
This systematic review aims to investigate recent developments in the area of arc fault detection. The rising demand for electricity and concomitant expansion of energy systems has resulted in a heightened risk of arc faults and the likelihood of related fires, presenting a matter of considerable concern. To address this challenge, this review focuses on the role of artificial intelligence (AI) in arc fault detection, with the objective of illuminating its advantages and identifying current limitations. Through a meticulous literature selection process, a total of 63 articles were included in the final analysis. The findings of this review suggest that AI plays a significant role in enhancing the accuracy and speed of detection and allowing for customization to specific types of faults in arc fault detection. Simultaneously, three major challenges were also identified, including missed and false detections, the restricted application of neural networks and the paucity of relevant data. In conclusion, AI has exhibited tremendous potential for transforming the field of arc fault detection and holds substantial promise for enhancing electrical safety.
Citation: Chunpeng Tian, Zhaoyang Xu, Lukun Wang, Yunjie Liu. Arc fault detection using artificial intelligence: Challenges and benefits[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12404-12432. doi: 10.3934/mbe.2023552
[1] | Farah Liyana Azizan, Saratha Sathasivam, Nurshazneem Roslan, Ahmad Deedat Ibrahim . Logic mining with hybridized 3-satisfiability fuzzy logic and harmony search algorithm in Hopfield neural network for Covid-19 death cases. AIMS Mathematics, 2024, 9(2): 3150-3173. doi: 10.3934/math.2024153 |
[2] | Nadiyah Hussain Alharthi, Mdi Begum Jeelani . Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382 |
[3] | Said Gounane, Jamal Bakkas, Mohamed Hanine, Gyu Sang Choi, Imran Ashraf . Generalized logistic model with time-varying parameters to analyze COVID-19 outbreak data. AIMS Mathematics, 2024, 9(7): 18589-18607. doi: 10.3934/math.2024905 |
[4] | Mohammad Hamidi, Florentin Smarandache . Valued-inverse Dombi neutrosophic graph and application. AIMS Mathematics, 2023, 8(11): 26614-26631. doi: 10.3934/math.20231361 |
[5] | Deniz UÇAR, Elçin ÇELİK . Analysis of Covid 19 disease with SIR model and Taylor matrix method. AIMS Mathematics, 2022, 7(6): 11188-11200. doi: 10.3934/math.2022626 |
[6] | Xiaoying Pan, Longkun Tang . A new model for COVID-19 in the post-pandemic era. AIMS Mathematics, 2024, 9(8): 21255-21272. doi: 10.3934/math.20241032 |
[7] | Tahir Khan, Fathalla A. Rihan, Muhammad Bilal Riaz, Mohamed Altanji, Abdullah A. Zaagan, Hijaz Ahmad . Stochastic epidemic model for the dynamics of novel coronavirus transmission. AIMS Mathematics, 2024, 9(5): 12433-12457. doi: 10.3934/math.2024608 |
[8] | M. J. Huntul . Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566 |
[9] | Ishtiaq Ali, Sami Ullah Khan . Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method. AIMS Mathematics, 2023, 8(2): 4220-4236. doi: 10.3934/math.2023210 |
[10] | CW Chukwu, S. Y. Tchoumi, Z. Chazuka, M. L. Juga, G. Obaido . Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach. AIMS Mathematics, 2024, 9(5): 10511-10535. doi: 10.3934/math.2024514 |
This systematic review aims to investigate recent developments in the area of arc fault detection. The rising demand for electricity and concomitant expansion of energy systems has resulted in a heightened risk of arc faults and the likelihood of related fires, presenting a matter of considerable concern. To address this challenge, this review focuses on the role of artificial intelligence (AI) in arc fault detection, with the objective of illuminating its advantages and identifying current limitations. Through a meticulous literature selection process, a total of 63 articles were included in the final analysis. The findings of this review suggest that AI plays a significant role in enhancing the accuracy and speed of detection and allowing for customization to specific types of faults in arc fault detection. Simultaneously, three major challenges were also identified, including missed and false detections, the restricted application of neural networks and the paucity of relevant data. In conclusion, AI has exhibited tremendous potential for transforming the field of arc fault detection and holds substantial promise for enhancing electrical safety.
In the mid-19th century, the English physician John Snow [9] refused to accept the theories of cholera infection prevailing at that time. Both the sharing of clothing and transmission through the air seemed to him to be insufficient explanations for what was happening in London, under an epidemic that was undermining the entire population of any social class. He established a famous practical example of spatial epidemiology, measuring the distances of each patient to the nearest water source.
Not only Covid-19 [11,22], but many other infectious diseases [6] are forcing us, in general, to rethink new techniques for describing and discovering spatial epidemiology, that is, "the description and analysis of geographic variations in disease with respect to demographic, environmental, behavioral, socioeconomic, genetic, and infectious risk factors" [10]. To this end, we can draw on data that reflect human behavior in terms of spatial location and movement. In particular, geolocation data [24], which includes geographical location information associated with the hosting device (e.g., mobile phone), is key for modeling the spread and evolution of infectious diseases in space and time.
Using this kind of data, we cannot only track the movement patterns of individuals, but also derive general mobility patterns for the population over time. They give insight into, e.g., "the prediction of future moves, detecting modes of transport, mining trajectory patterns and recognizing location-based activities" [13]. That is, geolocation data is key data computational spatial empidemiologic models and simulations.
The idea that a microscopic coronavirus in the city of Wuhan has caused an economic crisis in Europe reminds us of Edward Lorenz's famous speech at MIT, where he raised how the flapping of a butterfly in Brazil could cause a tornado in Texas. That is, the well-known butterfly effect and its repercussions on chaos theory.
In this work, data about spatial population movement such as geolocation data are used as key sources of insight in the way infectious diseases spread in space and time among individuals. To this end, this work proposes a mathematical foundation following an inverse methodology on the chaotic bases [18] since it raises the search of the starting attractor or "patient zero". This procedure collects the ideas of reverse engineering, as a way of establishing the unknown initial parameters of a problem whose solutions and effects are known.
In particular, tracking and analyzing population movements are key to get insights about patterns of propagation of environmentally-transmitted pathogens. For example in the case of Covid-19, "[...] changing geography of migration, the diversification of jobs taken by migrants, the rapid growth of tourism and business trips, and the longer distance taken by people for family reunion are what make the spread of COVID-19 so differently from that of SARS" [19].
To this end, we introduce a graph-based approach to model population movements in space and time, including a health status of individuals that allows us to classify risks for individuals as well as spatial locations and temporal periods.
The main methods to be used will be differential geometry of curves adapted to the symptomatology of the disease and graph theory for its representation and monitoring [16]. In its inverse reasoning, we can establish algorithms that, e.g., facilitate finding a "patient zero", classify possible originators of the contagion [1,3,12,17,20], or classify spatial locations with respect to the spread of pathogens.
As a key source of human mobility patterns, we consider mobile phone location data. The high penetration of mobile phones in the population allows a very representative survey of mobility dynamics [14].
The trajectories on which we base the monitoring of population movements are those recorded by the smartphones devices with GPS. We know that both smartphones and social networks [23] have the ability to store the paths followed by their owners, just as telephone companies can track that path followed by their customers [7,8]. This information is collected both by these devices and by the telephone companies, and can be represented geospatially by the different navigation systems. As an example we can see the path followed by an smartphone and represented in Figure 1 using Google Maps software:
Definition 2.1. For every patient P we distinguish three disjointed and sequential time intervals (as can be seen in the medical graphs in Figure 2) that we will note by:
1. H: where the person is "healthy". In the timeline it will be distinguished by a simple line and during this interval [5] (before infection) the value of the state variable will be 1.
2. C: where the person is "contagious" (incubation period). This interval or latency period will be estimated, given the patient's symptoms, based on the maximum and minimum time it could take to become "ill". It will be represented by a double line and its state variable will be 2. Currently this period is from 0 to 7 days aproximately.
3. I: where the patient is "ill". It will be represented by a triple line, together with the previous one completes the incubation time [21] and its state variable will be 3.
Definition 2.2. To establish the path we use the notation of differential geometry by using Cartesian coordinates, incorporating the state variable over time ρ(t)∈{1,2,3} remaining:
→α(t)=(x(t),y(t),ρ(t))witht∈{H∪C∪I} |
and whose graph is represented in Figure 3.
Definition 2.3. We will say that a contagion has occurred if, given two patients Pi and Pj it is fulfilled:
● the paths cross in a sufficiently close environment, i.e. there is a maximum transmission distance M such that:
foraninstanttitisfulfilledthat√(xi(t)−xj(t))2+(yi(t)−yj(t))2≤M |
To simplify the calculation, without loss of generality, we will consider that this distance M is null, or what is the same, they are in the same place. With this we have:
foraninstanttitisfulfilledthat(xi(t),yi(t))=(xj(t),yj(t)) |
● one patient's status must be "contagious" and the other patient's status must be "ill", i.e., t∈C for Pi and t∈I for Pj or vice versa. This is simplified as ρi(t)⋅ρj(t)=6 (product of a state that is "contagious" by another "ill").
We will note the contagion between both patients as Pi∼Pj.
Notation 2.4. The point of infection of each patient P will be identified with the symbol ⊗ and its coordinates will be →⊗=(x,y,n,t) where:
● x and y are the cartesian coordinates of the place of infection
● n is the variable where the number of infections produced in this place is accumulated.
● t is the variable that indicates the furthest moment in which the contagion occurred in this place.
It can be seen in the contagion graph of Figure 4 that a different situation occurs at each confluence ⊗i since in
⊗1 Both patients are healthy
⊗2 The second patient P2 has been infected by the first P1
⊗3 The first patient P1 is still "healthy" after meeting the second P2 who is ill. They may not have coincided in time at this intersection and the first one was not in a "contagious" state.
⊗4 Here both patients are already "ill"
Procedure 3.1 (Intersections analysis). Given two different paths, →αi and →αj, these can be subdivided into segments, being considered therefore as polygonal *. Hence, the analysis of intersections is restricted to the calculation of common points between two segments of different paths [16]. Let us consider the segments between points:
*A polygonal sufficiently close to the curve is considered. Its existence is assured by Schoenflies theorem for polygonal Jordan curves. This concept also appears in the formulation of the length of a parametric curve, making use of the approximations by sufficiently small segments and its use in the Riemann integral.
Sip=¯(xip(t1),yip(t1))(xip+1(t2),yip+1(t2))∈→αi |
Sjq=¯(xjq(t3),yjq(t3))(xjq+1(t4),yjq+1(t4))∈→αj |
1. We check for the existence of temporal (one-dimensional) intersection, that is, time concurrence:
(t1,t2)∩(t3,t4)≠Ø⇔t1≤t4∧t3≤t2 |
2. We check for geometric (two-dimensional) intersection:
(a) It can be done by solving the system, as long as it is well-conditioned:
{xip(t1)+λ(xip+1(t2)−xip(t1))=xjq(t3)+μ(xjq+1(t4)−xjq(t3))yip(t1)+λ(yip+1(t2)−yip(t1))=yjq(t3)+μ(yjq+1(t4)−yjq(t3)) |
If there are 0≤λ≤1 and 0≤μ≤1 that fulfill both equations or are collinear, that is:
|xip+1(t2)−xip(t1)xjq+1(t4)−xjq(t3)yip+1(t2)−yip(t1)yjq+1(t4)−yjq(t3)|=0 |
where contagion could occur if they are coincidental:
xip+1(t2)−xip(t1)yip+1(t2)−yip(t1)=xjq+1(t4)−xjq(t3)yjq+1(t4)−yjq(t3)=xip(t1)−xjq(t3)yip(t1)−yjq(t3) |
In any other situation, as there are no points in common between the segments, the minimum distances between each point and the opposite segment are calculated. Finally, it is checked whether the minimum of them is below the maximum transmission distance, so that there is a possibility of contagion (as Figure 5):
min{d1,d2,d3,d4}≤M |
In this case the execution time for n segments would be
Θ(n2) |
(b) Or using Bentley's & Ottmann algorithm [4], whose execution time for n segments with s points of intersection is
Θ(nlog(n)+slog(n)) |
Procedure 3.2 (Establishing Contagion). The big data algorithm must fulfill the following phases:
1. Analyze the intersections of patient trajectories by pairs (→αi and →αj) where contagion may occur [15]:
findtsuchthat(xi(t),yi(t))=(xj(t),yj(t))withρi(t)⋅ρj(t)=6 |
2. In each analysis, establish the possible point of contagion (if any) and increase both its contagion index and its most remote time variable in which a contagion occurred
For→⊗=(x,y,n,t),isexecutedn=n+1 |
3. Patients are classified according to the sum of the indexes of all the points of contagion contained in their trajectory. In this way, we will order the patients from the one that has caused the most infections to the one that has caused the least.
4. Patients are classified according to the lowest value of t contained in their points of contagion. With this we can establish patient zero.
With this procedure, we calculate the distribution of contagion points of known patients →⊗k, and the final number of contagions in each one of them →⊗k, which gives us an image of the city as shown in Figure 6:
Once the possible cut-off points between known patient routes have been established, we ask ourselves whether there are any undetected patients who can be deduced from the possible points of contagion. This question involves a probabilistic analysis of what the possible path of the unknown patient would look like.
Let us suppose that there is an unknown patient that has been causing an uncontrolled contagion, which we will call Px.
1. If the contagion has occurred at an intersection →⊗ij of two "contagious" patients Pi and Pj, that is, ρi(t)⋅ρj(t)=4, it could be that:
(a) one of them was already really ill: This forces a recalculation of the C and I intervals for both. In this case, if the one who was already ill had been Pi, he must have been previously infected by a stranger, and therefore there was a cross with Px. Similarly for Pj.
(b) neither of them infected the other: In this case there is a coincidence of the path of both with the one of Px at the point of infection.
In both cases we assign a new contagion in the point →⊗ij, although in the first assumption we also know that there is some point in the path of Pi or Pj in the state C where it must have crossed with that of Px in the state I. Therefore, if we call t(→⊗ij,C0i) and t(→⊗ij,C0j) the time from the crossing point to the place where Pi and Pj met Px respectively, which are C0i and C0j, then the crossing probabilities (CP) with Px of each interval are set as:
PC(x,i)=t(→⊗ij,C0i)[Ci] |
PC(x,j)=t(→⊗ij,C0j)[Cj] |
where [Ci] and [Cj] are the times at which Pi and Pj have been contagious.
2. If the infection has occurred in the C range of any patient Pi, the path of Px matches that of Pi with ρi(t)=2 and ρx(t)=3. In this case it is known that there is some point in the path of Pi in the state C where it should have crossed with that of Px in the state I. Here the probability of the whole C interval is equal to 1.
The zone graph, in these cases, is represented by Figure 7
Procedure 4.1 (Inverse graphs by big data). The big data algorithm will then be based on finding, of all existing paths of citizens that go through this area, those that achieve a higher sum of probabilities at the intersections of the N intervals of known contagion [12].
1. To do this, the route followed by each citizen's smartphone Px is analysed and its intersections with the probable paths, assuming that this citizen was permanently ill:
→αx(t)=(x(t),y(t),3) |
2. This would cause a contagion at each intersection and would add probabilities to its final value.
N∑i=1PC(x,i)conPx∼Pi |
3. Those candidates with the highest score will be studied to see if they are carriers or not. A new set of patients will be deducted from the patients prior to the existing ones. Using the procedure recursively, we will reach patient zero.
After the theoretical development of the Inverse Graph method, the general geolocation algorithm has been programmed using a Computer Algebra System (CAS) as MatLab †. The developed algorithm has a quadratic execution time, i.e. Θ(n2) and its pseudo-code ‡ would be as follows:
†Algorithms and functions programmed in MatLab version R2020b and tested on a MacBook with processor 1.3 GHz Intel Core m7
‡All that appears between braces are comments
begin Read kml compress files from Google Maps timeline for each
user i. Build matrix Mi of coordinates and its convex hull.
Analyzes only disjunct concentrations of convex hulls (Figure 8)
M=[]; for i:1:users do M=[M;Mi] end for
Times = intervals(M); {Build matrix time interval for all users}
I = sort(Times) {Sort the intervals as a function of time}
point = []; inter = size(I, 1);
for j = 2:inter
for i = 1:j-1 {Check the space-time match}
if fit(Times(i), Times(j))
point = cuts(I, Times, M); {Found intersection points}
end if
end for
end for
end
Next Table 1 and Figures below (Figures 9 and 10) show execution times (in seconds) and the number of contact points that occurred between different people, based on user graph intersections for the last twelve days, with an average of 388 vertexes at their polygonal paths for each user
Users | Time | Points |
10 | 0.29 | 837 |
20 | 0.41 | 1755 |
30 | 0.72 | 2565 |
40 | 0.94 | 3595 |
50 | 1.20 | 4954 |
100 | 3.60 | 10746 |
150 | 7.68 | 15397 |
The capacity of Big Data to solve the problem will depend on the reduction that is made on the population to be analyzed for the search of the patient zero [20].
This reduction is conditioned by the need for temporal and geometric coincidence of the routes with those of the probable intervals. Therefore, it is a priority to establish the condition of temporal coincidence, which will considerably reduce the set of candidates (Figure 11), and then analyze the intersections in the plane.
Each element aij of a dispersed matrix of contagions A=(aij) would represent with values 0 or 1 the possibility that the patient Pi has infected the patient Pj, with i,j∈{1,…,N}
With this representation the rows i, whose sum of terms is greater N∑j=1aij, will correspond to the index of the most dangerous patients. The number of infections of the most dangerous patient will be indicated by
||A||∞=maxiN∑j=1aij |
The application of Markov Chains on arrays, whose elements represent the mesh of an area, will allow us to see to which position each individual moves in a unit of time and to which state of health he can evolve [3,17].
Neural networks can provide a trained system for the pre-selection of possible candidates for asymptomatic or unknown patients [1].
We thank the support of this paper from University of Málaga and CBUA (funding for open access charge: Universidad de Málaga / CBUA) and we thank also the anonymous reviewers whose suggestions helped improve and clarify this manuscript.. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
The authors declare that there are no conflicts of interest.
[1] |
S. Lu, B. Phung, D. Zhang, A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems, Renew Sust. Energ. Rev., 89 (2018), 88–98. https://doi.org/10.1016/j.rser.2018.03.010 doi: 10.1016/j.rser.2018.03.010
![]() |
[2] |
S. Chae, J. Park, S. Oh, Series DC arc fault detection algorithm for DC microgrids using relative magnitude comparison, IEEE J. Em. Sel. Top P., 4 (2016), 1270–1278. https://doi.org/10.1109/JESTPE.2016.2592186 doi: 10.1109/JESTPE.2016.2592186
![]() |
[3] |
Y. Shi, H. Li, X. Fu, R. Luan, Y. Wang, N. Wang, et al., Self-powered difunctional sensors based on sliding contact-electrification and tribovoltaic effects for pneumatic monitoring and controlling, Nano Energy, 110 (2023), 108339. https://doi.org/10.1016/j.nanoen.2023.108339 doi: 10.1016/j.nanoen.2023.108339
![]() |
[4] | Z. Wang, S. McConnell, R. S. Balog, J. Johnson, Arc fault signal detection-fourier transformation vs. wavelet decomposition techniques using synthesized data, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), (2014), 3239–3244. https://doi.org/10.1109/PVSC.2014.6925625 |
[5] |
W. Qi, H. Su, A. Aliverti, A smartphone-based adaptive recognition and real-time monitoring system for human activities, IEEE T. Hum. Mach. Syst., 50 (2020), 414–423. https://doi.org/10.1109/THMS.2020.2984181 doi: 10.1109/THMS.2020.2984181
![]() |
[6] |
J. P. Pulkkinen, Commercial arc fault detection devices in military electromagnetic environment, IEEE Electromagn. Compat., 7 (2018), 49–52. https://doi.org/10.1109/MEMC.2018.8637290 doi: 10.1109/MEMC.2018.8637290
![]() |
[7] | J. Johnson, M. Montoya, S. McCalmont, G. Katzir, F. Fuks, J. Earle, et al., Differentiating series and parallel photovoltaic arc-faults, in 2012 38th IEEE Photovoltaic Specialists Conference, (2012), 000720–000726. https://doi.org/10.1109/PVSC.2012.6317708 |
[8] | M. Xie, X. Zhang, Y. Dong, W. Li, Arc fault detection for DC solid state power controllers, in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), (2014), 1–6. https://doi.org/10.1109/ITEC-AP.2014.6940864 |
[9] |
Q. Lu, Z. Ye, M. Su, Y. Li, Y. Sun, H. Huang, A DC series arc fault detection method using line current and supply voltage, IEEE Access, 8 (2020), 10134–10146. https://doi.org/10.1109/ACCESS.2019.2963500 doi: 10.1109/ACCESS.2019.2963500
![]() |
[10] |
W. Miao, Q. Xu, K. Lam, P. W. Pong, H. V. Poor, DC arc-fault detection based on empirical mode decomposition of arc signatures and support vector machine, IEEE Sens. J., 21 (2020), 7024–7033. https://doi.org/10.1109/JSEN.2020.3041737 doi: 10.1109/JSEN.2020.3041737
![]() |
[11] |
Q. Xiong, S. Ji, L. Zhu, L. Zhong, Y. Liu, A novel DC arc fault detection method based on electromagnetic radiation signal, IEEE T. Plasma. Sci., 45 (2017), 472–478. https://doi.org/10.1109/TPS.2017.2653817 doi: 10.1109/TPS.2017.2653817
![]() |
[12] |
H. Su, W. Qi, Y. Hu, H. R. Karimi, G. Ferrigno, E. De Momi, An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators, IEEE Trans. Industr. Inf., 18 (2020), 1864–1872. https://doi.org/10.1109/TII.2020.3036693 doi: 10.1109/TII.2020.3036693
![]() |
[13] | X. Yao, J. Wang, D. L. Schweickart, Review and recent developments in DC arc fault detection, in 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC), (2016), 467–472. https://doi.org/10.1109/IPMHVC.2016.8012887 |
[14] |
H. Qiao, J. Chen, X. Huang, A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems, IEEE Trans. Cybern., 52 (2021), 11267–11280. https://doi.org/10.1109/TCYB.2021.3071312 doi: 10.1109/TCYB.2021.3071312
![]() |
[15] |
D. E. O'Leary, Artificial intelligence and big data, IEEE Intell. Syst., 28 (2013), 96–99. https://doi.org/10.1109/MIS.2013.39 doi: 10.1109/MIS.2013.39
![]() |
[16] |
H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi, Toward teaching by demonstration for robot-assisted minimally invasive surgery, IEEE Trans. Autom. Sci. Eng., 18 (2021), 484–494. https://doi.org/10.1109/TASE.2020.3045655 doi: 10.1109/TASE.2020.3045655
![]() |
[17] |
H. Qiao, S. Zhong, Z. Chen, H. Wang, Improving performance of robots using human-inspired approaches: A survey, Sci. China Inf. Sci., 65 (2022), 1–31. https://doi.org/10.1007/s11432-022-3606-1 doi: 10.1007/s11432-022-3606-1
![]() |
[18] |
A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability and explainability of artificial intelligence in medicine, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 9 (2019), e1312. https://doi.org/10.1002/widm.1312 doi: 10.1002/widm.1312
![]() |
[19] |
L. Chen, P. Chen, Z. Lin, Artificial intelligence in education: A review, IEEE Access, 8 (2020), 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 doi: 10.1109/ACCESS.2020.2988510
![]() |
[20] | D. S. Battina, Application research of artificial intelligence in electrical automation control, Int. J. Creat. Res. Thoughts, 2015 (2015), 2320–2882. https://ssrn.com/abstract-4003560 |
[21] |
J. Chen, H. Qiao, Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system, IEEE Trans. Syst. Man Cybern. Syst., 51 (2020), 3993–4006. https://doi.org/10.1109/TSMC.2020.2966818 doi: 10.1109/TSMC.2020.2966818
![]() |
[22] |
X. Han, D. Li, L. Huang, H. Huang, J. Yang, Y. Zhang, et al., Series arc fault detection method based on category recognition and artificial neural network, Electronics, 9 (2020), 1367. https://doi.org/10.3390/electronics9091367 doi: 10.3390/electronics9091367
![]() |
[23] |
V. Le, X. Yao, C. Miller, B. H. Tsao, Series dc arc fault detection based on ensemble machine learning, IEEE Trans. Power. Electron., 35 (2020), 7826–7839. https://doi.org/10.1109/TPEL.2020.2969561 doi: 10.1109/TPEL.2020.2969561
![]() |
[24] |
Q. Yu, Y. Hu, and Y. Yang, A review of low voltage AC series arc fault detection, Low Voltage Appar., 586 (2020), 24. https://doi.org/10.16628/j.cnki.2095-8188.2020.01.004 doi: 10.16628/j.cnki.2095-8188.2020.01.004
![]() |
[25] |
A. H. Omran, D. M. Said, S. H. Abdulhussain, S. M. Hussin, N. Ahmad, Models, detection methods, and challenges in DC arc fault: A review, J. Teknol., 83 (2021), 1–16. https://doi.org/10.11113/jurnalteknologi.v83.15101 doi: 10.11113/jurnalteknologi.v83.15101
![]() |
[26] |
J. Jiang, W. Li, Z. Wen, Y. Bie, H. Schwarz, C. Zhang, Series arc fault detection based on random forest and deep neural network, IEEE Sens. J., 21 (2021), 17171–17179. https://doi.org/10.1109/JSEN.2021.3082294 doi: 10.1109/JSEN.2021.3082294
![]() |
[27] |
H. L. Dang, J. Kim, S. Kwak, S. Choi, Series DC arc fault detection using machine learning algorithms, IEEE Access, 9 (2021), 133346–133364. https://doi.org/10.1109/ACCESS.2021.3115512 doi: 10.1109/ACCESS.2021.3115512
![]() |
[28] |
D. Tranfield, D. Denyer, P. Smart, Towards a methodology for developing evidence-informed management knowledge by means of systematic review, Brit. J. Manage., 14 (2003), 207–222. https://doi.org/10.1111/1467-8551.00375 doi: 10.1111/1467-8551.00375
![]() |
[29] |
M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, et al., The prisma 2020 statement: An updated guideline for reporting systematic reviews, Syst. Rev., 10 (2021), 1–11. https://doi.org/10.1016/j.ijsu.2021.105906 doi: 10.1016/j.ijsu.2021.105906
![]() |
[30] | M. K. Alam, F. H. Khan, J. Johnson, J. Flicker, Pv arc-fault detection using spread spectrum time domain reflectometry (sstdr), in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), (2014), 3294–3300. https://doi.org/10.1109/ECCE.2014.6953848 |
[31] | M. Atharparvez, K. R. Purandare, Series arc fault detection using novel signal processing technique, in 2018 IEEE Holm Conference on Electrical Contacts, (2018), 335–339. https://doi.org/10.1109/HOLM.2018.8611761 |
[32] | S. Li, Y. Yan, Fault arc detection based on time and frequency domain analysis and radom forest, in 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), (2021), 248–252. https://doi.org/10.1109/ICCNEA53019.2021.00062 |
[33] | G. Artale, A. Cataliotti, V. Cosentino, D. Di Cara, A. Di Stefano, N. Panzavecchia, et al., Time domain symmetry parameters analysis for series arc fault detection, in 2022 IEEE 12th International Workshop on Applied Measurements for Power Systems (AMPS), (2022), 1–6. https://doi.org/10.1109/AMPS55790.2022.9978832 |
[34] | R. Jiang, G. Bao, Series arc fault detection method based on signal-type enumeration and zoom circular convolution algorithm, IEEE Trans. Ind. Electron.. https://doi.org/10.1109/TIE.2022.3222632 |
[35] |
N. Qu, J. Wang, J. Liu, An arc fault detection method based on current amplitude spectrum and sparse representation, IEEE Trans. Instrum. Meas., 68 (2018), 3785–3792. https://doi.org/10.1109/TIM.2018.2880939 doi: 10.1109/TIM.2018.2880939
![]() |
[36] |
Q. Xiong, X. Feng, A. L. Gattozzi, X. Liu, L. Zheng, L. Zhu, et al., Series arc fault detection and localization in dc distribution system, IEEE Trans. Instrum. Meas., 69 (2019), 122–134. https://doi.org/10.1109/TIM.2019.2890892 doi: 10.1109/TIM.2019.2890892
![]() |
[37] | M. K. Khafidli, E. Prasetyono, D. O. Anggriawan, A. Tjahjono, M. H. R. A. Syafii, Implementation AC series arc fault recognition using mikrokontroller based on fast fourier transform, in 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), (2018), 31–36. https://doi.org/10.1109/ELECSYM.2018.8615529 |
[38] |
G. Bao, R. Jiang, X. Gao, Novel series arc fault detector using high-frequency coupling analysis and multi-indicator algorithm, IEEE Access, 7 (2019), 92161–92170. https://doi.org/10.1109/ACCESS.2019.2927635 doi: 10.1109/ACCESS.2019.2927635
![]() |
[39] | M. H. R. A. Syafi'i, E. Prasetyono, M. K. Khafidli, D. O. Anggriawan, A. Tjahjono, Real time series DC arc fault detection based on fast fourier transform, in 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), (2018), 25–30. https://doi.org/10.1109/ELECSYM.2018.8615525 |
[40] |
J. Jiang, Z. Wen, M. Zhao, Y. Bie, C. Li, M. Tan, et al., Series arc detection and complex load recognition based on principal component analysis and support vector machine, IEEE Access, 7 (2019), 47221–47229. https://doi.org/10.1109/ACCESS.2019.2905358 doi: 10.1109/ACCESS.2019.2905358
![]() |
[41] |
L. Wang, H. Qiu, P. Yang, L. Mu, Arc fault detection algorithm based on variational mode decomposition and improved multi-scale fuzzy entropy, Energies, 14 (2021), 4137. https://doi.org/10.3390/en14144137 doi: 10.3390/en14144137
![]() |
[42] |
H. P. Park, S. Chae, Dc series arc fault detection algorithm for distributed energy resources using arc fault impedance modeling, IEEE Access, 8 (2020), 179039–179046. https://doi.org/10.1109/ACCESS.2020.3027869 doi: 10.1109/ACCESS.2020.3027869
![]() |
[43] |
S. Liu, L. Dong, X. Liao, X. Cao, X. Wang, B. Wang, Application of the variational mode decomposition-based time and time–frequency domain analysis on series dc arc fault detection of photovoltaic arrays, IEEE Access, 7 (2019), 126177–126190. https://doi.org/10.1109/ACCESS.2019.2938979 doi: 10.1109/ACCESS.2019.2938979
![]() |
[44] |
F. Guo, H. Gao, Z. Wang, J. You, A. Tang, Y. Zhang, Detection and line selection of series arc fault in multi-load circuit, IEEE Trans. Plasma Sci., 47 (2019), 5089–5098. https://doi.org/10.1109/TPS.2019.2942630 doi: 10.1109/TPS.2019.2942630
![]() |
[45] | Y. Gao, L. Wang, Y. Zhang, Z. Yin, Research on ac arc fault characteristics based on the difference between adjacent current cycle, in 2019 Prognostics and System Health Management Conference (PHM-Qingdao), (2019), 1–5. https://doi.org/10.1109/PHM-Qingdao46334.2019.8943054 |
[46] |
X. Cai, R. J. Wai, Intelligent DC arc-fault detection of solar PV power generation system via optimized vmd-based signal processing and pso–svm classifier, IEEE J. Photovolt., 12 (2022), 1058–1077. https://doi.org/10.1109/JPHOTOV.2022.3166919 doi: 10.1109/JPHOTOV.2022.3166919
![]() |
[47] |
Q. Xiong, S. Ji, X. Liu, X. Li, L. Zhu, X. Feng, et al., Electromagnetic radiation characteristics of series DC arc fault and its determining factors, IEEE Trans. Plasma Sci., 46 (2018), 4028–4036. https://doi.org/10.1109/TPS.2018.2864605 doi: 10.1109/TPS.2018.2864605
![]() |
[48] |
Y. Ke, W. Zhang, C. Suo, Y. Wang, Y. Ren, Research on low-voltage AC series arc-fault detection method based on electromagnetic radiation characteristics, Energies, 15 (2022), 1829. https://doi.org/10.3390/en15051829 doi: 10.3390/en15051829
![]() |
[49] |
S. Zhao, Y. Wang, F. Niu, C. Zhu, Y. Xu, K. Li, A series DC arc fault detection method based on steady pattern of high-frequency electromagnetic radiation, IEEE Trans. Plasma Sci., 47 (2019), 4370–4377. https://doi.org/10.1109/TPS.2019.2932747 doi: 10.1109/TPS.2019.2932747
![]() |
[50] | S. Wei, Q. Yang, Y. Qi, T. Zhou, W. Liao, J. Sun, A location method for arc fault based on electromagnetic radiation signals and tdoa, in 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), (2022), 427–431. https://doi.org/10.1109/CEEPE55110.2022.9783382 |
[51] |
L. Zhao, Y. Zhou, K. L. Chen, S. H. Rau, W. J. Lee, High-speed arcing fault detection: Using the light spectrum, IEEE Ind. Appl. Mag., 26 (2020), 29–36. https://doi.org/10.1109/MIAS.2019.2943664 doi: 10.1109/MIAS.2019.2943664
![]() |
[52] |
H. Su, W. Qi, Y. Schmirander, S. E. Ovur, S. Cai, X. Xiong, A human activity-aware shared control solution for medical human–robot interaction, Assem. Autom., 42 (2022), 388–394. https://doi.org/10.1108/AA-12-2021-0174 doi: 10.1108/AA-12-2021-0174
![]() |
[53] |
W. Qi, H. Su, A cybertwin based multimodal network for ECG patterns monitoring using deep learning, IEEE Trans. Ind. Informat., 18 (2022), 6663–6670. https://doi.org/10.1109/TII.2022.3159583 doi: 10.1109/TII.2022.3159583
![]() |
[54] |
H. Su, W. Qi, J. Chen, D. Zhang, Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint, IEEE Trans. Fuzzy. Syst., 30 (2022), 1564–1573. https://doi.org/10.1109/TFUZZ.2022.3157075 doi: 10.1109/TFUZZ.2022.3157075
![]() |
[55] |
Y. Shi, L. Li, J. Yang, Y Wang, S. Hao, Center-based transfer feature learning with classifier adaptation for surface defect recognition, Mech. Syst. Signal Process., 188 (2023), 110001. https://doi.org/10.1016/j.ymssp.2022.110001 doi: 10.1016/j.ymssp.2022.110001
![]() |
[56] | W. Qi, H. Fan, H. R. Karimi, H. Su, An adaptive reinforcement learning-based multimodal data fusion framework for human-robot confrontation gaming, Neural Network, 2023 (2023). https://doi.org/10.1016/j.neunet.2023.04.043 |
[57] | V. Le, X. Yao, Ensemble machine learning based adaptive arc fault detection for DC distribution systems, in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), (2019), 1984–1989. https://doi.org/10.1109/APEC.2019.8721922 |
[58] |
H. D. Vu, E. Calderon, P. Schweitzer, S. Weber, N. Britsch, Multi criteria series arc fault detection based on supervised feature selection, Int. J. Electr. Power Energy Syst., 113 (2019), 23–34. https://doi.org/10.1016/j.ijepes.2019.05.012 doi: 10.1016/j.ijepes.2019.05.012
![]() |
[59] |
K. Xia, H. Guo, S. He, W. Yu, J. Xu, H. Dong, Binary classification model based on machine learning algorithm for the DC serial arc detection in electric vehicle battery system, IET Power Electron., 12 (2019), 112–119. https://doi.org/10.1049/iet-pel.2018.5789 doi: 10.1049/iet-pel.2018.5789
![]() |
[60] | V. Le, X. Yao, C. Miller, T. B. Hung, Arc fault detection in DC distribution using semi-supervised ensemble machine learning, in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), (2019), 2939–2945. https://doi.org/10.1109/ECCE.2019.8913286 |
[61] | A. K. Gupta, A. Routray, V. A. Naikan, Series arc fault detection in low voltage distribution system with signal processing and machine learning approach, in IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, (2021), 1–6. https://doi.org/10.1109/IECON48115.2021.9589809 |
[62] |
S. H. Mortazavi, Z. Moravej, S. M. Shahrtash, A hybrid method for arcing faults detection in large distribution networks, Int. J. Elec. Power, 94 (2018), 141–150. https://doi.org/10.1016/j.ijepes.2017.06.036 doi: 10.1016/j.ijepes.2017.06.036
![]() |
[63] |
Z. Yin, L. Wang, Y. Zhang, Y. Gao, A novel arc fault detection method integrated random forest, improved multi-scale permutation entropy and wavelet packet transform, Electronics, 8 (2019), 396. https://doi.org/10.3390/electronics8040396 doi: 10.3390/electronics8040396
![]() |
[64] | V. Le, X. Yao, C. Miller, T. B. Hung, Series arc fault detection and localization in DC distribution based on master controller, in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), (2020), 2499–2504. https://doi.org/10.1109/ECCE44975.2020.9235651 |
[65] | V. Le, C. Miller, B. H. Tsao, X. Yao, Series arc fault identification in DC distribution based on random forest predicted probability, IEEE Trans. Emerg. Sel. Topics Power Electron.. 2022 (2022). https://doi.org/10.1109/JESTPE.2022.3228421 |
[66] | K. C. Paul, L. Schweizer, T. Zhao, C. Chen, Y. Wang, Series AC arc fault detection using decision tree-based machine learning algorithm and raw current, in 2022 IEEE Energy Conversion Congress and Exposition (ECCE), (2022), 1–8. https://doi.org/10.1109/ECCE50734.2022.9947475 |
[67] |
X. Liu, H. Huang, J. Xiang, A personalized diagnosis method to detect faults in gears using numerical simulation and extreme learning machine, Knowl. Based Syst., 195 (2020), 105653. https://doi.org/10.1016/j.knosys.2020.105653 doi: 10.1016/j.knosys.2020.105653
![]() |
[68] |
Y. Lou, A. Kumar, J. Xiang, Machinery fault diagnosis based on domain adaptation to bridge the gap between simulation and measured signals, IEEE Trans. Instrum. Meas., 71 (2022), 1–9. https://doi.org/10.1109/TIM.2022.3180416 doi: 10.1109/TIM.2022.3180416
![]() |
[69] |
Y. Gao, X. Liu, J. Xiang, FEM simulation-based generative adversarial networks to detect bearing faults, IEEE Trans. Ind. Inform., 16 (2020), 4961–4971. https://doi.org/10.1109/TII.2020.2968370 doi: 10.1109/TII.2020.2968370
![]() |
[70] |
Y. Gao, X. Liu, J. Xiang, Fault detection in gears using fault samples enlarged by a combination of numerical simulation and a generative adversarial network, IEEE/ASME Trans. Mechatron., 27 (2021), 3798–3805. https://doi.org/10.1109/TMECH.2021.3132459 doi: 10.1109/TMECH.2021.3132459
![]() |
[71] |
H. Wang, R. Yang, J. Xiang, Numerical simulation of gears for fault detection using artificial intelligence models, Measurement, 203 (2020), 4961–4971. https://doi.org/10.1016/j.measurement.2022.111898 doi: 10.1016/j.measurement.2022.111898
![]() |
[72] |
H. Su, Y. Hu, H. R. Karimi, A. Knoll, G. Ferrigno, E. De Momi, Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results, Neural Network, 131 (2020), 291–299. https://doi.org/10.1016/j.neunet.2020.07.033 doi: 10.1016/j.neunet.2020.07.033
![]() |
[73] |
W. Qi, A. Aliverti, A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity, IEEE J. Biomed. Health Inf., 24 (2019), 2199–2207. https://doi.org/10.1109/JBHI.2019.2963048 doi: 10.1109/JBHI.2019.2963048
![]() |
[74] |
J. Chen, H. Qiao, Motor-cortex-like recurrent neural network and multitask learning for the control of musculoskeletal systems, IEEE Trans. Cogn. Develop. Syst., 14 (2020), 424–436. https://doi.org/10.1109/TCDS.2020.3045574 doi: 10.1109/TCDS.2020.3045574
![]() |
[75] |
H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, E. De Momi, Deep neural network approach in robot tool dynamics identification for bilateral teleoperation, IEEE Robot. Autom. Lett., 5 (2020), 2943–2949. https://doi.org/10.1109/LRA.2020.2974445 doi: 10.1109/LRA.2020.2974445
![]() |
[76] |
J. E. Siegel, S. Pratt, Y. Sun, S. E. Sarma, Real-time deep neural networks for internet-enabled arc-fault detection, Eng. Appl. Artif. Intell., 74 (2018), 35–42. https://doi.org/10.1016/j.engappai.2018.05.009 doi: 10.1016/j.engappai.2018.05.009
![]() |
[77] |
S. Zhang, N. Qu, T. Zheng, C. Hu, Series arc fault detection based on wavelet compression reconstruction data enhancement and deep residual network, IEEE Trans. Instrum. Meas., 71 (2022), 1–9. https://doi.org/10.1109/TIM.2022.3158990 doi: 10.1109/TIM.2022.3158990
![]() |
[78] | D. D. Patil, S. Bindu, Arc fault detection in dc microgrid using deep neural network, in 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), (2021), 1–6. https://doi.org/10.1109/ICNTE51185.2021.9487585 |
[79] |
W. Qi, S. E. Ovur, Z. Li, A. Marzullo, R. Song, Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network, IEEE Robot. Autom. Lett., 6 (2021), 6039–6045. https://doi.org/10.1109/LRA.2021.3089999 doi: 10.1109/LRA.2021.3089999
![]() |
[80] |
W. Qi, N. Wang, H. Su, A. Aliverti, Dcnn based human activity recognition framework with depth vision guiding, Neurocomputing, 486 (2022), 261–271. https://doi.org/10.1016/j.neucom.2021.11.044 doi: 10.1016/j.neucom.2021.11.044
![]() |
[81] | J. Chen, Z. Chen, C. Yao, H. Qiao, Neural manifold modulated continual reinforcement learning for musculoskeletal robots, IEEE Trans. Cogn. Develop. Syst.. https://doi.org/10.1109/TCDS.2022.3231055 |
[82] |
S. Lu, T. Sirojan, B. Phung, D. Zhang, E. Ambikairajah, DA-DCGAN: An effective methodology for dc series arc fault diagnosis in photovoltaic systems, IEEE Access, 7 (2019), 45831–45840. https://doi.org/10.1109/ACCESS.2019.2909267 doi: 10.1109/ACCESS.2019.2909267
![]() |
[83] |
R. Chu, P. Schweitzer, R. Zhang, Series AC arc fault detection method based on high-frequency coupling sensor and convolution neural network, Sensors, 20 (2020), 4910. https://doi.org/10.3390/s20174910 doi: 10.3390/s20174910
![]() |
[84] |
Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, T. Zhao, Arcnet: Series ac arc fault detection based on raw current and convolutional neural network, IEEE Trans. Ind. Inf., 18 (2021), 77–86. https://doi.org/10.1109/tii.2021.3069849 doi: 10.1109/tii.2021.3069849
![]() |
[85] | Z. Qi, X. Qi, W. Gao, W. Ying, Arc-fault detection using one-dimension convolution neural network, in 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), (2022), 488–495. https://doi.org/k10.1109/WCMEIM56910.2022.10021487 |
[86] |
K. Yang, R. Chu, R. Zhang, J. Xiao, R. Tu, A novel methodology for series arc fault detection by temporal domain visualization and convolutional neural network, Sensors, 20 (2019), 162. https://doi.org/10.3390/s20010162 doi: 10.3390/s20010162
![]() |
[87] | Q. Yu, G. Huang, Y. Yang, Low voltage ac series arc fault detection method based on parallel deep convolutional neural network, in IOP Conference Series: Materials Science and Engineering, 490, (2019), 072020. https://doi.org/10.1088/1757-899X/490/7/072020 |
[88] | Q. Yu, J. Xu, Y. Yang, Series arc fault detection of complex branch based on CNN-LSTM model, in 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), 12244, (2022), 1014–1022. https://doi.org/10.1117/12.2635185 |
[89] |
N. Qu, J. Zuo, J. Chen, Z. Li, Series arc fault detection of indoor power distribution system based on lvq-nn and pso-svm, IEEE Access, 7 (2019), 184020–184028. https://doi.org/10.1109/ACCESS.2019.2960512 doi: 10.1109/ACCESS.2019.2960512
![]() |
[90] |
H. Lala, S. Karmakar, Detection and experimental validation of high impedance arc fault in distribution system using empirical mode decomposition, IEEE Syst. J., 14 (2020), 3494–3505. https://doi.org/10.1109/JSYST.2020.2969966 doi: 10.1109/JSYST.2020.2969966
![]() |
[91] |
K. Li, S. Zhao, Y. Wang, A planar location method for DC arc faults using dual radiation detection points and DANN, IEEE Trans. Instrum. Meas., 69 (2020), 5478–5487. https://doi.org/10.1109/TIM.2020.2966311 doi: 10.1109/TIM.2020.2966311
![]() |
[92] |
X. Chen, W. Gao, C. Hong, Y. Tu, A novel series arc fault detection method for photovoltaic system based on multi-input neural network, Int. J. Electr. Power Energy Syst., 140 (2022), 108018. https://doi.org/10.1016/j.ijepes.2022.108018 doi: 10.1016/j.ijepes.2022.108018
![]() |
[93] |
Y. Wang, F. Zhang, X. Zhang, S. Zhang, Series AC arc fault detection method based on hybrid time and frequency analysis and fully connected neural network, IEEE Trans. Ind. Inf., 15 (2018), 6210–6219. https://doi.org/10.1109/TII.2018.2885945 doi: 10.1109/TII.2018.2885945
![]() |
[94] |
Y. Wang, F. Zhang, S. Zhang, A new methodology for identifying arc fault by sparse representation and neural network, IEEE Trans. Instrum. Meas., 67 (2018), 2526–2537. https://doi.org/10.1109/TIM.2018.2826878 doi: 10.1109/TIM.2018.2826878
![]() |
1. | Dennis Opoku Boadu, Justice Kwame Appati, Joseph Agyapong Mensah, Exploring the Effectiveness of Graph-based Computational Models in COVID-19 Research, 2024, 5, 2662-2556, 10.1007/s43069-024-00362-4 |
Users | Time | Points |
10 | 0.29 | 837 |
20 | 0.41 | 1755 |
30 | 0.72 | 2565 |
40 | 0.94 | 3595 |
50 | 1.20 | 4954 |
100 | 3.60 | 10746 |
150 | 7.68 | 15397 |