Based on the data from January 2007 to December 2021, this paper selects 14 representatives from four levels of the extreme risk of financial institutions, the contagion effect between financial systems, volatility and instability of financial markets, liquidity, and credit risk systemic risk. By constructing a Savitzky-Golay-TCN deep convolutional neural network, the systemic risk indicators of China's financial market are predicted, and their accuracy and reliability are analyzed. The research found that: 1) Savitzky-Golay-TCN deep convolutional neural network has a strong generalization ability, and the prediction effect on all indices is stable. 2) Compared with the three control models (time-series convolutional network (TCN), convolutional neural network (CNN), and long short-term memory (LSTM)), the Savitzky-Golay-TCN deep convolutional neural network has excellent prediction accuracy, and its average prediction accuracy for all indices has increased. 3) Savitzky-Golay-TCN deep convolutional neural network can better monitor financial market changes and effectively predict systemic risk.
Citation: Xite Yang, Ankang Zou, Jidi Cao, Yongzeng Lai, Jilin Zhang. Systemic risk prediction based on Savitzky-Golay smoothing and temporal convolutional networks[J]. Electronic Research Archive, 2023, 31(5): 2667-2688. doi: 10.3934/era.2023135
[1] | Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang . Some recent developments on linear determinacy. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1419-1436. doi: 10.3934/mbe.2013.10.1419 |
[2] | Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291 |
[3] | Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380 |
[4] | Carlos Castillo-Chavez, Bingtuan Li . Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences and Engineering, 2008, 5(4): 713-727. doi: 10.3934/mbe.2008.5.713 |
[5] | Cheng-Hsiung Hsu, Jian-Jhong Lin, Shi-Liang Wu . Existence and stability of traveling wavefronts for discrete three species competitive-cooperative systems. Mathematical Biosciences and Engineering, 2019, 16(5): 4151-4181. doi: 10.3934/mbe.2019207 |
[6] | Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215 |
[7] | Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120 |
[8] | Nicolas Bacaër, Cheikh Sokhna . A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences and Engineering, 2005, 2(2): 227-238. doi: 10.3934/mbe.2005.2.227 |
[9] | Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou . Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences and Engineering, 2018, 15(4): 1033-1054. doi: 10.3934/mbe.2018046 |
[10] | Hui-Yu Huang, Wei-Chang Tsai . An effcient motion deblurring based on FPSF and clustering. Mathematical Biosciences and Engineering, 2019, 16(5): 4036-4052. doi: 10.3934/mbe.2019199 |
Based on the data from January 2007 to December 2021, this paper selects 14 representatives from four levels of the extreme risk of financial institutions, the contagion effect between financial systems, volatility and instability of financial markets, liquidity, and credit risk systemic risk. By constructing a Savitzky-Golay-TCN deep convolutional neural network, the systemic risk indicators of China's financial market are predicted, and their accuracy and reliability are analyzed. The research found that: 1) Savitzky-Golay-TCN deep convolutional neural network has a strong generalization ability, and the prediction effect on all indices is stable. 2) Compared with the three control models (time-series convolutional network (TCN), convolutional neural network (CNN), and long short-term memory (LSTM)), the Savitzky-Golay-TCN deep convolutional neural network has excellent prediction accuracy, and its average prediction accuracy for all indices has increased. 3) Savitzky-Golay-TCN deep convolutional neural network can better monitor financial market changes and effectively predict systemic risk.
[1] |
J. Cao, X. Chen, R. Qiu, S. Hou, Electric vehicle industry sustainable development with a stakeholder engagement system, Technol. Soc., 67 (2021), 101771. https://doi.org/10.1016/j.techsoc.2021.101771 doi: 10.1016/j.techsoc.2021.101771
![]() |
[2] |
H. Liu, Y. Wang, R. Xue, M. Linnenluecke, C. W. Cai, Green commitment and stock price crash risk, Financ. Res. Lett., 47 (2022), 102646. https://doi.org/10.1016/j.frl.2021.102646 doi: 10.1016/j.frl.2021.102646
![]() |
[3] |
X. Yang, J. Cao, Z. Liu, Y. Lai, Environmental policy uncertainty and green innovation: A TVP-VAR-SV model approach, Quant. Financ. Econ., 6 (2022), 604–621. https://doi.org/10.3934/QFE.2022026 doi: 10.3934/QFE.2022026
![]() |
[4] |
Z. Ouyang, S. Chen, Y. Lai, X. Yang, The correlations among COVID-19, the effect of public opinion, and the systemic risks of China's financial industries, Physica A, 600 (2022), 127518. https://doi.org/10.1016/j.physa.2022.127518 doi: 10.1016/j.physa.2022.127518
![]() |
[5] |
M. Billio, M. Getmansky, A. W. Lo, L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, J. Financ. Econ., 104 (2012), 535–559. https://doi.org/10.1016/j.jfineco.2011.12.010 doi: 10.1016/j.jfineco.2011.12.010
![]() |
[6] |
L. Eisenberg, T. H. Noe, Systemic risk in financial systems, Manage. Sci., 47 (2001), 236–249. http:/doi.org/10.1287/mnsc.47.2.236.9835 doi: 10.1287/mnsc.47.2.236.9835
![]() |
[7] |
A. G. Haldane, R. M. May, Systemic risk in banking ecosystems, Nature, 469 (2011), 351–355. https://doi.org/10.1038/nature09659 doi: 10.1038/nature09659
![]() |
[8] | V. V. Acharya, L. H. Pedersen, T. Philippon, M. Richardson, Measuring systemic risk, in AFA 2011 Denver Meetings Paper, 30 (2017), 2–47. http://doi.org/10.2139/ssrn.1573171 |
[9] | O. Hart, L. Zingales, A new capital regulation for large financial institutions, Am. Law Econ. Rev., 13 (2011), 453–490. |
[10] |
M. Foglia, A. Addi, G. J. Wang, E. Angelini, Bearish Vs Bullish risk network: A Eurozone financial system analysis, J. Int. Financ. Mark. Inst. Money, 77 (2022), 101522. https://doi.org/10.1016/j.intfin.2022.101522 doi: 10.1016/j.intfin.2022.101522
![]() |
[11] |
D. Bisias, M. D. Flood, A. W. Lo, S. Valavanis, A survey of systemic risk analytics, Annu. Rev. Financ. Econ., 4 (2012), 255–296. https://doi.org/10.1146/annurev-financial-110311-101754 doi: 10.1146/annurev-financial-110311-101754
![]() |
[12] |
G. J. Wang, S. Yi, C. Xie, H. E. Stanley, Multilayer information spillover networks: Measuring interconnectedness of financial institutions, Quant. Financ., 21 (2021), 1163–1185. https://doi.org/10.1080/14697688.2020.1831047 doi: 10.1080/14697688.2020.1831047
![]() |
[13] |
I. Kurt, M. Ture, A. T. Kurum, Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease, Expert Syst. Appl., 34 (2008), 366–374. https://doi.org/10.1016/j.eswa.2006.09.004 doi: 10.1016/j.eswa.2006.09.004
![]() |
[14] |
T. Mo, C. Xie, K. Li, Y. Ouyang, Z. Zeng, Transmission effect of extreme risks in China's financial sectors at major emergencies: Empirical study based on the GPD-CAViaR and TVP-SV-VAR approach, Electron. Res. Arch., 30 (2022), 4657–4673. https://doi.org/10.3934/era.2022236 doi: 10.3934/era.2022236
![]() |
[15] |
R. E. Streit, D. Borenstein, An agent-based simulation model for analyzing the governance of the Brazilian Financial System, Expert Syst. Appl., 36 (2009), 11489–11501. https://doi.org/10.1016/j.eswa.2009.03.043 doi: 10.1016/j.eswa.2009.03.043
![]() |
[16] |
H. Wang, W. Yi, Y. Liu, An innovative approach of determining the sample data size for machine learning models: a case study on health and safety management for infrastructure workers, Electron. Res. Arch., 30 (2022), 3452–3462. https://doi.org/10.3934/era.2022176 doi: 10.3934/era.2022176
![]() |
[17] |
J. A. Frankel, A. K. Rose, Currency crashes in emerging markets: An empirical treatment, J. Int. Econ., 41 (1996), 351–366. https://doi.org/10.1016/S0022-1996(96)01441-9 doi: 10.1016/S0022-1996(96)01441-9
![]() |
[18] |
J. Sachs, A. Tornell, A. Velasco, The Mexican peso crisis: Sudden death or death foretold?, J. Int. Econ., 41 (1996), 265–283. https://doi.org/10.1016/S0022-1996(96)01437-7 doi: 10.1016/S0022-1996(96)01437-7
![]() |
[19] |
G. Kaminsky, S. Lizondo, C. M. Reinhart, Leading indicators of currency crises, IMF Staff Pap., 45 (1998), 1–48, . https://doi.org/10.2307/3867328 doi: 10.2307/3867328
![]() |
[20] |
A. Alter, Y. S. Schüler, Credit spread interdependencies of European states and banks during the financial crisis, J. Bank Financ., 36 (2012), 3444–3468. https://doi.org/10.1016/j.jbankfin.2012.08.002 doi: 10.1016/j.jbankfin.2012.08.002
![]() |
[21] |
J. Yun, H. Moon, Measuring systemic risk in the Korean banking sector via dynamic conditional correlation models, Pac.-Basin Financ. J., 27 (2014), 94–114. https://doi.org/10.1016/j.pacfin.2014.02.005 doi: 10.1016/j.pacfin.2014.02.005
![]() |
[22] |
R. Deyoung, A. Gron, G. Torna, A. Winton, Risk overhang and loan portfolio decisions: Small business loan supply before and during the financial crisis, J. Financ., 70 (2015), 2451–2488. https://doi.org/10.1111/jofi.12356 doi: 10.1111/jofi.12356
![]() |
[23] |
F. J. L. Iturriaga, I. P. Sanz, Bankruptcy visualization and prediction using neural networks: A study of US commercial banks, Expert Syst. Appl., 42 (2015), 2857–2869. https://doi.org/10.1016/j.eswa.2014.11.025 doi: 10.1016/j.eswa.2014.11.025
![]() |
[24] |
J. Cao, Z. Li, J. Li, Financial time series forecasting model based on CEEMDAN and LSTM, Physica A, 519 (2019), 127–139. https://doi.org/10.1016/j.physa.2018.11.061 doi: 10.1016/j.physa.2018.11.061
![]() |
[25] |
G. Ding, L. Qin, Study on the prediction of stock price based on the associated network model of LSTM, Int. J. Mach. Learn. Cyber., 11 (2020), 1307–1317. https://doi.org/10.1007/s13042-019-01041-1 doi: 10.1007/s13042-019-01041-1
![]() |
[26] |
E. Hadavandi, H. Shavandi, A. Ghanbari, Integration of fuzzy genetic systems and artificial neural networks for stock price forecasting, Knowledge-Based Syst., 23 (2010), 800–808. https://doi.org/10.1016/j.knosys.2010.05.004 doi: 10.1016/j.knosys.2010.05.004
![]() |
[27] |
B. M. Henrique, V. A. Sobreiro, H. Kimura, Literature review: Machine learning techniques applied to financial market prediction, Expert Syst. Appl., 124 (2019), 226–251. https://doi.org/10.1016/j.eswa.2019.01.012 doi: 10.1016/j.eswa.2019.01.012
![]() |
[28] |
U. Ugurlu, I. Oksuz, O. Tas, Electricity price forecasting using recurrent neural networks, Energies, 11 (2018), 1255. https://doi.org/10.3390/en11051255 doi: 10.3390/en11051255
![]() |
[29] |
D. Xiao, C. Qin, J. Ge, P. Xia, Y. Huang, C. Liu, Self-attention-based adaptive remaining useful life prediction for IGBT with Monte Carlo dropout, Knowledge-Based Syst., 239 (2022), 107902. https://doi.org/10.1016/j.knosys.2021.107902 doi: 10.1016/j.knosys.2021.107902
![]() |
[30] |
W. Dai, Y. An, W. Long, Price change prediction of ultra high-frequency financial data based on temporal convolutional network, Procedia Comput. Sci., 199 (2022), 1177–1183. https://doi.org/10.1016/j.procs.2022.01.149 doi: 10.1016/j.procs.2022.01.149
![]() |
[31] | S. Deng, N. Zhang, W. Zhang, J. Chen, J. Z. Pan, H. Chen, Knowledge-driven stock trend prediction and explanation via a temporal convolutional network, in Companion Proceedings of The 2019 World Wide Web Conference, (2019), 678–685. https://doi.org/10.1145/3308560.3317701 |
[32] |
R. W. Schafer, What is a Savitzky-Golay filter?, IEEE Signal Process. Mag., 28 (2011), 111–117. https://doi.org/10.1109/MSP.2011.941097 doi: 10.1109/MSP.2011.941097
![]() |
[33] |
S. Giglio, B. Kelly, S. Pruitt, Systemic risk and the macroeconomy: An empirical evaluation, J. Financ. Econ., 119 (2016), 457–471. https://doi.org/10.1016/j.jfineco.2016.01.010 doi: 10.1016/j.jfineco.2016.01.010
![]() |
[34] | T. Adrian, M. K. Brunnermeier, CoVaR, Am. Econ. Rev., 106 (2016), 1705–1741. http://doi.org/10.3386/w17454 |
[35] |
L. Allen, T. G. Bali, Y. Tang, Does systemic risk in the financial sector predict future economic downturns?, Rev. Financ. Stud., 25 (2012), 3000–3036. https://doi.org/10.1093/rfs/hhs094 doi: 10.1093/rfs/hhs094
![]() |
[36] |
M. Kritzman, Y. Li, S. Page, R. Rigobon, Principal components as a measure of systemic risk, MIT Sloan Res. Pap., 37 (2010), 112–126. http://doi.org/10.2139/ssrn.1582687 doi: 10.2139/ssrn.1582687
![]() |
[37] |
J. M. Pollet, M. Wilson, Average correlation and stock market returns, J. Financ. Econ., 96 (2010), 364–380. https://doi.org/10.1016/j.jfineco.2010.02.011 doi: 10.1016/j.jfineco.2010.02.011
![]() |
[38] |
D. K. Patro, M. Qi, X. Sun, A simple indicator of systemic risk, J. Financ. Stab., 9 (2013), 105–116. https://doi.org/10.1016/j.jfs.2012.03.002 doi: 10.1016/j.jfs.2012.03.002
![]() |
[39] | L. Di Persio, O. Honchar, Artificial neural network architectures for stock price prediction: Comparisons and applications, Int. J. Circuits Syst. Signal Process., 10 (2016), 403–413. |
1. | Yingli Pan, New methods for the existence and uniqueness of traveling waves of non-monotone integro-difference equations with applications, 2020, 268, 00220396, 6319, 10.1016/j.jde.2019.11.030 | |
2. | Bingtuan Li, William F. Fagan, Kimberly I. Meyer, Success, failure, and spreading speeds for invasions on spatial gradients, 2015, 70, 0303-6812, 265, 10.1007/s00285-014-0766-y | |
3. | Jian Fang, Xiao-Qiang Zhao, Traveling Waves for Monotone Semiflows with Weak Compactness, 2014, 46, 0036-1410, 3678, 10.1137/140953939 | |
4. | Guo Lin, Ting Su, Asymptotic speeds of spread and traveling wave solutions of a second order integrodifference equation without monotonicity, 2016, 22, 1023-6198, 554, 10.1080/10236198.2015.1112383 | |
5. | Jimmy Garnier, Accelerating Solutions in Integro-Differential Equations, 2011, 43, 0036-1410, 1955, 10.1137/10080693X | |
6. | Haiyan Wang, Bingtuan Li, Carlos Castillo-Chavez, Some recent developments on linear determinacy, 2013, 10, 1551-0018, 1419, 10.3934/mbe.2013.10.1419 | |
7. | Frithjof Lutscher, 2019, Chapter 5, 978-3-030-29293-5, 53, 10.1007/978-3-030-29294-2_5 | |
8. | Jian Fang, Xiao-Qiang Zhao, Monotone wavefronts of the nonlocal Fisher–KPP equation, 2011, 24, 0951-7715, 3043, 10.1088/0951-7715/24/11/002 | |
9. | Kimberly I. Meyer, Bingtuan Li, A Spatial Model of Plants with an Age-Structured Seed Bank and Juvenile Stage, 2013, 73, 0036-1399, 1676, 10.1137/120880501 | |
10. | Yingli Pan, Ying Su, Junjie Wei, Accelerating propagation in a recursive system arising from seasonal population models with nonlocal dispersal, 2019, 267, 00220396, 150, 10.1016/j.jde.2019.01.009 | |
11. | Bingtuan Li, Multiple invasion speeds in a two-species integro-difference competition model, 2018, 76, 0303-6812, 1975, 10.1007/s00285-017-1200-z | |
12. | Fuzhen Wu, Propagation threshold in an integrodifference predator–prey system of Leslie–Gower type, 2021, 27, 1023-6198, 26, 10.1080/10236198.2020.1862809 | |
13. | Yu Jin, Mark A. Lewis, Seasonal influences on population spread and persistence in streams: spreading speeds, 2012, 65, 0303-6812, 403, 10.1007/s00285-011-0465-x | |
14. | Weiwei Ding, Xing Liang, Principal Eigenvalues of Generalized Convolution Operators on the Circle and Spreading Speeds of Noncompact Evolution Systems in Periodic Media, 2015, 47, 0036-1410, 855, 10.1137/140958141 | |
15. | Adèle Bourgeois, Victor LeBlanc, Frithjof Lutscher, Spreading Phenomena in Integrodifference Equations with Nonmonotone Growth Functions, 2018, 78, 0036-1399, 2950, 10.1137/17M1126102 | |
16. | Jian Fang, Grégory Faye, Monotone traveling waves for delayed neural field equations, 2016, 26, 0218-2025, 1919, 10.1142/S0218202516500482 | |
17. | Jian Fang, Na Li, Chenhe Xu, A nonlocal population model for the invasion of Canada goldenrod, 2022, 19, 1551-0018, 9915, 10.3934/mbe.2022462 | |
18. | Jian Fang, Yingli Pan, NonMonotonicity of Traveling Wave Profiles for a Unimodal Recursive System, 2022, 54, 0036-1410, 1669, 10.1137/21M139236X | |
19. | Yihong Du, Wenjie Ni, The Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry in R3, 2022, 5, 2640-3501, 1, 10.3934/mine.2023041 | |
20. | Bingtuan Li, Garrett Otto, Wave speed and critical patch size for integro-difference equations with a strong Allee effect, 2022, 85, 0303-6812, 10.1007/s00285-022-01814-3 | |
21. | Yihong Du, Wenjie Ni, The High Dimensional Fisher-KPP Nonlocal Diffusion Equation with Free Boundary and Radial Symmetry, Part 1, 2022, 54, 0036-1410, 3930, 10.1137/21M1451920 | |
22. | Xiongxiong Bao, Ting Li, Existence and stability of traveling waves for a competitive-cooperative recursion system, 2020, 2020, 1072-6691, 88, 10.58997/ejde.2020.88 | |
23. | Leyi Jiang, Taishan Yi, Xiao-Qiang Zhao, Propagation dynamics for a class of integro-difference equations in a shifting environment, 2024, 380, 00220396, 491, 10.1016/j.jde.2023.10.053 | |
24. | Teng-Long Cui, Wan-Tong Li, Zhi-Cheng Wang, Wen-Bing Xu, Linear and superlinear spreading speeds of monostable equations with nonlocal delayed effects, 2024, 409, 00220396, 299, 10.1016/j.jde.2024.07.018 | |
25. | Yihong Du, Wenjie Ni, The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, Part 2: Sharp estimates, 2024, 00221236, 110649, 10.1016/j.jfa.2024.110649 | |
26. | Weiwei Ding, Xiao Li, Xing Liang, Time-periodic traveling waves and propagating terraces for multistable equations with a fractional Laplacian: An abstract dynamical systems approach, 2024, 00221236, 110711, 10.1016/j.jfa.2024.110711 | |
27. | Wan-Tong Li, Ming-Zhen Xin, Xiao-Qiang Zhao, Spatio-temporal dynamics of nonlocal dispersal systems in time-space periodic habitats, 2025, 416, 00220396, 2000, 10.1016/j.jde.2024.11.001 | |
28. | Na Li, Yingli Pan, Ying Su, Sharp Rate of the Accelerating Propagation for a Recursive System, 2025, 154, 0022-2526, 10.1111/sapm.70029 | |
29. | Renhu Wang, Xuezhong Wang, Propagation dynamics for a competitive-cooperative recursion system with monostable structure, 2025, 04, 2811-0072, 10.1142/S2811007225500026 | |
30. | Teng-Long Cui, Wan-Tong Li, Wen-Bing Xu, Accelerating or not in the spatial propagation of nonlocal dispersal cooperative reducible systems, 2025, 443, 00220396, 113519, 10.1016/j.jde.2025.113519 |