Gestational diabetes mellitus (GDM), characterized by glucose intolerance during pregnancy, poses substantial health risks for both mothers and infants due to the interplay of insulin resistance and β-cell dysfunction. Molecular biomarkers, including SNPs, microRNAs (miRNAs), and proteins, have been linked to GDM development during pregnancy. Notably, miRNA-mediated regulation of gene expression holds pivotal roles in metabolic disorders. This study aims to identify diagnostic biomarkers for GDM and establish a diagnostic model.
Firstly, gene expression data from GDM samples (N = 9) and normal samples (N = 9) were sourced from the Gene Expression Omnibus (GEO) database. Subsequently, the limma package was employed to discern differentially expressed genes (DEGs), with subsequent functional and enrichment analyses executed using the clusterProfiler package. A comprehensive exploration of genes significantly correlated with GDM was undertaken via weighted gene co-expression network analysis (WGCNA). The construction of a protein-protein interaction (PPI) network was facilitated by STRING, while visualization of hub genes was achieved through Cytoscape. Moreover, the miRNA-mRNA network was established using StarBase. Concurrently, immune infiltration significantly correlated with hub genes was identified.
In this study, 209 DEGs between normal and GDM samples were identified, and these genes were associated with collagen containing extracellular matrix heparin binding and axon guidance, etc. Then, 18 modules were identified by WGCNA and the brown module including 212 genes had a significantly negative correlation with GDM (r = −0.66, P = 0.003). Additionally, five low gene expressions (CXCL12, MEF2C, MMP2, SOX17 and THBS2) and two high gene expressions (BMP4 and SFRP5) were identified as GDM related hub genes. Moreover, hub genes regulated by alternations of miRNAs were established and three hub genes (CXCL12, MEF2C and THBS2) were negatively correlated with activated Natural Killer (NK) cells while two hub genes (BMP4 and SFRP5) were positively correlated with activated NK cells.
This study offers novel hub genes that could contribute to the diagnostic approach for GDM, potentially shedding light on the intricate mechanisms underpinning GDM's developmental pathways.
Citation: Xuemei XIA, Xuemei HU. Identification of diagnostic biomarkers of gestational diabetes mellitus based on transcriptome gene expression and alternations of microRNAs[J]. AIMS Bioengineering, 2023, 10(3): 202-217. doi: 10.3934/bioeng.2023014
[1] | Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106 |
[2] | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174 |
[3] | Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670 |
[4] | Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan . Some new dynamic Steffensen-type inequalities on a general time scale measure space. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240 |
[5] | Tingting Guan, Guotao Wang, Haiyong Xu . Initial boundary value problems for space-time fractional conformable differential equation. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312 |
[6] | Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250 |
[7] | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777 |
[8] | Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575 |
[9] | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534 |
[10] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
Gestational diabetes mellitus (GDM), characterized by glucose intolerance during pregnancy, poses substantial health risks for both mothers and infants due to the interplay of insulin resistance and β-cell dysfunction. Molecular biomarkers, including SNPs, microRNAs (miRNAs), and proteins, have been linked to GDM development during pregnancy. Notably, miRNA-mediated regulation of gene expression holds pivotal roles in metabolic disorders. This study aims to identify diagnostic biomarkers for GDM and establish a diagnostic model.
Firstly, gene expression data from GDM samples (N = 9) and normal samples (N = 9) were sourced from the Gene Expression Omnibus (GEO) database. Subsequently, the limma package was employed to discern differentially expressed genes (DEGs), with subsequent functional and enrichment analyses executed using the clusterProfiler package. A comprehensive exploration of genes significantly correlated with GDM was undertaken via weighted gene co-expression network analysis (WGCNA). The construction of a protein-protein interaction (PPI) network was facilitated by STRING, while visualization of hub genes was achieved through Cytoscape. Moreover, the miRNA-mRNA network was established using StarBase. Concurrently, immune infiltration significantly correlated with hub genes was identified.
In this study, 209 DEGs between normal and GDM samples were identified, and these genes were associated with collagen containing extracellular matrix heparin binding and axon guidance, etc. Then, 18 modules were identified by WGCNA and the brown module including 212 genes had a significantly negative correlation with GDM (r = −0.66, P = 0.003). Additionally, five low gene expressions (CXCL12, MEF2C, MMP2, SOX17 and THBS2) and two high gene expressions (BMP4 and SFRP5) were identified as GDM related hub genes. Moreover, hub genes regulated by alternations of miRNAs were established and three hub genes (CXCL12, MEF2C and THBS2) were negatively correlated with activated Natural Killer (NK) cells while two hub genes (BMP4 and SFRP5) were positively correlated with activated NK cells.
This study offers novel hub genes that could contribute to the diagnostic approach for GDM, potentially shedding light on the intricate mechanisms underpinning GDM's developmental pathways.
Riemann-Liouville fractional integral given by
Iαa+ξ(℘)=1Γ(α)∫χa(χ−℘)α−1ξ(℘)dt. |
Many different concepts of fractional derivative maybe found in [9,10,11]. In [12] studied a conformable derivative:
℘αf(℘)=limϵ→0f(℘+ϵ℘1−α)−f(℘)ϵ. |
The time scale conformable derivatives was introduced by Benkhettou et al. [17].
Further, in recent years, numerous mathematicians claimed that non-integer order derivatives and integrals are well suited to describing the properties of many actual materials, such as polymers. Fractional derivatives are a wonderful tool for describing memory and learning. a variety of materials and procedures inherited properties is one of the most significant benefits of fractional ownership. For more concepts and definition on time scales see [13,14,15,16,17,18,19,33,34,35].
Continuous version of Steffensen's inequality [7] is written as: For 0≤g(℘)≤1 on ∈[a,b]. Then
∫bb−λf(℘)dt≤∫baf(℘)g(℘)dt≤∫a+λaf(℘)dt, | (1.1) |
where λ=∫bag(℘)dt.
Supposing f is nondecreasing gets the reverse of (1.1).
Also, the discrete inequality of Steffensen [6] is: For λ2≤∑nℓ=1g(ℓ)≤λ1. Then
n∑ℓ=n−λ2+1f(ℓ)≤n∑ℓ=1f(ℓ)g(ℓ)≤λ1∑ℓ=1f(ℓ). | (1.2) |
Recently, a large number of dynamic inequalities on time scales have been studied by a small number of writers who were inspired by a few applications (see [1,2,3,4,8,28,29,30,31,32,36,37,40,41,42,44,48,49,50,51,52,53]).
In [5] Jakšetić et al. proved that, if ˆμ([c,d])=∫[a,b]g(℘)dˆμ(℘), where [c,d]⊆[a,b]. Then
∫[a,b]f(℘)g(℘)dˆμ(℘)≤∫[c,d]f(℘)g(℘)dˆμ(℘)+∫[a,c](f(℘)−f(d))g(℘)dˆμ(℘), |
and
∫[c,d]f(℘)dˆμ(℘)−∫[d,b](f(c)−f(℘))g(℘)dˆμ(℘)≤∫[a,b]f(℘)g(℘)dˆμ(℘). |
Anderson, in [3], studied the inequality:
∫bb−λϕ(℘)∇℘≤∫baϕ(℘)ψ(℘)∇℘≤∫a+λaϕ(℘)∇℘, | (1.3) |
In [47] the authors have proved, for
∫m+λ1mζ(℘)d℘=∫kmζ(℘)g(℘)d℘, |
and
∫nn−λ2ζ(℘)d℘=∫nkζ(℘)g(℘)d℘. |
If there exists a constant A such that r(℘)/ζ(℘)−At is monotonic on the intervals [m,k], [k,n], and
∫nmtq(℘)g(℘)d℘=∫m+λ1mtq(℘)d℘+∫nn−λ2tq(℘)d℘, |
then
∫nmr(℘)g(℘)d℘≤∫m+λ1mr(℘)d℘+∫nn−λ2r(℘)d℘. |
In particularly, Anderson [3] proved
∫nn−λr(℘)∇℘≤∫nmr(℘)g(℘)∇℘≤∫m+λmr(℘)∇℘. |
where m,n∈Tκ with m<n, r, g:[m,n]T→R are ∇-integrable functions such that r is of one sign and nonincreasing and 0≤g(℘)≤1 on [m,n]T and λ=∫nmg(℘)∇℘, n−λ,m+λ∈T.
We prove the next two needed results:
Theorem 1.1. Assume q>0 with 0≤g(℘)≤ζ(℘) ∀℘∈[m,n]T and λ is given from ∫nmg(℘)Δα℘=∫m+λmζ(℘)Δα℘, then
∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘. | (1.4) |
Also, provided with 0≤g(℘)≤ζ(℘) and ∫nn−λζ(℘)Δα℘=∫nmg(℘)Δα℘, we have
∫nn−λr(℘)ζ(℘)Δα℘≤∫nmr(℘)g(℘)Δα℘. | (1.5) |
We get the reverse inequalities of (1.4) and (1.5) when assuming r/ζ is nondecreasing.
Theorem 1.2. Assume ψ is integrable on time scales interval [m,n], with ζ(℘)−ψ(℘)≥g(℘)≥ψ(℘)≥0∀℘∈[m,n]T and ∫m+λmζ(℘)Δα℘=∫nmg(℘)Δα℘=∫nn−λζ(℘)Δα℘ and g, r and ζ are Δα-integrable functions, ζ(℘)≥g(℘)≥0, we have
∫nn−λr(℘)ζ(℘)Δα℘+∫nm|(r(℘)−r(n−λ))ψ(℘)|Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘−∫nm|(r(℘)−r(m+λ))ψ(℘)|Δα℘, | (1.6) |
and
∫nn−λr(℘)ζ(℘)Δα℘≤∫nn−λ[r(℘)ζ(℘)−(r(℘)−r(n−λ))][ζ(℘)−g(℘)]Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λm[r(℘)ζ(℘)−(r(℘)−r(m+λ))][ζ(℘)−g(℘)]Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘. | (1.7) |
Proof. The proof techniques of Theorems 1.6 and 1.7 are like to that in [4] and is removed.
Several authors proved conformable Hardy's inequality [20,21], conformable Hermite-Hadamard's inequality [22,23,24], conformable inequality of Opial's [26,27] and conformable inequality of Steffensen's [25]. In [45] Anderson proved the followong results:
Theorem 1.3. [45] Suppose α∈(0,1] and r1, r2∈R such that 0≤r1≤r2. Suppose ∏:[r1,r2]→[0,∞) and Γ:[r1,r2]→[0,1] are α-fractional integrable functions on [r1,r2] with Π is decreasing, we get
∫r2r2−ℵΠ(ζ)dαζ≤∫r2r1Π(ζ)Γ(ζ)dαζ≤∫r1+ℵr1Π(ζ)dαζ, |
where ℵ=α(r2−r1)rα2−rα1∫r2r1Γ(ζ)dαζ∈[0,r2−r1].
In [46] the authors gave an extension for Theorem 1.8:
Theorem 1.4. Assume α∈(0,1] and r1, r2∈R such that 0≤r1≤r2. Suppose ∏,Γ,Σ:[r1,r2]→[0,∞) are integrable on [r1,r2] with the decreasing function Π and 0≤Γ≤Σ, we get
∫r2r2−ℵΣ(ζ)Π(ζ)dαζ≤∫r2r1Π(ζ)Γ(ζ)dαζ≤∫r1+ℵr1Σ(ζ)Π(ζ)dαζ, |
where ℵ=(r2−r1)∫r2r1Σ(ζ)dαζ∫r2r1Γ(ζ)dαζ∈[0,r2−r1].
In this paper, we prove and explore several novel speculations of the Steffensen inequality obtained in [47] through the conformable integral containing time scale concept. We furthermore recover certain known results as special cases of our results.
Lemma 2.1. Assume ζ>0 is rd-continuous function on [m,n]∩T, g, r be rd-continuous on [m,n]∩T such that r/ζ nonincreasing function and 0≤g(℘)≤1 ∀℘∈[m,n]∩T. Then
(Λ1)
∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)Δα℘, | (2.1) |
where λ is given by
∫nmζ(℘)g(℘)Δα℘=∫m+λmζ(℘)Δα℘. |
(Λ2)
∫nn−λr(℘)Δα℘≤∫nmr(℘)g(℘)Δα℘, | (2.2) |
such that
∫nn−λζ(℘)Δα℘=∫nmζ(℘)g(℘)Δα℘. |
(2.1) and (2.2) are reversed when r/ζ is nondecreasing.
Proof. Putting g(℘)↦ζ(℘)g(℘) and r(℘)↦r(℘)/ζ(℘) in (1.4), (1.5) to get (Λ1) and (Λ2) simultaneously.
Lemma 2.2. Under the same hypotheses of Lemma 2.1. with ψ be integrable functions on [m,n]∩T and 0≤ψ(℘)≤g(℘)≤1−ψ(℘) for all ℘∈[m,n]T. Then
∫nn−λr(℘)Δα℘+∫nm|(r(℘)ζ(℘)−r(n−λ)ζ(n−λ))ζ(℘)ψ(℘)|Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)Δα℘−∫nm|(r(℘)ζ(℘)−r(m+λ)ζ(m+λ))ζ(℘)ψ(℘)|Δα℘, |
where λ is obtained from
∫m+λmh(℘)Δα℘=∫nmζ(℘)g(℘)Δα℘=∫nn−λζ(℘)Δα℘. |
Proof. Putting g(℘)↦ζ(℘)g(℘), r(℘)↦r(℘)/h(℘) and ψ(℘)↦ζ(℘)ψ(℘) in (1.6).
Lemma 2.3. Under the same conditions of Lemma 2.1. Then
∫nn−λr(℘)Δα℘≤∫nn−λ(r(℘)−[r(℘)ζ(℘)−r(n−λ)ζ(n−λ)]ζ(℘)[1−g(℘)])Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λm(r(℘)−[r(℘)ζ(℘)−r(a+λ)ζ(m+λ)]ζ(℘)[1−g(℘)])Δα℘≤∫m+λmr(℘)Δα℘, |
where λ is obtained from
∫m+λmζ(℘)Δα℘=∫nmg(℘)Δα℘=∫nn−λζ(℘)Δα℘. |
Proof. Taking g(℘)↦ζ(℘)g(℘) and r(℘)↦r(℘)/ζ(℘) in (1.7).
Theorem 2.1. Under the same conditions of Lemma 2.3 such that k∈(m,n) and λ1, λ2 are given from
(Λ3)
∫m+λ1mζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫nn−λ2ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘, | (2.3) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘. | (2.4) |
(2.4) is reversed if rσ/ζ∈AHk2[m,n] and (2.3).
(Λ4)
∫kk−λ1ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫k+λ2kζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘, | (2.5) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)Δα℘. | (2.6) |
If rσ/ζ∈AHk2[m,n] and (2.5) satisfied, then we reverse (2.6).
(Λ5) If λ1, λ2 be the same as in (Λ3) and rσ/ζ∈AHk1[m,n] so that
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1m(ϕ(℘)ζ(℘)−[ϕ(℘)−m−λ1]ζ(℘)[1−g(℘)])Δα℘+∫nn−λ2(ϕ(℘)ζ(℘)−[ϕ(℘)−n+λ2]ζ(℘)[1−g(℘)])Δα℘, | (2.7) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1m(rσ(℘)−|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)[1−g(℘)])Δα℘+∫nn−λ2(rσ(℘)−|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)[1−g(℘)])Δα℘. | (2.8) |
If rσ/ζ∈AHk2[m,n] and (2.7) satisfied, the inequality in (2.8) is reversed.
(Λ6) If λ1, λ2 be defined as in (Λ4) and rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫kk−λ1(ϕ(℘)ζ(℘)−[ϕ(℘)−k+λ1]ζ(℘)[1−g(℘)])Δα℘=∫m+λ1m(ϕ(℘)ζ(℘)−[ϕ(℘)−k+λ2]ζ(℘)[1−g(℘)])Δα℘, | (2.9) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫kk−λ1(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)]ζ(℘)[1−g(℘)])Δα℘+∫k+λ2k(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)]ζ(℘)[1−g(℘)])Δα℘. | (2.10) |
If rσ/ζ∈AHk2[m,n] and (2.9) satisfied, we reverse (2.10).
Proof. (Λ3) Consider rσ/ζ∈AHk1[m,n], and R1(ℓ)=rσ(ℓ)−Aϕ(ℓ)ζ(ℓ), since A is given in Definition 2.1. Since R1/ζ:[m,k]∩T→R, using Lemma 2.1(Λ1), we deduce
0≤∫m+λ1mR1(℘)Δα℘−∫kmR1(℘)g(℘)Δα℘=∫m+λ1mrσ(℘)Δα℘−∫kmrσ(℘)g(℘)Δα℘−A(∫m+λ1mϕ(℘)ζ(℘)Δα℘−∫kmϕ(℘)ζ(℘)g(℘)Δα℘). | (2.11) |
As R1/ζ:[k,n]∩T→R is nondecreasing, using Lemma 2.1(Λ2), we obtain
0≥∫nkR1(℘)g(℘)Δα℘−∫nn−λ2R1(℘)Δα℘=∫nkrσ(℘)g(℘)Δα℘−∫nn−λ2rσ(℘)Δα℘−A(∫nkϕ(℘)ζ(℘)g(℘)Δα℘−∫nn−λ2ϕ(℘)ζ(℘)Δα℘). | (2.12) |
(2.11) and (2.12) imply that
∫m+λ1mrσ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘−∫nmrσ(℘)g(℘)Δα℘≥A(∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘−∫nmϕ(℘)ζ(℘)g(℘)Δα℘) |
Hence, if (2.3) is hold, then (2.4) holds. For rσ/ζ∈AHk2[m,n], we get the some steps.
(Λ4) Let rσ/ζ∈AHk1[m,n], also R1(x)=rσ(x)−Aϕ(x)ζ(x), where A as in Definition 2.1. R1/ζ:[m,k]∩T→R is nonincreasing, so from Lemma 2.1(Λ1) we obtain
0≤∫kmrσ(℘)g(℘)Δα℘−∫kk−λ1rσ(℘)Δα℘−A(∫kmϕ(℘)h(℘)g(℘)Δα℘−∫kc−λ1ϕ(℘)ζ(℘)Δα℘). | (2.13) |
Using Lemma 2.1(Λ1) we have
0≥∫k+λ2krσ(℘)Δα℘−∫nkrσ(℘)g(℘)Δα℘−A(∫k+λ2kϕ(℘)ζ(℘)Δα℘−∫nkϕ(℘)ζ(℘)g(℘)Δα℘). | (2.14) |
Thus, from (2.13), (2.14), we get
∫nmrσ(℘)g(℘)Δα℘−∫k+λ2k−λ1rσ(℘)Δα℘≥A(∫nmϕ(℘)ζ(℘)g(℘)Δα℘−∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘) |
Therefore, if ∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘ is satisfied, then (2.8) holds. Follow the same steps for rσ/ζ∈AHk2[m,n].
Using Lemma 2.3 and repeat the steps of Theorem 2.1(Λ3) and Theorem 2.1(Λ4) in the proof of (Λ5) and (Λ6) respectively.
Corollary 2.1. The inequalities (2.4), (2.6), (2.8) and (2.10) of Theorem 2.1 letting T=R takes
(i)∫nmfσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)dα℘+∫nn−λ2rσ(℘)dα℘. | (2.15) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)dα℘. | (2.16) |
(iii)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1m(rσ(℘)−[rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)]ζ(℘)[1−g(℘)])dα℘+∫nn−λ2(rσ(℘)−[rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)]ζ(℘)[1−g(℘)])dα℘. | (2.17) |
(iv)∫nmrσ(℘)g(℘)dα℘≥∫kk−λ1(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)]ζ(℘)[1−g(℘)])dα℘+∫k+λ2k(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)]ζ(℘)[1−g(℘)])dα℘. | (2.18) |
Corollary 2.2. We get [47,Theorems 8,10,21 and 22], if we put α=1 and ϕ(℘)=℘ in Corollary 2.1 [(i),(ii),(iii),(iv)] simultaneously.
Corollary 2.3. In Corollary 2.1 taking T=Z, the results (2.15)–(2.18) will be equivalent to
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)+n−1∑℘=n−λ2r(℘+1)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)℘α−1. |
(iii)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=m(r(℘+1)−[r(℘+1)ζ(℘)−r(a+λ1+1)ζ(m+λ1)]ζ(℘)[1−g(℘)])℘α−1+n−1∑℘=n−λ2(r(℘+1)−[r(℘+1)ζ(℘)−r(n−λ2+1)ζ(n−λ2)]ζ(℘)[1−g(℘)])℘α−1. |
(iv)n−1∑℘=mr(℘+1)g(℘))℘α−1≥k−1∑℘=k−λ1(r(℘+1)−[r(℘+1)ζ(℘)−r(k−λ1+1)ζ(k−λ1)]ζ(℘)[1−g(℘)]))℘α−1+k+λ2−1∑℘=k(r(℘+1)−[r(℘+1)ζ(℘)−r(k+λ2+1)ζ(k+λ2)]ζ(℘)[1−g(℘)]))℘α−1. |
Theorem 2.2. Under the assumptions in Lemma 2.1 with 0≤g(℘)≤ζ(℘) and λ1, λ2 be defined as
(Λ7)
∫m+λ1mζ(℘)Δα℘=∫kmg(℘)Δα℘, |
∫nn−λ2ζ(℘)Δα℘=∫nkg(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘, | (2.19) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)ζ(℘)Δα℘+∫nn−λ2rσ(℘)ζ(℘)Δα℘. | (2.20) |
(Λ8)
∫kk−λ1ζ(℘)Δα℘=∫kmg(℘)Δα℘, |
∫k+λ2kζ(℘)Δα℘=∫nkg(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘, | (2.21) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)ζ(℘)Δα℘. | (2.22) |
If rσ/ζ∈AHk2[m,n] and (2.19), (2.21) satisfied, we get the reverse of (2.20) and (2.22).
Proof. By using Theorem 2.1 [(Λ3),(Λ4)] and by putting g↦g/h and f↦fh, we get the proof of (Λ7) and (Λ8).
Corollary 2.4. In Theorem 2.2 [(Λ7),(Λ8)], assuming T=R, the following results obtains:
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)ζ(℘)dα℘+∫nn−λ2rσ(℘)ζ(℘)dα℘. | (2.23) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)ζ(℘)dα℘. | (2.24) |
Corollary 2.5. In Corollary 2.4 [(i),(ii)], when we put α=1 and ϕ(℘)=℘ then [47,Theorems 16 and 17] gotten.
Corollary 2.6. In (2.23) and (2.24) letting T=Z, gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)h(℘)+n−1∑℘=n−λ2r(℘+1)h(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)ζ(℘)℘α−1. |
Theorem 2.3. Using the same conditions in Lemma 2.3. Letting w:[m,n]∩T→R be integrable with 0≤g(℘)≤w(℘) ∀℘∈[m,n]∩T and
(Λ9)∫m+λ1mw(℘)ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫nn−λ2w(℘)ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)w(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)w(℘)ζ(℘)Δα℘, | (2.25) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)w(℘)Δα℘+∫nn−λ2rσ(℘)w(℘)Δα℘. | (2.26) |
(Λ10)∫kk−λ1w(℘)ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫k+λ2kw(℘)ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)w(℘)ζ(℘)Δα℘, | (2.27) |
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)w(℘)Δα℘. | (2.28) |
The inequalities in (2.26) and (2.28) are reversible if rσ/ζ∈AHc2[a,b] and (2.25), (2.27) hold.
Proof. In Theorem 2.1 [(Λ3),(Λ4)], ζ changes wq, g changes g/w and r changes rw.
Corollary 2.7. In (2.26) and (2.28). Letting T=R, we have
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)w(℘)dα℘+∫nn−λ2rσ(℘)w(℘)dα℘. | (2.29) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)w(℘)dα℘. | (2.30) |
Corollary 2.8. In Corollary 2.7 [(i),(ii)], letting α=1 and ϕ(℘)=℘ we get [47,Theorems 18 and 19].
Corollary 2.9. In (2.29) and (2.30), crossing T=Z, gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)w(℘)+n−1∑℘=n−λ2r(℘+1)w(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)w(℘)℘α−1. |
Theorem 2.4. Using the same conditions in Lemma 2.1, and Theorem 2.1 [(Λ3),(Λ4)] with ψ:[m,n]∩T→R be a integrable: 0≤ψ(℘)≤g(℘)≤1−ψ(℘).
(Λ11) If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘−∫km|ϕ(℘)−m−λ1|ζ(℘)ψ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘+∫nk|ϕ(℘)−n+λ2|ζ(℘)ψ(℘)Δα℘, | (2.31) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)Δα℘−∫km|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)ψ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘+∫nk|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)ψ(℘)Δα℘. | (2.32) |
(Λ12) If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫kk−λ1ϕ(℘)ζ(℘)Δα℘−∫km|ϕ(℘)−k+λ1|ζ(℘)ψ(℘)Δα℘+∫nk|ϕ(℘)−k−λ1|ζ(℘)ψ(℘)Δα℘, | (2.33) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)Δα℘+∫km|rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)|ζ(℘)ψ(℘)Δα℘−∫nk|rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)|ζ(℘)ψ(℘)Δα℘. | (2.34) |
If rσ/ζ∈AHk2[m,n] and (2.31) and (2.33) satisfied, we get the reverse of (2.32) and (2.34).
Proof. The same steps of Theorem 2.1 [(Λ3),(Λ4)] with Lemma 2.1, R1/ζ:[m,k]∩T→R nonincreasing, R1/ζ:[k,n]∩T→R nondecreasing.
Corollary 2.10. In Theorem 2.4 [(Λ11),(Λ12)], letting T=R we get:
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)dα℘−∫km|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)ψ(℘)dα℘+∫nn−λ2rσ(℘)dα℘+∫nk|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)ψ(℘)dα℘. | (2.35) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)dα℘+∫km|rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)|ζ(℘)ψ(℘)dα℘−∫nk|rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)|ζ(℘)ψ(℘)dα℘. | (2.36) |
Corollary 2.11. In (2.35) and (2.36), we put α=1, with ϕ(℘)=℘ we get [47,Theorems 23 and 24].
Corollary 2.12. Our results (2.35) and (2.36), by using T=Z gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)℘α−1−k−1∑℘=m|r(℘+1)ζ(℘)−r(m+λ1+1)ζ(m+λ1)|ζ(℘)ψ(℘)ˆ∇℘+n−1∑℘=n−λ2r(℘+1)℘α−1+n−1∑℘=k|r(℘+1)ζ(℘)−r(n−λ2+1)ζ(n−λ2)|ζ(℘)ψ(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)℘α−1+k−1∑℘=m|r(℘+1)ζ(℘)−r(k−λ1+1)ζ(k−λ1)|ζ(℘)ψ(℘)℘α−1−n−1∑℘=k|r(℘+1)ζ(℘)−r(k+λ2+1)ζ(k+λ2)|h(℘)ψ(℘)℘α−1. |
In this work, we explore new generalizations of the integral Steffensen inequality given in [38,39,43] by the utilization of the α-conformable derivatives and integrals, A few of these results are generalised to time scales. We also obtained the discrete and continuous case of our main results, in order to gain some fresh inequalities as specific cases.
The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167), King Saud University, Riyadh, Saudi Arabia.
The authors declare no conflict of interest.
[1] |
Plows JF, Stanley JL, Baker PN, et al. (2018) The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19: 3342. https://doi.org/10.3390/ijms19113342 ![]() |
[2] |
Szmuilowicz ED, Josefson JL, Metzger BE (2019) Gestational diabetes mellitus. Endocrinol Metab Clin North Am 48: 479-493. https://doi.org/10.1016/j.ecl.2019.05.001 ![]() |
[3] |
Mack LR, Tomich PG (2017) Gestational diabetes: diagnosis, classification, and clinical care. Obstet Gynecol Clin North Am 44: 207-217. https://doi.org/10.1016/j.ogc.2017.02.002 ![]() |
[4] |
Simmons D (2019) GDM and nutrition-answered and unanswered questions-there's more work to do!. Nutrients 11: 1940. https://doi.org/10.3390/nu11081940 ![]() |
[5] |
Kramer CK, Campbell S, Retnakaran R (2019) Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 62: 905-914. https://doi.org/10.1007/s00125-019-4840-2 ![]() |
[6] |
Mardente S, Zicari A, Santangelo C, et al. (2020) Non-coding RNA: Role in gestational diabetes pathophysiology and complications. Int J Mol Sci 21: 4020. https://doi.org/10.3390/ijms21114020 ![]() |
[7] |
Kang L, Li HY, Ou HY, et al. (2020) Role of placental fibrinogen-like protein 1 in gestational diabetes. Transl Res 218: 73-80. https://doi.org/10.1016/j.trsl.2020.01.001 ![]() |
[8] |
Yu Z, Liu J, Zhang R, et al. (2017) IL-37 and 38 signalling in gestational diabetes. J Reprod Immunol 124: 8-14. https://doi.org/10.1016/j.jri.2017.09.011 ![]() |
[9] |
Mosavat M, Omar SZ, Jamalpour S, et al. (2020) Serum glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in association with the risk of gestational diabetes: a prospective case-control study. J Diabetes Res 2020: 9072492. https://doi.org/10.1155/2020/9072492 ![]() |
[10] |
Dias S, Pheiffer C (2018) Molecular biomarkers for gestational diabetes mellitus. Int J Mol Sci 19: 2926. https://doi.org/10.3390/ijms19102926 ![]() |
[11] |
Gillet V, Ouellet A, Stepanov Y, et al. (2019) miRNA profiles in extracellular vesicles from serum early in pregnancies complicated by gestational diabetes mellitus. J Clin Endocrinol Metab 104: 5157-5169. https://doi.org/10.1210/jc.2018-02693 ![]() |
[12] |
Yoffe L, Polsky A, Gilam A, et al. (2019) Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur J Endocrinol 181: 565-577. https://doi.org/10.1530/EJE-19-0206 ![]() |
[13] |
Zhu W, Shen Y, Liu J, et al. (2020) Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus. J Cell Mol Med 24: 13899-13912. https://doi.org/10.1111/jcmm.15984 ![]() |
[14] |
Chen M, Yan J (2020) Identification of hub-methylated differentially expressed genes in patients with gestational diabetes mellitus by multi-omic WGCNA basing epigenome-wide and transcriptome-wide profiling. J Cell Biochem 121: 3173-3184. https://doi.org/10.1002/jcb.29584 ![]() |
[15] |
Li E, Luo T, Wang Y (2019) Identification of diagnostic biomarkers in patients with gestational diabetes mellitus based on transcriptome gene expression and methylation correlation analysis. Reprod Biol Endocrinol 17: 112. https://doi.org/10.1186/s12958-019-0556-x ![]() |
[16] |
Wang Y, Wang Z, Zhang H (2018) Identification of diagnostic biomarker in patients with gestational diabetes mellitus based on transcriptome-wide gene expression and pattern recognition. J Cell Biochem 120: 1503-1510. https://doi.org/10.1002/jcb.27279 ![]() |
[17] |
He L, Wang X, Jin Y, et al. (2021) Identification and validation of the miRNA-mRNA regulatory network in fetoplacental arterial endothelial cells of gestational diabetes mellitus. Bioengineered 12: 3503-3515. https://doi.org/10.1080/21655979.2021.1950279 ![]() |
[18] | Liu Y, Geng H, Duan B, et al. (2021) Identification of diagnostic CpG signatures in Patients with gestational diabetes mellitus via epigenome-wide association study integrated with machine learning. Biomed Res Int 2021: 1984690. https://doi.org/10.1155/2021/1984690 |
[19] | Pan X, Jin X, Wang J, et al. (2021) Placenta inflammation is closely associated with gestational diabetes mellitus. Am J Transl Res 13: 4068-4079. |
[20] | He Y, Bai J, Liu P, et al. (2017) miR-494 protects pancreatic β-cell function by targeting PTEN in gestational diabetes mellitus. EXCLI J 16: 1297-1307. https://doi.org/10.17179/excli2017-491 |
[21] | Liu Z, Yu X, Tong C, et al. (2019) Renal dysfunction in a mouse model of GDM is prevented by metformin through MAPKs. Mol Med Rep 19: 4491-4499. https://doi.org/10.3892/mmr.2019.10060 |
[22] |
Liu H, Liu A, Kaminga AC, et al. (2022) Chemokines in gestational diabetes mellitus. Front Immunol 13: 705852. https://doi.org/10.3389/fimmu.2022.705852 ![]() |
[23] |
Darakhshan S, Fatehi A, Hassanshahi G, et al. (2019) Serum concentration of angiogenic (CXCL1, CXCL12) and angiostasis (CXCL9, CXCL10) CXC chemokines are differentially altered in normal and gestational diabetes mellitus associated pregnancies. J Diabetes Metab Disord 18: 371-378. https://doi.org/10.1007/s40200-019-00421-2 ![]() |
[24] |
Wu G, Li R, Tong C, et al. (2019) Non-invasive prenatal testing reveals copy number variations related to pregnancy complications. Mol Cytogenet 12: 38. https://doi.org/10.1186/s13039-019-0451-3 ![]() |
[25] |
Bartoszewicz Z, Wielgos M, Wielgos M, et al. (2021) Maternal and neonatal serum expression of the vascular growth factors in hyperglycemia in pregnancy. J Matern Fetal Neonatal Med 34: 1673-1678. https://doi.org/10.1080/14767058.2019.1639666 ![]() |
[26] |
Damasceno AA, Carvalho CP, Santos EM, et al. (2014) Effects of maternal diabetes on male offspring: high cell proliferation and increased activity of MMP-2 in the ventral prostate. Cell Tissue Res 358: 257-269. https://doi.org/10.1007/s00441-014-1941-6 ![]() |
[27] |
Cai B, Du J (2021) Role of bone morphogenic protein-4 in gestational diabetes mellitus-related hypertension. Exp Ther Med 22: 762. https://doi.org/10.3892/etm.2021.10194 ![]() |
[28] | De Luccia TPB, Pendeloski KPT (2020) Unveiling the pathophysiology of gestational diabetes: Studies on local and peripheral immune cells. Scand J Immunol 91: e12860. https://doi.org/10.1111/sji.12860 |
[29] | Hara Cde C, França EL, Fagundes DL, et al. (2016) Characterization of natural killer cells and cytokines in maternal placenta and fetus of diabetic mothers. J Immunol Res 2016: 7154524. https://doi.org/10.1155/2016/7154524 |
1. | Ahmed A. El-Deeb, Clemente Cesarano, On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales, 2022, 11, 2075-1680, 336, 10.3390/axioms11070336 | |
2. | Ahmed A. El-Deeb, Dumitru Baleanu, Jan Awrejcewicz, (Δ∇)∇-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications, 2022, 14, 2073-8994, 1867, 10.3390/sym14091867 | |
3. | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim, On some dynamic inequalities of Hilbert's-type on time scales, 2023, 8, 2473-6988, 3378, 10.3934/math.2023174 | |
4. | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu, Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales, 2022, 7, 2473-6988, 14099, 10.3934/math.2022777 | |
5. | Ahmed A. El-Deeb, Dumitru Baleanu, Clemente Cesarano, Ahmed Abdeldaim, On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales, 2022, 14, 2073-8994, 1421, 10.3390/sym14071421 | |
6. | Hassan M. El-Owaidy, Ahmed A. El-Deeb, Samer D. Makharesh, Dumitru Baleanu, Clemente Cesarano, On Some Important Class of Dynamic Hilbert’s-Type Inequalities on Time Scales, 2022, 14, 2073-8994, 1395, 10.3390/sym14071395 | |
7. | Ahmed A. El-Deeb, Alaa A. El-Bary, Jan Awrejcewicz, On Some Dynamic (ΔΔ)∇- Gronwall–Bellman–Pachpatte-Type Inequalities on Time Scales and Its Applications, 2022, 14, 2073-8994, 1902, 10.3390/sym14091902 | |
8. | Asfand Fahad, Saad Ihsaan Butt, Josip Pečarić, Marjan Praljak, Generalized Taylor’s Formula and Steffensen’s Inequality, 2023, 11, 2227-7390, 3570, 10.3390/math11163570 |