Recently, the area devoted to mathematical epidemiology has attracted much attention. Mathematical formulations have served as models for various infectious diseases. In this regard, mathematical models have also been used to study COVID-19, a threatening disease in present time. This research work is devoted to consider a SEIR (susceptible-exposed-infectious-removed) type mathematical model for investigating COVID-19 alongside a new scenario of fractional calculus. We consider piece-wise fractional order derivatives to investigate the proposed model for qualitative and computational analysis. The results related to the qualitative analysis are studied via using the tools of fixed point approach. In addition, the computational analysis is performed due to a significance of simulation to understand the transmission dynamics of COVID-19 infection in the community. In addition, a numerical scheme based on Newton's polynomials is established to simulate the approximate solutions of the proposed model by using various fractional orders. Additionally, some real data results are also shown in comparison to the numerical results.
Citation: Nadiyah Hussain Alharthi, Mdi Begum Jeelani. Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators[J]. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382
[1] | K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417 |
[2] | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395 |
[3] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[4] | Mohsan Raza, Khalida Inayat Noor . Subclass of Bazilevič functions of complex order. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162 |
[5] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[6] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[7] | Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551 |
[8] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
[9] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[10] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
Recently, the area devoted to mathematical epidemiology has attracted much attention. Mathematical formulations have served as models for various infectious diseases. In this regard, mathematical models have also been used to study COVID-19, a threatening disease in present time. This research work is devoted to consider a SEIR (susceptible-exposed-infectious-removed) type mathematical model for investigating COVID-19 alongside a new scenario of fractional calculus. We consider piece-wise fractional order derivatives to investigate the proposed model for qualitative and computational analysis. The results related to the qualitative analysis are studied via using the tools of fixed point approach. In addition, the computational analysis is performed due to a significance of simulation to understand the transmission dynamics of COVID-19 infection in the community. In addition, a numerical scheme based on Newton's polynomials is established to simulate the approximate solutions of the proposed model by using various fractional orders. Additionally, some real data results are also shown in comparison to the numerical results.
Let A denote the class of functions f which are analytic in the open unit disk Δ={z∈C:|z|<1}, normalized by the conditions f(0)=f′(0)−1=0. So each f∈A has series representation of the form
f(z)=z+∞∑n=2anzn. | (1.1) |
For two analytic functions f and g, f is said to be subordinated to g (written as f≺g) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for z∈Δ such that f(z)=(g∘ω)(z).
A function f∈A is said to be in the class S if f is univalent in Δ. A function f∈S is in class C of normalized convex functions if f(Δ) is a convex domain. For 0≤α≤1, Mocanu [23] introduced the class Mα of functions f∈A such that f(z)f′(z)z≠0 for all z∈Δ and
ℜ((1−α)zf′(z)f(z)+α(zf′(z))′f′(z))>0(z∈Δ). | (1.2) |
Geometrically, f∈Mα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.
A function f∈S is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ ∈Δ onto a starlike arc with respect to f(ζ). A function f∈C is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ ∈Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].
In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k≥0) of k-uniformly convex functions. A function f∈A is said to be in the class k-UCV if it satisfies the condition
ℜ(1+zf″(z)f′(z))>k|zf′(z)f′(z)|(z∈Δ). | (1.3) |
In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.
In 2015, Sokół and Nunokawa [33] introduced the class MN, a function f∈MN if it satisfies the condition
ℜ(1+zf″(z)f′(z))>|zf′(z)f(z)−1|(z∈Δ). |
In [28], it is proved that if ℜ(f′)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function f∈B if it satisfies the condition ℜ(f′)>0 for z∈Δ. A natural generalization of the class B is B(δ1) (0≤δ1<1), a function f∈B(δ1) if it satisfies the condition
ℜ(f′(z))>δ1(z∈Δ;0≤δ1<1), | (1.4) |
for details associated with the class B(δ1) (see [5,6,34]).
Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.
Definition 1. Let k≥0 and 0≤α≤1. A function f∈A is said to be in the class k-Q(α) if it satisfies the condition
ℜ((zf′(z))′f′(z))>k|(1−α)f′(z)+α(zf′(z))′f′(z)−1|(z∈Δ). | (1.5) |
It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:
1. k-Q(1)=k-UCV;
2. 0-Q(α)=C.
In what follows, we give an example for the class k-Q(α).
Example 1. The function f(z)=z1−Az(A≠0) is in the class k-Q(α) with
k≤1−b2b√b(1+α)[b(1+α)+2]+4(b=|A|). | (1.6) |
The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.
To prove our main results, we need the following lemmas.
Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0≤γ1<1. If
h(z)+βzh′(z)h(z)≺1+(1−2γ1)z1−z, |
then
h(z)≺1+(1−2δ)z1−z, |
where
δ=(2γ1−β)+√(2γ1−β)2+8β4. | (2.1) |
Lemma 2. Let h be analytic in Δ and of the form
h(z)=1+∞∑n=mbnzn(bm≠0) |
with h(z)≠0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h′(z0)h(z0)=iℓρ, where
ℓ:{ℓ≥n2(c+1c)(argh(z0)=πρ2),ℓ≤−n2(c+1c)(argh(z0)=−πρ2), |
and (h(z0))1/ρ=±ic(c>0).
This result is a generalization of the Nunokawa's lemma [29].
Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t∈[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all z∈Δ. In addition, suppose that ℜ(ϝ(z,t))>0, ϝ(−r,t) is real and ℜ(1/ϝ(z,t))≥1/ϝ(−r,t) for |z|≤r<1 and t∈[0,1]. If ϝ(z)=∫10ϝ(z,t)dε(t), then ℜ(1/ϝ(z))≥1/ϝ(−r).
Lemma 4. ([22]) If −1≤D<C≤1, λ1>0 and ℜ(γ2)≥−λ1(1−C)/(1−D), then the differential equation
s(z)+zs′(z)λ1s(z)+γ2=1+Cz1+Dz(z∈Δ) |
has a univalent solution in Δ given by
s(z)={zλ1+γ2(1+Dz)λ1(C−D)/Dλ1∫z0tλ1+γ2−1(1+Dt)λ1(C−D)/Ddt−γ2λ1(D≠0),zλ1+γ2eλ1Czλ1∫z0tλ1+γ2−1eλ1Ctdt−γ2λ1(D=0). |
If r(z)=1+c1z+c2z2+⋯ satisfies the condition
r(z)+zr′(z)λ1r(z)+γ2≺1+Cz1+Dz(z∈Δ), |
then
r(z)≺s(z)≺1+Cz1+Dz, |
and s(z) is the best dominant.
Lemma 5. ([36,Chapter 14]) Let w, x and\ y≠0,−1,−2,… be complex numbers. Then, for ℜ(y)>ℜ(x)>0, one has
1. 2G1(w,x,y;z)=Γ(y)Γ(y−x)Γ(x)∫10sx−1(1−s)y−x−1(1−sz)−wds;
2. 2G1(w,x,y;z)= 2G1(x,w,y;z);
3. 2G1(w,x,y;z)=(1−z)−w2G1(w,y−x,y;zz−1).
Firstly, we derive the following result.
Theorem 1. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then f∈B(δ), where
δ=(2μ−λ)+√(2μ−λ)2+8λ4(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). | (3.1) |
Proof. Let f′=ℏ, where ℏ is analytic in Δ with ℏ(0)=1. From inequality (1.5) which takes the form
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|=k|1−α−ℏ(z)+αℏ(z)−αzℏ′(z)ℏ(z)|, |
we find that
ℜ(ℏ(z)+1+αkk(1−α)zℏ(z)ℏ(z))>k−αk−1k(1−α), |
which can be rewritten as
ℜ(ℏ(z)+λzℏ(z)ℏ(z))>μ(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
The above relationship can be written as the following Briot-Bouquet differential subordination
ℏ(z)+λzℏ′(z)ℏ(z)≺1+(1−2μ)z1−z. |
Thus, by Lemma 1, we obtain
ℏ≺1+(1−2δ)z1−z, | (3.2) |
where δ is given by (3.1). The relationship (3.2) implies that f∈B(δ). We thus complete the proof of Theorem 3.1.
Theorem 2. Let 0<α≤1, 0<β<1, c>0, k≥1, n≥m+1(m∈ N ), |ℓ|≥n2(c+1c) and
|αβℓ±(1−α)cβsinβπ2|≥1. | (3.3) |
If
f(z)=z+∞∑n=m+1anzn(am+1≠0) |
and f∈k-Q(α), then f∈B(β0), where
β0=min{β:β∈(0,1)} |
such that (3.3) holds.
Proof. By the assumption, we have
f′(z)=ℏ(z)=1+∞∑n=mcnzn(cm≠0). | (3.4) |
In view of (1.5) and (3.4), we get
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|. |
If there exists a point z0∈Δ such that
|argℏ(z)|<βπ2(|z|<|z0|;0<β<1) |
and
|argℏ(z0)|=βπ2(0<β<1), |
then from Lemma 2, we know that
z0ℏ′(z0)ℏ(z0)=iℓβ, |
where
(ℏ(z0))1/β=±ic(c>0) |
and
ℓ:{ℓ≥n2(c+1c)(argℏ(z0)=βπ2),ℓ≤−n2(c+1c)(argℏ(z0)=−βπ2). |
For the case
argℏ(z0)=βπ2, |
we get
ℜ(1+z0ℏ′(z0)ℏ(z0))=ℜ(1+iℓβ)=1. | (3.5) |
Moreover, we find from (3.3) that
k|(1−α)ℏ(z0)+α(1+z0ℏ′(z0)ℏ(z0))−1|=k|(1−α)(ℏ(z0)−1)+αz0ℏ′(z0)ℏ(z0)|=k|(1−α)[(±ic)β−1]+iαβℓ|=k√(1−α)2(cβcosβπ2−1)2+[αβℓ±(1−α)cβsinβπ2]2≥1. | (3.6) |
By virtue of (3.5) and (3.6), we have
ℜ(1+zℏ′(z0)ℏ(z0))≤k|(1−α)ℏ(z0)+α(1+z0ℏ(z0)ℏ(z0))−1|, |
which is a contradiction to the definition of k-Q(α). Since β0=min{β:β∈(0,1)} such that (3.3) holds, we can deduce that f∈B(β0).
By using the similar method as given above, we can prove the case
argℏ(z0)=−βπ2 |
is true. The proof of Theorem 2 is thus completed.
Theorem 3. If 0<β<1 and 0≤ν<1. If f∈k-Q(α), then
ℜ(f′)>[2G1(2β(1−ν),1;1β+1;12)]−1, |
or equivalently, k-Q(α)⊂B(ν0), where
ν0=[2G1(2β(1−μ),1;1β+1;12)]−1. |
Proof. For
w=2β(1−ν), x=1β, y=1β+1, |
we define
ϝ(z)=(1+Dz)w∫10tx−1(1+Dtz)−wdt=Γ(x)Γ(y) 2G1(1,w,y;zz−1). | (3.7) |
To prove k-Q(α)⊂B(ν0), it suffices to prove that
inf|z|<1{ℜ(q(z))}=q(−1), |
which need to show that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
By Lemma 3 and (3.7), it follows that
ϝ(z)=∫10ϝ(z,t)dε(t), |
where
ϝ(z,t)=1−z1−(1−t)z(0≤t≤1), |
and
dε(t)=Γ(x)Γ(w)Γ(y−w)tw−1(1−t)y−w−1dt, |
which is a positive measure on [0,1].
It is clear that ℜ(ϝ(z,t))>0 and ϝ(−r,t) is real for |z|≤r<1 and t∈[0,1]. Also
ℜ(1ϝ(z,t))=ℜ(1−(1−t)z1−z)≥1+(1−t)r1+r=1ϝ(−r,t) |
for |z|≤r<1. Therefore, by Lemma 3, we get
ℜ(1/ϝ(z))≥1/ϝ(−r). |
If we let r→1−, it follows that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
Thus, we deduce that k-Q(α)⊂B(ν0).
Theorem 4. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then
f′(z)≺s(z)=1g(z), |
where
g(z)=2G1(2λ,1,1λ+1;zz−1)(λ=1+αkk(1−α)). |
Proof. Suppose that f′=ℏ. From the proof of Theorem 1, we see that
ℏ(z)+zℏ′(z)1λℏ(z)≺1+(1−2μ)z1−z≺1+z1−z(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
If we set λ1=1λ, γ2=0, C=1 and D=−1 in Lemma 4, then
ℏ(z)≺s(z)=1g(z)=z1λ(1−z)−2λ1/λ∫z0t(1/λ)−1(1−t)−2/λdt. |
By putting t=uz, and using Lemma 5, we obtain
ℏ(z)≺s(z)=1g(z)=11λ(1−z)2λ∫10u(1/λ)−1(1−uz)−2/λdu=[2G1(2λ,1,1λ+1;zz−1)]−1, |
which is the desired result of Theorem 4.
The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.
The authors declare no conflict of interest.
[1] | World Health Organization (WHO), Naming the coronavirus disease (COVID-19) and the virus that causes it, 2020. |
[2] |
D. S. Hui, E. I Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020) 264–266. https://doi.org/10.1016/j.ijid.2020.01.009 doi: 10.1016/j.ijid.2020.01.009
![]() |
[3] |
S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et. al, Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, Int. J. Infect. Dis., 92 (2020), 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 doi: 10.1016/j.ijid.2020.01.050
![]() |
[4] |
S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. https://doi.org/10.3390/jcm9020388 doi: 10.3390/jcm9020388
![]() |
[5] |
A. Parasher, COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment, Postgrad. Med. J., 97 (2021), 312–320. https://doi.org10.1136/postgradmedj-2020-138577 doi: 10.1136/postgradmedj-2020-138577
![]() |
[6] |
W. M. El-Sadr, A. Vasan, A. El-Mohandes, Facing the new Covid-19 reality, N. Engl. J. Med., 388 (2023), 385–387. https://doi.org/10.1056/NEJMp2213920 doi: 10.1056/NEJMp2213920
![]() |
[7] | I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, 2020. MedRxiv. |
[8] |
K. Shah, R. U. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069. https://doi.org/10.1016/j.rinp.2021.104069 doi: 10.1016/j.rinp.2021.104069
![]() |
[9] |
A. J. Lotka, Contribution to the theory of periodic reactions, J. Phys. Chem., 14 (2002), 271–274. https://doi.org/10.1021/j150111a004 doi: 10.1021/j150111a004
![]() |
[10] |
N. S. Goel, S. C. Maitra, E. W. Montroll, On the Volterra and other nonlinear models of interacting populations, Rev. Mod. phys., 43 (1971), 231–276. https://doi.org/10.1103/RevModPhys.43.231 doi: 10.1103/RevModPhys.43.231
![]() |
[11] |
M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020 doi: 10.1016/j.cam.2010.05.020
![]() |
[12] |
P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
![]() |
[13] |
Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
![]() |
[14] |
I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. G. Kraemer, K. Khan, Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel, J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008 doi: 10.1093/jtm/taaa008
![]() |
[15] |
A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P van den Driessche, et al., Modelling strategies for controlling SARS out breaks, Proc. Biol. Sci., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
![]() |
[16] |
R. Kahn, I. Holmdahl, S. Reddy, J. Jernigan, M. J. Mina, R. B. Slayton, Mathematical modeling to inform vaccination strategies and testing approaches for coronavirus disease 2019 (COVID-19) in nursing homes, Clin. Infect. Dis., 74 (2022), 597–603. https://doi.org/10.1093/cid/ciab517 doi: 10.1093/cid/ciab517
![]() |
[17] |
J. Mondal, S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn., 2022 (2022), 177–202. https://doi.org/10.1007/s11071-022-07235-7 doi: 10.1007/s11071-022-07235-7
![]() |
[18] |
A. I. Abioye, O. J. Peter, H. A. Ogunseye, F. A. Oguntolu, T. A. Ayoola, A. O. Oladapo, A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics. Healthc. Anal., 4 (2023), 100210. https://doi.org/10.1016/j.health.2023.100210 doi: 10.1016/j.health.2023.100210
![]() |
[19] |
J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study, Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
![]() |
[20] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
![]() |
[21] |
F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
![]() |
[22] |
R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
![]() |
[23] | M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032. |
[24] | R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006. |
[25] |
Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 doi: 10.1115/1.3101682
![]() |
[26] | R. Gorenflo, F. Mainardi, Fractional calculus. In: Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6 |
[27] |
E. Addai, A. Adeniji, O. J. Peter, J. O Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370
![]() |
[28] |
M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf., 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825 doi: 10.1299/jsmec.42.825
![]() |
[29] |
F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6 doi: 10.2478/s13540-012-0048-6
![]() |
[30] |
Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003 doi: 10.1016/j.medengphy.2015.05.003
![]() |
[31] |
M. M. Amirian, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
![]() |
[32] |
H. Khan, J. F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 3786–3806. https://doi.org/10.1002/mma.6155 doi: 10.1002/mma.6155
![]() |
[33] |
C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466. https://doi.org/10.1016/j.conbuildmat.2012.04.028 doi: 10.1016/j.conbuildmat.2012.04.028
![]() |
[34] |
G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z
![]() |
[35] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel, 2016. arXiv: 1602.03408. |
[36] |
E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
![]() |
[37] |
E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554–564. https://doi.org/10.1515/fca-2015-0034 doi: 10.1515/fca-2015-0034
![]() |
[38] |
M. B. Jeelani, Stability and computational analysis of COVID-19 using a higher order galerkin time discretization scheme, Adv. Appl. Stat., 86 (2023), 167–206. https://doi.org/10.17654/0972361723022 doi: 10.17654/0972361723022
![]() |
[39] |
A. Al Elaiw, F. Hafeez, M. B. Jeelani, M. Awadalla, K. Abuasbeh, Existence and uniqueness results for mixed derivative involving fractional operators, AIMS Mathematics, 8 (2023), 7377–7393. https://doi.org/10.3934/math.2023371 doi: 10.3934/math.2023371
![]() |
[40] |
S. K. Kabunga, E. F. D. Goufo, V. H. Tuong. Analysis and simulation of a mathematical model of tuberculosis transmission in democratic Republic of the Congo, Adv. Differ. Equ., 2020 (2020), 642. https://doi.org/10.1186/s13662-020-03091-0 doi: 10.1186/s13662-020-03091-0
![]() |
[41] |
A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods and applications, Adv. Differ. Equ., 2020 (2020), 659. https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w
![]() |
[42] |
A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
![]() |
[43] |
M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
![]() |
[44] |
M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
![]() |
[45] |
O. Dyer, Covid-19: China stops counting cases as models predict a million or more deaths, BMJ, 380 (2023), 2. https://doi.org/10.1136/bmj.p2 doi: 10.1136/bmj.p2
![]() |
[46] |
A. Moumen, R. Shafqat, A. Alsinai, H. Boulares, M. Cancan, M. B. Jeelani, Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability, AIMS Mathematics, 8 (2023), 16094–16114. https://doi.org/10.3934/math.2023821 doi: 10.3934/math.2023821
![]() |
[47] |
A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
![]() |
[48] |
C. Y. Li, J. Yin, A pedestrian-based model for simulating COVID-19 transmission on college campus, Transportmetrica A, 19 (2023), 2005182. https://doi.org/10.1080/23249935.2021.2005182 doi: 10.1080/23249935.2021.2005182
![]() |
[49] |
M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method for a time fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020), 1020472. https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
![]() |
[50] |
F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002
![]() |
[51] | M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis B epidemic model and its solutions by nonstandard numerical schemes, In: Mathematical Modelling and Analysis of Infectious Diseases, Springer, Cham, 302 (2020), 127–153. https://doi.org/10.1007/978-3-030-49896-2_5 |
[52] |
Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7 doi: 10.1140/epjp/i2019-12786-7
![]() |
[53] |
B. Wang, L. Li, Y. Wang, An efficient nonstandard finite difference scheme for chaotic fractional-order Chen system, IEEE Access, 8 (2020), 98410–98421. https://doi.org/10.1109/ACCESS.2020.2996271 doi: 10.1109/ACCESS.2020.2996271
![]() |
[54] |
A. J. Arenas, G. González-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
![]() |
[55] |
R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, J. Sound Vib., 330 (2011), 923–936. https://doi.org/10.1016/j.jsv.2010.09.017 doi: 10.1016/j.jsv.2010.09.017
![]() |
[56] | Pakistan population (LIVE), Available from: https://www.worldometers.info/world-population/pakistan-population/. |
[57] | Pakistan COVID-19 corona tracker, Available from: https://www.coronatracker.com/country/pakistan/. |
[58] | Current information about COVID-19 in Pakistan, Available from: https://www.worldometers.info/. |
[59] |
K. Shah, T. Abdeljawad, R. Ud Din, To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate, Physica A, 604 (2022), 127915. https://doi.org/10.1016/j.physa.2022.127915 doi: 10.1016/j.physa.2022.127915
![]() |
[60] |
R. Ouncharoen, K. Shah, R. Ud Din, T. Abdeljawad, A. Ahmadian, S. Salahshour, et al., Study of integer and fractional order COVID-19 mathematical model, Fractals, 31 (2023), 2340046. https://doi.org/10.1142/S0218348X23400467 doi: 10.1142/S0218348X23400467
![]() |
1. | A Certain Class of Function Analytic and Subordinate to the Modified Sigmoid Function, 2025, 2581-8147, 639, 10.34198/ejms.15425.639647 | |
2. | Tamer M. Seoudy, Amnah E. Shammaky, Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation, 2025, 10, 2473-6988, 12745, 10.3934/math.2025574 |