}}A_{7} = A_{2},R_{A_{5}}A_{8} = A_{33},F_{22}L_{B_{5}} = N_{1},R_{A_{11}}A_{2} = M_{1},S_{1} = A_{2}L_{M_{1}},\\ &R_{A_{5}}B = T_{1},C = R_{M_{1}}R_{A_{11}},\hat{C_{1}} = CA_{33},\hat{C_{2}} = R_{A_{11}}A_{33},\hat{C_{11}} = R_{A_{2}}A_{33},\hat{C_{4}} = A_{33},\\ &D = L_{B_{5}}L_{N_{1}},\hat{D_{1}} = B_{7},\hat{D_{2}} = B_{7}L_{F_{22}},\hat{D_{3}} = B_{7}L_{B_{5}},\hat{D_{4}} = B_{7}D,\hat{E_{1}} = CT_{1},\hat{E_{2}} = R_{A_{11}}T_{1}L_{F_{22}},\\ &\hat{E_{11}} = R_{A_{2}}T_{1}L_{B_{5}},\hat{E_{4}} = T_{1}D,C_{1} = (L_{\hat{C_{2}}},L_{\hat{C_{4}}}),D_{13} = \begin{pmatrix} R_{\hat{D_{1}}}\\ R_{\hat{D_{3}}} \end{pmatrix},D_{1} = L_{\hat{C_{1}}},D_{2} = R_{\hat{D_{2}}},\\ &C_{33} = L_{\hat{C_{11}}},D_{33} = R_{\hat{D_{4}}},E_{11} = R_{C_{1}}D_{1},E_{2} = R_{C_{1}}C_{33},E_{33} = D_{2}L_{D_{13}},E_{44} = D_{33}L_{D_{13}},\\ &M = R_{E_{11}}E_{2},N = E_{44}L_{E_{33}},F = \hat{F_{2}}-\hat{F_{1}},E = R_{C_{1}}FL_{D_{13}},S = E_{2}L_{M},F_{11} = \hat{C_{2}}L_{\hat{C_{1}}},\quad\quad\\ &\hat{G_{1}} = \hat{E_{2}}-\hat{C_{2}}\hat{C_{1}}^{\dagger}\hat{E_{1}}\hat{D_{1}}^{\dagger}\hat{D_{2}},F_{33} = \hat{C_{4}}L_{\hat{C_{11}}},\hat{G_{2}} = \hat{E_{4}}-\hat{C_{4}}\hat{C_{11}}^{\dagger}\hat{E_{11}}\hat{D_{3}}^{\dagger}\hat{D_{4}},\\ &\hat{F_{1}} = \hat{C_{1}}^{\dagger}\hat{E_{1}}\hat{D_{1}}^{\dagger}+L_{\hat{C_{1}}}\hat{C_{2}}^{\dagger}\hat{E_{2}}\hat{D_{2}}^{\dagger},\hat{F_{2}} = \hat{C_{11}}^{\dagger}\hat{E_{11}}\hat{D_{3}}^{\dagger}+L_{\hat{C_{11}}}\hat{C_{4}}^{\dagger}\hat{E_{4}}\hat{D_{4}}^{\dagger}. \end{align*}

    Then, the following statements are equivalent:

    \mathrm{(1)} Equation (1.4) is consistent.

    \mathrm{(2)}

    \begin{align*} &R_{A_{11}}B_{11} = 0,R_{\hat{A_{1}}}P_{1} = 0,P_{1}L_{D_{11}} = 0,R_{A_{22}}B_{22} = 0,\\ &R_{\hat{A_{2}}}P_{2} = 0,P_{2}L_{D_{22}} = 0,\ R_{\hat{C_{i}}}\hat{E_{i}} = 0,\hat{E_{i}}L_{\hat{D_{i}}} = 0(i = \overline{1,2}),\\ &R_{\hat{C_{11}}}\hat{E_{11}} = 0,R_{\hat{C_{4}}}\hat{E_{4}} = 0,\hat{E_{11}}L_{\hat{D_{3}}} = 0,\hat{E_{4}}L_{\hat{D_{4}}} = 0,R_{E_{11}}EL_{E_{44}} = 0. \end{align*}

    \mathrm{(3)}

    \begin{align*} &r(B_{11},A_{11}) = r(A_{11}), r\begin{pmatrix} E_{11}&C_{11}\\ B_{11}D_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix},\\ &r\begin{pmatrix} E_{11}\\D_{11} \end{pmatrix} = r(D_{11}),\ r(B_{22},A_{22}) = r(A_{22}),\\ &r\begin{pmatrix} E_{22}&C_{22}\\B_{22}D_{22}&A_{22} \end{pmatrix} = r\begin{pmatrix} C_{22}\\A_{22} \end{pmatrix}, r\begin{pmatrix} E_{22}\\D_{22} \end{pmatrix} = r(D_{22}),\\ &r\begin{pmatrix} B_{11}&A_{11}\\A_{22}G_{11}-B_{22}F_{22}&A_{22}F_{11} \end{pmatrix} = r\begin{pmatrix} A_{11}\\A_{22}F_{11} \end{pmatrix},\\ &r\begin{pmatrix} F_{22}&0\\B_{11}&A_{11}\\A_{22}G_{11}&A_{22}F_{11} \end{pmatrix} = r(F_{22})+r\begin{pmatrix} A_{11}\\A_{22}F_{11} \end{pmatrix},\\ &r\begin{pmatrix} C_{11}&E_{11}\\A_{11}&B_{11}D_{11}\\-A_{22}F_{11}&B_{22}F_{22}D_{11}-A_{22}G_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11}\\A_{22}F_{11} \end{pmatrix},\\ &r\begin{pmatrix} 0&F_{22}D_{11}\\C_{11}&E_{11}\\A_{11}&B_{11}D_{11}\\A_{22}F_{11}&A_{22}G_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11}\\A_{22}F_{11} \end{pmatrix}+r(F_{22}D_{11}),\\ &r\begin{pmatrix} F_{22}&0&D_{22}\\C_{22}G_{11}&C_{22}F_{11}&E_{22}\\B_{11}&A_{11}&0\\A_{22}G_{11}&A_{22}F_{11}&B_{22}D_{22} \end{pmatrix} = r(F_{22},D_{22})+r\begin{pmatrix} C_{22}F_{11}\\A_{22}F_{11}\\A_{11} \end{pmatrix},\\ &r\begin{pmatrix} G_{11}&F_{11}\\F_{22}&0\\B_{11}&A_{11} \end{pmatrix} = r\begin{pmatrix} F_{11}\\A_{11} \end{pmatrix}+r(F_{22}),\\ &r\begin{pmatrix} 0&D_{22}&F_{22}D_{11}\\C_{22}F_{11}&E_{22}&C_{22}G_{11}D_{11}\\C_{11}&0&E_{22}\\A_{22}F_{11}&0&A_{22}G_{11}D_{11}-B_{22}F_{22}D_{11}\\A_{11}&0&B_{11}D_{11} \end{pmatrix}\\ & = r\begin{pmatrix} C_{22}F_{11}\\C_{11}\\A_{22}F_{11}\\A_{11} \end{pmatrix}+r(D_{22},F_{22}D_{11}),\\ &r\begin{pmatrix} F_{11}&G_{11}D_{11}\\0&F_{22}D_{11}\\C_{11}&E_{11}\\A_{11}&B_{11}D_{11} \end{pmatrix} = r\begin{pmatrix} F_{11}\\C_{11}\\A_{11} \end{pmatrix}+r(F_{22}D_{11}),\\ \end{align*}
    \begin{align*} & r\begin{pmatrix} F_{22}&0&0&0&0\\ 0&0&F_{22}D_{11}&0&B_{22}\\ B_{11}&A_{11}&0&0&0\\ C_{22}G_{11}&C_{22}F_{11}&C_{22}G_{11}D_{11}&-C_{22}F_{11}&E_{22}\\ 0&0&-E_{11}&C_{11}&0\\ A_{22}G_{11}&A_{22}F_{11}&A_{22}G_{11}D_{11}-B_{22}F_{22}D_{11}&-A_{22}F_{11}&0\\ 0&0&-B_{11}D_{11}&A_{11}&0\\ A_{22}G_{11}&A_{22}F_{11}&0&0&0 \end{pmatrix}\\ & = r\begin{pmatrix} F_{22}&0&0\\0&F_{22}D_{11}&D_{22} \end{pmatrix}+r\begin{pmatrix} -C_{22}F_{11}&C_{22}F_{11}\\-A_{22}F_{11}&A_{22}F_{11}\\0&C_{11}\\0&A_{11}\\A_{11}&0\\A_{11}&0\\-A_{22}F_{11}&0 \end{pmatrix}.\quad\quad\quad\quad\quad\quad \end{align*}

    Under these conditions, the general solution of System (1.4) is

    \begin{align*} &X_{1} = A_{11}^{\dagger}B_{11}+L_{A_1}\hat{A_{1}}^{\dagger}P_{1}\hat{B_{1}}^{\dagger}+L_{A_1}L_{\hat{A_{1}}}W_{1}+L_{A_1}W_{2}R_{\hat{B_{1}}},\\ &X_2 = A_2^{\dagger}B_{22}+L_{A_2}\hat{A_{2}}^{\dagger}P_{2}\hat{B_{2}}^{\dagger}+L_{A_2}L_{\hat{A_{2}}}W_{3}+L_{A_3}W_{4}R_{\hat{B_{2}}}, \end{align*}

    where

    \begin{align*} &W_{1} = A_{5}^{\dagger}(B-A_{6}W_{1}B_{5}-A_{7}W_{3}F_{22}-A_{8}W_{4}B_{7})+L_{A_{5}}U_{1},\quad \quad \quad \quad \quad \quad \quad\quad \quad \quad\quad \quad \quad\quad\quad\quad\\ &W_{2} = A_{1}^{\dagger}TB_{5}^{\dagger}-A_{1}^{\dagger}A_{2}M_{1}^{\dagger}TB_{5}^{\dagger}-A_{1}^{\dagger}S_{1}A_{2}^{\dagger}TN_{1}^{\dagger}F_{22}B_{5}^{\dagger}\\ &\quad\quad-A_{1}^{\dagger}S_{1}U_{2}R_{N_{1}}F_{22}B_{5}^{\dagger}+L_{A_{1}}U_{3}+U_{4}R_{B_{5}},\\ &W_{3} = M_{1}^{\dagger}TF_{22}^{\dagger}+S_{1}^{\dagger}S_{1}A_{2}^{\dagger}TN_{1}^{\dagger}+L_{M_{1}}L_{S_{1}}U_{5}+U_{6}R_{F_{22}}+L_{M_{1}}U_{2}R_{N_{1}},\\ &W_{4} = \hat{F_{1}}+L_{\hat{C_{2}}}V_{1}+V_{2}R_{\hat{D_{1}}}+L_{\hat{C_{1}}}V_{3}R_{\hat{D_{2}}},\ or\ W_{4} = \hat{F_{2}}-L_{\hat{C_{4}}}\hat{V_{1}}-\hat{V_{2}}R_{\hat{D_{3}}}-L_{\hat{C_{11}}}\hat{V_{3}}R_{\hat{D_{4}}},\quad\quad\quad \end{align*}

    where T = T_{1}-A_{8}W_{4}B_{7}, U_{i}(i = \overline{1, 6}) are arbitrary matrices with appropriate sizes over \mathbb{H} ,

    \begin{align*} &V_{1} = (I_{m},0)[C_{1}^{\dagger}(F-D_{1}V_{3}D_{2}-C_{33}\hat{V_{3}}D_{33})-C_{1}^{\dagger}U_{11}D_{1}+L_{C_{1}}U_{12}],\quad \quad \quad \quad \quad\quad\quad\quad\quad\quad\quad\quad\\ &\hat{V_{1}} = (0,I_{m})[C_{1}^{\dagger}(F-D_{1}V_{3}D_{2}-C_{33}\hat{V_{3}}D_{33})-C_{1}^{\dagger}U_{11}D_{1}+L_{C_{1}}U_{12}],\\ &\hat{V_{2}} = [R_{C_{1}}(F-D_{1}V_{3}D_{2}-C_{33}\hat{V_{3}}D_{33})D_{1}^{\dagger}+C_{1}C_{1}^{\dagger}U_{11}+U_{21}R_{D_{1}}]\begin{pmatrix} 0\\ I_{n} \end{pmatrix},\\ &V_{2} = [R_{C_{1}}(F-C_{2}V_{3}D_{2}-C_{33}\hat{V_{3}}D_{33})D_{1}^{\dagger}+C_{1}C_{1}^{\dagger}U_{11}+U_{21}R_{D_{1}}]\begin{pmatrix} I_{n}\\ 0 \end{pmatrix},\\ &V_{3} = E_{11}^{\dagger}FE_{33}^{\dagger}-E_{11}^{\dagger}E_{2}M^{\dagger}FE_{33}^{\dagger}-E_{11}^{\dagger}SE_{2}^{\dagger}FN^{\dagger}E_{44}E_{33}^{\dagger}\\ &\quad\quad-E_{11}^{\dagger}SU_{31}R_{N}E_{44}E_{33}^{\dagger}+L_{E_{11}}U_{32}+U_{33}R_{E_{33}},\\ &\hat{V_{3}} = M^{\dagger}FE_{44}^{\dagger}+S^{\dagger}SE_{2}^{\dagger}FN^{\dagger}+L_{M}L_{S}U_{41}+L_{M}U_{31}R_{N}-U_{42}R_{E_{44}}, \end{align*}

    U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, and U_{42} are any quaternion matrices with appropriate sizes, and m and n denote the column number of A_{22} and the row number of D_{22} , respectively.

    In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving \eta -Hermicity matrices.

    Theorem 5.1. Let A_{11}, B_{11}, C_{11}, E_{11}, F_{11}, F_{22}, and G_{11}(G_{11} = G_{11}^{\eta^{*}}) be given matrices. Put

    \begin{align*} &A_{1} = C_{11} L_{A_{11}}, P_{1} = E_{11}-C_{11} A_{11}^{\dagger} B_{11} C_{11}^{\eta^{*}}, B_{2} = A_{1}^{\eta^{*}}, P_{2} = P_{1}^{\eta^{*}},\hat{B}_{1} = R_{B_{2}}\left(F_{22} L_{A_{11}}\right)^{\eta^{*}}, \\ &\hat{A}_{3} = F_{11} L_{A_{11}}, \hat{A}_{2} = \hat{A}_{3} L_{A_{1}}, \hat{A}_{4} = L_{C_{11}},\hat{B}_{3} = \left(F_{11} \hat{A}_{4}\right)^{\eta^{*}},\hat{B}_{4} = \left(F_{22} L_{A_{11}}\right)^{\eta^{*}}, F_{11}^{\eta^{*}} L_{\hat{B}_{1}} = \hat{B}_{11},\\ &P = G_{11}-F_{11} A_{11}^{\dagger} B_{11} F_{11}^{\eta^{*}}-\hat{A}_{3} A_{1}^{\dagger} P_{1}\left(F_{11} C_{11}^{\dagger}\right)^{\eta^{*}}-\left(F_{22} A_{11}^{\dagger} B_{11}\right)^{\eta^{*}}-C_{11}^{\dagger} P_{2} B_{2}^{\dagger} \hat{B}_{4},\hat{B}_{22} L_{B_{11}} = N_{1},\\ & \hat{B}_{3} L_{\hat{B}_{1}} = \hat{B}_{22}, \hat{B}_{4} L_{\hat{B}_{1}} = \hat{B}_{33}, R_{\hat{A}_{2}} \hat{A}_{3} = \hat{M}_{1}, S_{1} = \hat{A}_{3} L_{M_{1}},T_{1} = PL_{\hat{B_{1}}}, C = R_{M_{1}} R_{\hat{A}_{2}},C_{1} = C\hat{A}_{4}, \\ & C_{2} = R_{\hat{A}_{2}} \hat{A}_{4}, C_{3} = R_{\hat{A}_{3}} \hat{A}_{4}, C_{4} = \hat{A}_{4}, D = L_{\hat{B}_{11}} L_{N_{1}},D_{1} = \hat{B}_{33},D_{2} = \hat{B}_{33} L_{\hat{B}_{22}}, D_{4} = \hat{B}_{33} D, \\ & E_{1} = C T_{1}, E_{2} = R_{\hat{A}_{2}} T_{1} L_{\hat{B}_{11}}, E_{4} = T_{1} D,\hat{C}_{11} = \begin{pmatrix} L_{C_{2}}, L_{C_{4}} \end{pmatrix},D_{3} = \hat{B}_{33} L_{\hat{B}_{11}},\hat{D}_{11} = \begin{pmatrix} R_{D_{1}}\\R_{D_{3}} \end{pmatrix}, \\ &\hat{C}_{22} = L_{C_{1}}, \hat{D}_{22} = R_{D_{2}},\ \hat{C}_{33} = L_{C_{3}}, \hat{D}_{33} = R_{D_{4}}, \hat{E}_{11} = R_{\hat{C}_{11}} \hat{C}_{22}, \hat{E}_{22} = R_{\hat{C}_{11}} \hat{C}_{33}, \\ &\hat{E}_{33} = \hat{D}_{22} L_{\hat{D}_{11}}, \hat{E}_{44} = \hat{D}_{33} L_{\hat{D}_{11}}, M = R_{\hat{E}_{11}} \hat{E}_{22}, N = \hat{E}_{44} L_{\hat{E}_{33}},\ F = F_{2}-F_{1}, E = R_{\hat{C}_{11}} F L_{\hat{D}_{11}}, \\ &S = \hat{E}_{22} L_{M},\hat{F_{11}} = C_{2} L_{C_{1}}, G_{1} = E_{2}-C_{2} C_{1}^{\dagger} E_{1} D_{1}^{\dagger} D_{2}, \hat{F_{22}} = C_{4} L_{C_{3}}, G_{2} = E_{4}-C_{4} C_{3}^{\dagger} E_{3} D_{3}^{\dagger} D_{4}, \\ &F_{1} = C_{1}^{\dagger} E_{1} D_{1}^{\dagger}+L_{C_{1}}^{\dagger} C_{2}^{\dagger} E_{2} D_{2}^{\dagger}, F_{2} = C_{3}^{\dagger} E_{3} D_{3}^{\dagger}+L_{C_{3}} C_{4}^{\dagger} E_{4} D_{4}^{\dagger} . \end{align*}

    Then, the following statements are equivalent:

    \mathrm{(1)} System (1.9) is solvable.

    \mathrm{(2)}

    R_{A_{11}} B_{11} = 0, R_{A_{1}} P_{1} = 0, P_{1}\left(R_{C_{11}}\right)^{\eta^{*}} = 0, R_{C_{i}} E_{i} = 0, E_{i} L_{D_{i}} = 0(i = \overline{1,4}), R_{\hat{E}_{11}} E L_{\hat{E}_{44}} = 0 .

    \mathrm{(3)}

    \begin{align*} &r(B_{11}, A_{11}) = r(A_{11}), r\begin{pmatrix} E_{11} & C_{11} \\ B_{11} C_{11}^{\eta^{*}} & A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix} ,\ r\begin{pmatrix} E_{11}\\C_{11}^{\eta^{*}} \end{pmatrix} = r(C_{11}),\\ &r\begin{pmatrix} F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{\eta^{*}}} \\ B_{11} F_{11}^{\eta^{*}} & A_{11} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\left(F_{22}^{\eta^{*}}, C_{11}^{\eta^{*}}, A_{11}^{\eta^{*}}\right)+r\binom{A_{11}}{C_{11} F_{11}},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & -C_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ 0 & C_{11} & E_{11} & 0 & 0 \\ 0 & A_{11} & B_{11} C_{11}^{\eta^{*}} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & 0 & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = \\ &r\begin{pmatrix} C_{11} \\ A_{11} \\ 0 \end{pmatrix} +r\begin{pmatrix} F_{11}^{\eta^{*}} & C_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ 0 & A_{11} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} +r\binom{A_{11}}{C_{11} F_{11}},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ C_{11} G_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}}, \end{pmatrix},\\ &r\begin{pmatrix} G_{11} & F_{11} & B_{11}^{\eta^{*}} \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \\ B_{11} F_{11}^{\eta^{*}} & A_{11} & 0 \end{pmatrix} = r\binom{F_{11}}{A_{11}}+r\left(F_{22}^{\eta^{*}}, A_{11}^{\eta^{*}}\right), \\ &r\begin{pmatrix} G_{11} & F_{11} & 0 & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 & -C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & A_{11}^{\eta^{*}} \\ 0 & C_{11} & E_{11} & 0 \\ 0 & A_{11} & B_{11} C_{11}^{\eta^{*}} & 0 \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \end{pmatrix} +r\begin{pmatrix} F_{11} \\ C_{11} \\ A_{11} \end{pmatrix},\\ &r\begin{pmatrix} G_{11} & F_{11} & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \\ 0 & A_{11} & 0 \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} +r\binom{F_{11}}{A_{11}}, \\ &r\begin{pmatrix} G_{11} & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 \\ 0 & 0 & F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & A_{11}^{\eta^{*}} \\ 0 & C_{11} & 0 & 0 & 0 & 0 & 0 & -E_{11} & 0 \\ 0 & A_{11} & 0 & 0 & 0 & 0 & 0 & -B_{11} C_{11}^{\eta^{*}} & 0 \\ C_{11} G_{11} & C_{11} F_{11} & 0 & 0 & 0 & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} & 0 & 0 \end{pmatrix} \\ & = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 \\ 0 & F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & A_{11}^{\eta^{*}} \end{pmatrix}+r\begin{pmatrix} C_{11} \\ A_{11} \\ C_{11} F_{11} \end{pmatrix}. \end{align*}

    Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has a solution:

    \begin{equation} \begin{aligned} &A_{11}\hat{X_1} = B_{11}, C_{11}\hat{X_1}C_{11}^{\eta^{*}} = E_{11},\\ &\hat{X_2}A_{11}^{\eta^{*}} = B_{11}^{\eta^{*}}, C_{11}\hat{X_2}C_{11}^{\eta^{*}} = E_{11}^{\eta^{*}},\\ &F_{11}X_1F_{11}^{\eta^{*}}+\hat{X_2}^{\eta^{*}}F_{22}^{\eta^{*}} = G_{11}. \end{aligned} \end{equation} (5.1)

    If (1.9) has a solution, say, X_1 , then (\hat{X_1}, \ \hat{X_2}) : = (X_1, \ X_{1}^{\eta^{*}}) is a solution of (5.1). Conversely, if (5.1) has a solution, say (\hat{X_1}, \ \hat{X_2}) , then it is easy to show that (1.5) has a solution

    \begin{align*} X_1 : = \dfrac{\hat{X_1}+X_{2}^{\eta^{*}}}{2}. \end{align*}

    According to Theorem 3.1, we can deduce that this theorem holds.

    We have established the solvability conditions and the expression of the general solutions to some constrained systems (1.1)–(1.4). As an application, we have investigated some necessary and sufficient conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for the real number field and the complex number field as special number fields.

    Long-Sheng Liu, Shuo Zhang and Hai-Xia Chang: Conceptualization, formal analysis, investigation, methodology, software, validation, writing an original draft, writing a review, and editing. All authors of this article have contributed equally. All authors have read and approved the final version of the manuscript for publication.

    This work is supported by the National Natural Science Foundation(No. 11601328) and Key scientific research projects of univesities in Anhui province(No. 2023AH050476).

    The authors declare that they have no conflicts of interest.



    [1] Velichkov K, Dinev D, Stoilov S (2014) Chicago - the Bulgarian City. Sofia: Dedrax Printing House.
    [2] Manolova P (2015) Bulgarian Migration to England - the Influencial Power of the Imaginary West. In: Hristov P, Kassabova A, Troeva E, et al. (eds. ), Contextualizing Changes: Migration, Shifting Borders and New Identities in Eastern Europe. Sofia: Paraidgma Ltd, 169–179.
    [3] Zieske Ivanova D, Zieske W (2021) Perspectives upon Bulgarian Socialist/Post-socialist Everyday life of Those Who "Remain" and Those Who "Left. " J Sociocultural Anthropol 8: 5–20.
    [4] Lindstrom DP, Ramirez AL (2010) Pioneers and Followers: Migrant Selectivity and the Development of U.S. Migration Streams in Latin America. Ann Am Acad Political Soc Sci 630: 53–77. https://doi.org/10.1177/0002716210368103 doi: 10.1177/0002716210368103
    [5] Geric L, Gopchevicth N, Letic P, et al. (1876) The Truth. Chicago Tribune, 5.
    [6] Various (1875–1923) Chicago City Directories.
    [7] Anonymous (1876) Slavs in Chicago. Whence They Came and What They Do. Chicago Tribune, 8.
    [8] Buck CD (1903) A Sketch of the Linguistic Conditions of Chicago. Chicago: University of Chicago.
    [9] Neuburger M (2010) Fair Encounters: Bulgaria and the 'West' at International Exhibitions from Plovdiv to St. Louis. Slavic Rev 69: 547–570. https://doi.org/10.1017/S0037677900012146 doi: 10.1017/S0037677900012146
    [10] Neuburger M (2006) To Chicago and Back: Aleko Konstantinov, Rose Oil and the Smell of Modernity. Slavic Review 65: 427–445. https://doi.org/10.2307/4148658 doi: 10.2307/4148658
    [11] Anonymous (1893) What the Foreign Commissioners Say of the Columbian Exposition. Chicago Tribune, 1, 3.
    [12] Shopoff VI (1893) Sweet Odors Win Approbation. Bulgaria's Exhibit of Attar of Roses Has Proved Beneficial to It. Chicago Tribune, 14.
    [13] Roucek J (1937) The American Bulgarians. Pamphlet.
    [14] Zieske WF (2021) From "The Dregs of Europe" to Internationalism: ASEEES 2021 Annual Convention. New Orleans. Unpublished paper.
    [15] Anonymous (1903) Evading the Immigration Laws. Chicago Tribune, 6.
    [16] Anonymous (1903) Types of the Several Classes of Bulgarian Peasantry Who Have Taken Up Arms to Free Macedonia from Turkish Rule (illustration). Chicago Tribune, 3.
    [17] Hunt MB (1910) Housing of Non-Family Groups of Men in Chicago. Am J Sociol 16: 145–170. https://doi.org/10.1086/211883 doi: 10.1086/211883
    [18] Abbott G (1909) The Bulgarians of Chicago. Charities and the Commons, 21: 653–660.
    [19] Anonymous (1908) Army of Unemployed Bulgarians. Chicago Daily News, unpublished photo.
    [20] McCauley LM (1919) The All-American Exposition in Chicago. Am Mag Art 11: 7–10.
    [21] Цтефановь В (1933) 25=Годишень Юъилеень Алманахь на в-кь «Народень Глаць» и Бьлгарить вь Америка[25th anniversary jubilee almanac of Naroden Glas, the oldest Bulgarian national newspaper in America]. Granite City, IL: Naroden Glas Publishing Co.
    [22] City of Chicago Department of Development and Planning (1976) Historic City: The Settlement of Chicago. Chicago: City of Chicago.
    [23] Gibson C, Jung K (2006) Historical Census Statistics on the Foreign-Born Population of the United States: 1850 to 2000. Washington, DC: U.S. Census Bureau.
    [24] Farmer A (1935) Bulgars Boast Lead in Health and Longevity. Chicago Tribune, 49, 50.
    [25] Ivanov G (2021) Църквата „Св. София" в Чикаго – история на почти век[The Church "St. Sofia" in Chicago—a History of Almost a Century]. BG Voice. Available from: https://bgvoice.com/curkvata-sv-sofiia-v-chikago-%E2%80%93-istoriia-na-pochti-vek.
    [26] Ivanov G (2023) Кратка история на българската православна църква "Св. София" в Чикаго[Brief History of The Bulgarian Orthodox Church "St. Sofia" in Chicago]. Bulgaria Sega. Available from: https://www.bulgariasega.com/featured/142908.html
    [27] Vukov N, Borisova M (2017) The Festive Days of the Bulgarian Community in Chicago – Models of Cultural Heritage in Migration. BAS. Humanit Soc Sci 4: 18–37.
    [28] Konsulov I (2016) Наказани таланти[Punished Talents]. Chicago: Творчески съюз "Творци без граници"[Creative Union "Creators Without Borders"].
    [29] Donev DK (2012) Bulgarian Churches in North America. Spasen Publishers.
    [30] Anonymous (1933) Chicago: A Century of Progress, 1833–1933. Chicago: Marquette Publishing.
    [31] Carruthers SL (2005) Between Camps: Eastern Bloc "Escapees" and Cold War Borderlands". Am Q 57: 911–942. https://doi.org/10.1353/aq.2005.0043 doi: 10.1353/aq.2005.0043
    [32] Ivanova D (2016) Чикаго – българският град: поглед отвън и отвътре[Chicago – the Bulgarian City: Inside and Outside Perspective]. Bulgarian Ethnology 2: 259–275.
    [33] Stoyanova-Boneva B (1991) Американци по български или българи по американски[Americans as Bulgarians or Bulgarians as Americans]. Sofia: St. Kliment Ohridski Publishing House.
    [34] Galcheva S (2021) Александър Дърводелски: Днес в България няма национално възкресение[Alexander Darvodelski: There is no national revival in Bulgaria today]. Bulgaria Sega. Available from: https://www.bulgariasega.com/featured/141823.html?fbclid=IwAR0ASnE_p40BZN43YutOeb6kPP2AG7qqv6OrUMy5_yciAvVYhAxgZinyJ2A.
    [35] Anonymous (1965) Doctor Who Came Here from Bulgaria, Dies at 82. [Chicago] Suburbanite Economist, 16.
    [36] Heise K (1989). Ivan Tonov, 104; Started Church Here. Chicago Tribune, 22.
    [37] City of Chicago Department of Development and Planning (1976) The People of Chicago: who we are and who we have been. Chicago: City of Chicago.
    [38] Kiryakov B (2011) България зад граница[Bulgaria beyond the borders]. (Л. Стоянов, Comp. ) Съпротивата срещу комунистическия режим в България (1944-1989г. ) [The resistance against the Communist Regime in Bulgaria], 75–108. Available from: https://ebox.nbu.bg/anti.
    [39] Anonymous (1967) Exhibit on Bulgaria. Chicago Tribune, C2.
    [40] Anonymous (1962) Folk Fair Is 1-Pier World Tour. Chicago Tribune, E1.
    [41] Anonymous (1964) Preparing for Folk Fair. Chicago Tribune, 3.
    [42] Angulo MI (2008) Изграждане на нацията в Европейския съюз: Българската национална идентичност в нови рамки. [Nation Building in the European Union: The Bulgarian National Identity in New Frameworks]. In: M. Decheva (ed. ) Динамика на националната идентичност и транснационалните идентичности в процеса на европейска интеграция[Dynamics of National Identity and Transnational Identities in the Process of European Integration], 247–288.
    [43] Karamihova M (2004) Американски мечти. Пътеводител сред първа генерация имигранти[American dreams. A guide among first-generation immigrants]. Sofia: Krotal.
    [44] Ivanova D (2017) Chicago - The Bulgarian City: Territorial, Cultural, Social and Economic Features of a Migrant Community. Cultural Heritage in Migration. Sofia: Paradigma, 284–294.
    [45] Darakov Y (2022) За Коледа: Банките взимат църквата „Св. Иван Рилски" в Чикаго (ВИДЕО) [For Christmas: Banks take the Church of St. Ivan Rilski" in Chicago (VIDEO)]. BG Voice. Available from: https://bgvoice.com/za-koleda-bankite-vzimat-curkvata-sv-ivan-rilski-v-chikago-(video).
    [46] Krase J (1997) Polish and Italian Vernacular Landscapes in Brooklyn. Pol Am Stud 54: 9–31. http://www.jstor.org/stable/20148503
    [47] Koval JP, Fidel K (2006) Chicago: The Immigrant Capital of the Hearthland. In: Koval J, Benneth L, Benneth MIJ, et al. (eds. ) The New Chicago. A Social and Cultural Analysis. Philadephia: Temple University Press, 97–104.
    [48] Pacyga D (1995) Chicago's Ethnic Neighborhoods: The Myth of Stability and the Reality of Change. In: Holli MG, Johns P d'A (eds. ) Ethnic Chicago: A Multicultural Portrait (4th ed). Grant Rapids, Michigan: William Eerdmans Publishing Company, 604–617.
    [49] Holli MG, Johns P d'A (1995) Ethnic Chicago: A Multicultural Portrait (4th ed). Grant Rapids, Michigan: William Eerdmans Publishing Company.
    [50] Koval J, Benneth L, Benneth MIJ, et al. (2006) The New Chicago. A Social and Cultural Analysis. Philadelphia: Temple University Press.
    [51] Chicago Historical Society (2005) Encyclopedia of Chicago. Available from: http://www.encyclopedia.chicagohistory.org/pages/182.html.
    [52] Garza MM (1994) World Cup offers a rare spotlight. Chicago Tribune. Secs. 2, 3.
    [53] Kulov B, Borisova M (2017) Българските училища зад граница[Bulgarian Schools Abroad]. In: Penchev V, Vukov N, Gergova Y, et al. (eds. ). Културното наследство в миграция. Модели на консолидация и институционализация на българските общности в Чужбина[The Cultural Heritage in Migration. Models of Consolidations and Institutionalizations or the Bulgarian communities Abroad]. Sofia: Paradigma Publishing House, 99–118.
    [54] Yanev Y (2017) Държавни институции и държавна политика към българите по света[Government Institutions and Government Policy Toward the Bulgarians Around the World]. In: Penchev V, Vukov N, Gergova Y, et al. (eds. ). Културното наследство в миграция. Модели на консолидация и институционализация на българските общности в Чужбина[The Cultural Heritage in Migration. Models of Consolidations and Institutionalizations or the Bulgarian communities Abroad]. Sofia: Paradigma Publishing House, 73–98.
    [55] Borisova M, Koulov B (2017) Literacy Festivities Outside the Homeland: Bulgarian Sunday Schools in Chicago. In: Vukov N, Gergova L, Matanova T, et al. (eds. ) Cultural Heritage in Migration. Sofia: Paradigma Publishing House, 399–410.
    [56] Veselinov E (2019) 1-во Българско училище със собствена сграда в Америка се "роди" в Чикаго (интервю, видео)[The 1st Bulgarian school with its own building in America was "born" in Chicago (interview, video)]. BulgariCA. Bulgarians in California. Available from: http://www.bulgarica.com/2019/06/01/%D0%BD%D0%BE%D0%B2%D0%B8%D0%BD%D0%B8/.
    [57] Bourdieu P (1986) Forms of Capital. Handbook of Theory and Research for the Sociology of Education. New York: Greenwood.
    [58] Glavanakova A (2016) Remembering Exile: Radka Yakimov's Biographical Stories. Transcultural Imaginings. Translating the Other, Translating the Self in Narratives about Migration and Terrorism. Sofia: KX – Critique and Humanism Publishing House.
    [59] Gergova L, Gergova Y (2016) Наследство и консолидация на мигрантските общности: институциите на българската общност във Вашингтон[Legacy and Consolidation of Migrant Communities: Institutions of the Bulgarian Community in Washington]. Електронно списание ОНГЪЛ"[Online Journal 'Ongal'] 12: 29–40.
    [60] Office of the Press Secretary (2012) Remarks by President Obama and Prime Minister Borisov of Bulgaria. The White House: President Barak Obama. Available from: https://obamawhitehouse.archives.gov/the-press-office/2012/12/03/remarks-president-obama-and-prime-minister-borisov-bulgaria.
  • geosci-09-03-029-s001.pdf
  • This article has been cited by:

    1. Mahmoud S. Mehany, Faizah D. Alanazi, An \eta -Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions, 2025, 10, 2473-6988, 7684, 10.3934/math.2025352
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3869) PDF downloads(54) Cited by(1)

Figures and Tables

Figures(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog