Processing math: 100%
Research article Special Issues

On the variable inverse sum deg index


  • Several important topological indices studied in mathematical chemistry are expressed in the following way uvE(G)F(du,dv), where F is a two variable function that satisfies the condition F(x,y)=F(y,x), uv denotes an edge of the graph G and du is the degree of the vertex u. Among them, the variable inverse sum deg index ISDa, with F(du,dv)=1/(dau+dav), was found to have several applications. In this paper, we solve some problems posed by Vukičević [1], and we characterize graphs with maximum and minimum values of the ISDa index, for a<0, in the following sets of graphs with n vertices: graphs with fixed minimum degree, connected graphs with fixed minimum degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also, we performed a QSPR analysis to test the predictive power of this index for some physicochemical properties of polyaromatic hydrocarbons.

    Citation: Edil D. Molina, Paul Bosch, José M. Sigarreta, Eva Tourís. On the variable inverse sum deg index[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8800-8813. doi: 10.3934/mbe.2023387

    Related Papers:

    [1] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [2] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [3] Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043
    [4] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [5] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Erhan Set, M. Emin Özdemir, Sevdenur Demirbaş . Chebyshev type inequalities involving extended generalized fractional integral operators. AIMS Mathematics, 2020, 5(4): 3573-3583. doi: 10.3934/math.2020232
    [8] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [9] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [10] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
  • Several important topological indices studied in mathematical chemistry are expressed in the following way uvE(G)F(du,dv), where F is a two variable function that satisfies the condition F(x,y)=F(y,x), uv denotes an edge of the graph G and du is the degree of the vertex u. Among them, the variable inverse sum deg index ISDa, with F(du,dv)=1/(dau+dav), was found to have several applications. In this paper, we solve some problems posed by Vukičević [1], and we characterize graphs with maximum and minimum values of the ISDa index, for a<0, in the following sets of graphs with n vertices: graphs with fixed minimum degree, connected graphs with fixed minimum degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also, we performed a QSPR analysis to test the predictive power of this index for some physicochemical properties of polyaromatic hydrocarbons.



    Graph theory has become a significant and essential part of the predictive toxicology and drug discovery, as it performs a vital role in the analysis of structure-property and structure-activity relationships. That is, different properties of molecules rely on their structures and therefore, quantitative structure activity property toxicity relationships (QSAR/QSPR/QSTR) research has become visible as a productive field of research in the characterization of physico-chemical properties, biological and pharmacological activities of materials and chemical compounds. These studies have been extensively used to toxicology, pharmacokinetics, pharmacodynamics, chemometrics, and so on [1].

    Topological descriptors catch symmetry of compounds and provide the information in the numerical form about the molecular size, presence of heteroatoms, shape, multiple bonds, and branching. Topological descriptors have secured appreciable significance, due to the ease of generation and the speed with which these calculations can be performed. There are many graph-related numerical descriptors, which have confirmed their importance in theoretical chemistry and nanotechnology. Thereby, the computation of these topological descriptors is an interesting and attractive line of research. Some productive classes of topological descriptors of graphs are distance-based, counting-related, and degree-based; among these, degree-based indices have the most eye-catching position and can perform the prominent role to characterize the chemical compounds and forecast their different physicochemical properties like density, molecular weight, boiling and melting points, etc. A valuable subclass of degree-based topological descriptors are the irregularity indices that tell us about the irregularity of the graph in question. The topological descriptor TI(Γ) of the graph Γ is said to be an irregularity index if TI(Γ)0 and TI(Γ)=0, if and only if, it is regular graphics. Prior to the documentation, I cite [2] that irregularity indices were not considered to play a significant role in predicting the physicochemical properties of chemical structures. In [2], a regression analysis is performed to investigate and determine the application of various irregularity indicators to evaluate the physicochemical properties of octane isomers. They submitted that using the non-uniformity indices, the properties of octane isomers such as Accentric Factor (AcenFac), Evaporation Enthalpy (HVAP), Entropy, and Standard Evaporation Enthalpy (DHVAP) can be estimated with a correlation coefficient greater than 0.9. For the detail discussion of different types of indices and their related results, we refer the interested reader to [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].

    Throughout the article, the vertex and edge sets of a graph Γ are represented by V(Γ) and E(Γ) respectively. We denote the degree of a vertex q of a graph Γ by dΓ(q), and it is defined as the number of edges incident with q. If in a graph, all its vertices have the same degree, then it said to be a regular graph, otherwise, it is an irregular graph. Let the order and size of Γ are n and m respectively and with V(Γ)={q1,,qn}. A sequence s1,,sn, where siZ+ for all i=1,,n, is said to be a degree sequence of a graph Γ, and dΓ(ql)=sl. Let ql represents the number of vertices of degree l, where l=1,2,3,,n1. Let e=q1q2E(Γ), the imbalance of e is described as imb(e):=|dΓ(q1)dΓ(q2)|. In 1997, the idea of the irregularity of a graph Γ was given by Albertson [19] in the following way:

    irr(Γ)=eE(Γ)imb(e)

    The Zagreb indices have appreciable applications in chemistry. In 1972, Gutman et. al [20] proposed the first Zagreb index based on the degree of vertices of a graph Γ. The first and second Zagreb indices of a graph Γ can be defined in the following way:

    M1(Γ)=qV(Γ)d2Γ(q),M2(Γ)=q1q2E(Γ)dΓ(q1)dΓ(q2). (1.1)

    Inspired by the Zagreb indices, Furtula and Gutman [21] introduced the forgotten index of Γ as follows:

    F(Γ)=qV(Γ)d3Γ(q)=q1q2E(Γ)(d2Γ(q1)+d2Γ(q2)). (1.2)

    Recently, Gutman et al. [22] brought in the idea of the σ irregularity index of a graph Γ, which is defined as:

    σ(Γ)=q1q2E(Γ)(dΓ(q1)dΓ(q2))2. (1.3)

    Different properties of σ irregularity index have been discussed in [23,24]. If the size and order of Γ are m and n respectively, then the variance of Γ is defined by [25] in the following way:

    Var(Γ)=1nqV(Γ)d2Γ(q)1n2(qV(Γ)dΓ(q))2. (1.4)

    The irregularity measure discrepancy of a graph Γ was introduced in [26,27] as follows:

    Disc(Γ)=1nqV(Γ)|dΓ(q)2mn|. (1.5)

    For the comprehensive discussions about these graph descriptors, we refer the readers to [28,29,30,31,32,33].

    Definition 2.1. Subdivision graph: For a graph Γ, its subdivision graph is constructed by adding a vertex of degree 2 in each edge. Therefore, |V(S(Γ))|=n+m, |E(S(Γ))|=2m and

    dS(Γ)(q)={dΓ(q),if qV(Γ),2,if qE(Γ). (2.1)

    Definition 2.2. Line Graph: For a graph Γ, its line graph denoted by L(Γ) is the graph such that V(L(Γ))=E(Γ) and there is an edge between a pair vertices of L(Γ) if and only if the corresponding edges are incident in Γ. Clearly, |V(L(Γ))|=m and by using hand shaking-lemma one can easily see that |E(L(Γ))|=M1(Γ)2m, and for all q=q1q2E(Γ), we have

    dL(Γ)(q)=dΓ(q1)+dΓ(q2)2. (2.2)

    Definition 2.3. Semi-total point graph [34]: For a graph Γ, its semi-total point graph is represented by T1(Γ) and it is formed by inserting a new vertex to each edge of Γ and then joining it to the end vertices of the corresponding edge. Thus, |V(T1(Γ))|=n+m, |E(T1(Γ))|=|E(S(Γ))|+m=2m+m=3m and

    dT1(Γ)(q)={2dΓ(q),if qV(Γ),2,if qE(Γ). (2.3)

    Definition 2.4. Semi-total line graph [34]: For a graph Γ, its semi-total line graph is represented as T2(Γ) and it is formed by placing a new vertex at each edge of Γ, linking those new vertices by edges whose related edges are incident in Γ. We have |V(T2(Γ))|=n+m, |E(T2(Γ))|=m+M1(Γ)2 and

    dT2(Γ)(q)={dΓ(q),if qV(Γ),dL(Γ)(q)+2=dΓ(q1)+dΓ(q2)+2,if q=q1q2E(Γ)q1,q2V(Γ). (2.4)

    Definition 2.5. Total Graph: The union of semi-total point graph and semi-total line graph is called total graph of a graph Γ. It is denoted by T(Γ). Also, |V(T(Γ))|=n+m, |E(T(Γ))|=m+|E(S(Γ))|+|E(L(Γ))|=2m+M1(Γ)2 and

    dT(Γ)(q)={2dΓ(q),if qV(Γ),dL(Γ)(q)+2=dΓ(q1)+dΓ(q2)+2,if q=q1q2E(Γ)q1,q2V(Γ). (2.5)

    Definition 2.6. Paraline Graph: This graph PL(Γ) is the line graph of subdivision graph represented by PL(Γ)=L(S(Γ)). Also |V(PL(Γ))|=|E(S(Γ))|=2m and |E(PL(Γ))|=M1(S(Γ))22m, where M1(S(Γ))=M1(Γ)+4m, therefore |E(PL(Γ))|=M1(Γ)2.

    Definition 2.7. Double Graph: Let Γ be a graph with V(Γ)={q1,q2,,qn}, and the vertex set of double graph D[Γ] are given by the two sets Γ1={x1,x2,,xn} and Γ2={y1,y2,,yn}. For qiV(Γ), there are two vertices xi and yi in V(D[Γ]). The double graph D[Γ] consists of the original edge set of every copy of Γ, and for qiqjE(Γ), two more edges xiyj and xjyi are added.

    Definition 2.8. Strong double Graph: Let Γ be a graph with V(Γ)={q1,q2,,qn}, and the set V(SD[Γ]) is converted into Γ1={x1,x2,,xn} and Γ2={y1,y2,,yn} sets. For each qiV(Γ), there are xi and yi type vertices in V(SD[Γ]). The strong double graph SD[Γ] consists of the original edge set of every copy of Γ, and for qiqjE(Γ), more edges xiyj, xjyi and xiyi are added.

    Definition 2.9. Extended double cover: Let Γ be a graph with V(Γ)={q1,q2,,qn}. The extended double cover of Γ, represented by Γ is the bipartite graph with bipartition (Γ1,Γ2) where Γ1={x1,x2,,xn} and Γ2={y1,y2,,yn} such that xi and yj are linked if and only if either qi and qj are linked in Γ or i=j.

    The different derived graphs of a graph Γ=C6 are illustrated in Figure 1.

    Figure 1.  The derived graphs.

    In this section, we present our main results. First of all, we deduce the results related to the variance of derived graphs.

    Theorem 3.1. The variance of the subdivision graph S(Γ) of Γ is

    Var(S(Γ))=M1(Γ)+4mn+m16m2(n+m)2.

    Proof. By using Eq 2.1 in formula (1.4), we get

    Var(S(Γ))=1n+mqV(S(Γ))d2S(Γ)(q)1(n+m)2(qV(S(Γ))dS(Γ)(q))2=1n+m(qV(Γ)d2Γ(q)+qE(Γ)(2)2)1(n+m)2(qV(Γ)dΓ(q)+qE(Γ)(2))2=M1(Γ)+4mn+m(2m+2m)2(n+m)2=M1(Γ)+4mn+m16m2(n+m)2.

    This finishes the proof.

    Theorem 3.2. The variance of L(Γ) of Γ is

    Var(L(Γ))=F(Γ)+2M2(Γ)4M1(Γ)+4mm(M1(Γ)2m)2m2.

    Proof. By using Eq 2.2 in formula (1.4), we obtain

    Var(L(Γ))=1mqV(L(Γ))d2L(Γ)(q)1m2(qV(L(Γ))dL(Γ)(q))2=1mq=q1q2E(Γ)(dΓ(q1)+dΓ(q2)2)21m2(q=q1q2E(Γ)(dΓ(q1)+dΓ(q2)2))2=1mq=q1q2E(Γ)((d2Γ(q1)+d2Γ(q2))+2dΓ(q1)dΓ(q2)+44(dΓ(q1)+dΓ(q2)))1m2(q=q1q2E(Γ)((dΓ(q1)+dΓ(q2))2))2=F(Γ)+2M2(Γ)4M1(Γ)+4mm(M1(Γ)2m)2m2.

    This accomplishes the proof.

    Theorem 3.3. The variance of the semi-total point graph T1(Γ) of Γ is given by

    Var(T1(Γ))=4M1(Γ)+4mn+m36m2(n+m)2.

    Proof. By using Eq 2.3 in formula (1.4), we have

    Var(T1(Γ))=1n+mqV(T1(Γ))d2T1(Γ)(q)1(n+m)2(qV(T1(Γ))dT1(Γ)(q))2=1n+m(qV(Γ)(2dΓ(q))2+qE(Γ)(2)2)1(n+m)2(qV(Γ)2dΓ(q)+qE(Γ)(2))2=4M1(Γ)+4mn+m(4m+2m)2(n+m)2=4M1(Γ)+4mn+m36m2(n+m)2.

    This completes the proof.

    Theorem 3.4. The variance of the semi-total line graph T2(Γ) of Γ is

    Var(T2(Γ))=M1(Γ)+F(Γ)+2M2(Γ)n+m(2m+M1(Γ))2(n+m)2.

    Proof. By using Eq 2.4 in formula (1.4), we get

    Var(T2(Γ))=1n+mqV(T2(Γ))d2T2(Γ)(q)1(n+m)2(qV(T2(Γ))dT2(Γ)(q))2=1n+m(qV(Γ)d2Γ(q)+q=q1q2E(Γ)(dΓ(q1)+dΓ(q2))2)1(n+m)2(qV(Γ)dΓ(q)+qE(Γ)(dΓ(q1)+dΓ(q2)))2=1n+m(qV(Γ)d2Γ(q)+q=q1q2E(Γ)(d2Γ(q1)+d2Γ(q2)+2dΓ(q1)dΓ(q2)))1(n+m)2(qV(Γ)dΓ(q)+qE(Γ)(dΓ(q1)+dΓ(q2)))2=M1(Γ)+F(Γ)+2M2(Γ)n+m(2m+M1(Γ))2(n+m)2.

    Thus we obtain the required result.

    Theorem 3.5. The variance of the total graph T(Γ) of Γ is

    Var(T(Γ))=4M1(Γ)+F(Γ)+2M2(Γ)n+m(4m+M1(Γ))2(n+m)2.

    Proof. By using Eq 2.5 in formula (1.4), we have

    Var(T(Γ))=1n+mqV(T(Γ))d2T(Γ)(q)1(n+m)2(qV(T(Γ))dT(Γ)(q))2=1n+m(qV(Γ)(2dΓ(q))2+q=q1q2E(Γ)(dΓ(q1)+dΓ(q2))2)1(n+m)2(qV(Γ)2dΓ(q)+qE(Γ)(dΓ(q1)+dΓ(q2)))2=1n+m(qV(Γ)4d2Γ(q)+q=q1q2E(Γ)(d2Γ(q1)+d2Γ(q2)+2dΓ(q1)dΓ(q2)))1(n+m)2(qV(Γ)2dΓ(q)+qE(Γ)(dΓ(q1)+dΓ(q2)))2=4M1(Γ)+F(Γ)+2M2(Γ)n+m(4m+M1(Γ))2(n+m)2.

    This finishes the proof.

    Theorem 3.6. The variance of the paraline graph PL(Γ)=L(S(Γ)) of Γ is given by

    Var(PL(Γ))=2mF(Γ)(M1(Γ))24m2.

    Proof. From Theorem 3.2 and |V(PL(Γ))|=|V(L(S(Γ)))|=2m, we get

    Var(PL(Γ))=Var(L(S(Γ)))=F(S(Γ))+2M2(S(Γ))4M1(S(Γ))+4|E(S(Γ))|2m(M1(S(Γ))2|E(S(Γ))|)2(2m)2.

    Since F(S(Γ))=F(Γ)+8m, M2(S(Γ))=2M1(Γ), M1(S(Γ))=M1(Γ)+4m, and |E(S(Γ))|=2m. Therefore

    Var(PL(Γ))=F(Γ)+8m+4M1(Γ)4M1(Γ)16m+8m2m(M1(Γ)+4m4m)2(2m)2=F(Γ)2m(M1(Γ))24m2.

    This completes the proof.

    Theorem 3.7. The variance of the double graph D[Γ] of Γ is

    Var(D[Γ])=4(nM1(Γ)4m2)n2.

    Proof. By using dD[Γ](q)=2dΓ(q) in formula (1.4), we get

    Var(D[Γ])=12nqV(D[Γ])d2D[Γ](q)1(2n)2(qV(D[Γ])dD[Γ](q))2=12n(2qV(Γ)(2dΓ(q))2)14n2(2qV(Γ)(2dΓ(q)))2=12n(8qV(Γ)d2Γ(q))14n2(4(2m))2=8M1(Γ)2n64m24n2=4(nM1(Γ)4m2)n2.

    This accomplishes the proof.

    Theorem 3.8. The variance of the strong double graph SD[Γ] of Γ is

    Var(SD[Γ])=4nM1(Γ)16m2n2.

    Proof. By using dSD[Γ](q)=2dΓ(q)+1 in formula (1.4), we have

    Var(SD[Γ])=12nqV(SD[Γ])d2SD[Γ](q)1(2n)2(qV(SD[Γ])dSD[Γ](q))2=12n(2qV(Γ)(2dΓ(q)+1)2)14n2(2qV(Γ)(2dΓ(q)+1))2=1n(qV(Γ)(4d2Γ(q)+4dΓ(q)+1))1n2(qV(Γ)(2dΓ(q)+1))2=1n(4M1(Γ)+8m+n)1n2(4m+n)2=4nM1(Γ)+8mn+116m2n218mn=4nM1(Γ)16m2n2.

    Thus we have the desired result.

    Theorem 3.9. The variance of extended double cover of Γ of Γ is

    Var(Γ)=1nM1(Γ)4m2n2.

    Proof. By using dD[Γ](q)=dΓ(q)+1 in formula (1.4), we get

    Var(Γ)=12nqV(Γ)d2Γ(q)1(2n)2(qV(Γ)dΓ(q))2=12n(2qV(Γ)(dΓ(q)+1)2)14n2(2qV(Γ)(dΓ(q)+1))2=1n(qV(Γ)(d2Γ(q)+2dΓ(q)+1))1n2(qV(Γ)(dΓ(q)+1))2=1n(M1(Γ)+4m+n)1n2(2m+n)2=1nM1(Γ)+4mn+14m2n214mn=1nM1(Γ)4m2n2.

    This finishes the proof.

    In this part, we present the results related to the σ index of the derived graphs.

    Theorem 3.10. The σ index of the subdivision graph S(Γ) of Γ is

    σ(S(Γ))=F(Γ)4M1(Γ)+8m.

    Proof. By using Eq 2.1 in formula (1.3), σ index can be computed in the following manner:

    σ(S(Γ))=q1q2E(S(Γ))(dS(Γ)(q1)dS(Γ)(q2))2=q1q2E(S(Γ)),q1V(Γ),q2E(Γ)(dΓ(q1)2)2=qV(Γ)dΓ(q)(d2Γ(q)+44dΓ(q))=F(Γ)+8m4M1(Γ).

    This accomplishes the proof.

    Theorem 3.11. The σ index of the semi-total point graph T1(Γ) of Γ is

    σ(T1(Γ))=4σ(Γ)+4F(Γ)8M1(Γ)+8m.

    Proof. Using Eq 2.2 in formula (1.3), we get

    σ(T1(Γ))=q1q2E(T1(Γ))(dT1(Γ)(q1)dT1(Γ)(q2))2=q1q2E(T1(Γ)),q1,q2V(Γ)(2dΓ(q1)2dΓ(q2))2+q1q2E(T1(Γ)),q1V(Γ),q2E(Γ)(2dΓ(q1)2)2=4q1q2E(Γ),q1,q2V(Γ)(dΓ(q1)dΓ(q2))2+4q1V(Γ),q2E(Γ)(d2Γ(q1)+12dΓ(q2))2=4σ(Γ)+q1V(Γ)dΓ(q1)(d2Γ(q1)+12dΓ(q1))=4σ(Γ)+4F(Γ)8M1(Γ)+8m.

    This completes the proof.

    Theorem 3.12. The σ index of the semi-total line graph T2(Γ) of Γ is

    σ(T2(Γ))=σ(L(Γ))+F(Γ).

    Proof. By using Eq 2.3 in formula (1.3), σ index can be computed in the following manner:

    σ(T2(Γ))=q1q2E(T2(Γ))(dT2(Γ)(q1)dT2(Γ)(q2))2=q1q2E(T2(Γ)),q1,q2E(Γ)(dL(Γ)(q1)+2dL(Γ)(q1)2)2+q1q2E(T2(Γ)),q1V(Γ),q2=q1q3E(Γ)(dΓ(q1)dΓ(q1)dΓ(q3))2=q1q2E(L(Γ))(dL(Γ)(q1)dL(Γ)(q2))2+q3V(Γ)dΓ(q3)dΓ(q3)=σ(L(Γ))+F(Γ).

    Theorem 3.13. The σ index of the total graph T(Γ) of Γ is

    σ(T(Γ))=6σ(Γ)+σ(L(Γ)).

    Proof. By using Eq 2.4 in formula (1.3), σ index can be computed in the following manner:

    σ(T(Γ))=q1q2E(T(Γ))(dT(Γ)(q1)dT(Γ)(q2))2=q1q2E(T(Γ)),q1,q2V(Γ)(2dΓ(q1)2dΓ(q2))2+q1q2E(T(Γ)),q1,q2E(Γ)(dL(Γ)(q1)+2dL(Γ)(q2)2)2+q1q2E(T(Γ)),q1V(Γ),q2=q1q3E(Γ)(2dΓ(q1)dΓ(q1)dΓ(q3))2=4q1q2E(Γ),q1,q2V(Γ)(dΓ(q1)dΓ(q2))2+q1q2E(T(Γ)),q1,q2E(Γ)(dL(Γ)(q1)dL(Γ)(q2))2+4q1V(Γ),q2=q1q3E(Γ)(dΓ(q1)dΓ(q3))2=6σ(Γ)+σ(L(Γ)).

    Theorem 3.14. The σ index of the double graph D[Γ] of Γ is

    σ(D[Γ])=16σ(Γ).

    Proof. By the definition of double graph, it is easy to follows that dD[Γ](xi)=dD[Γ](yi)=2dΓ(qi), where qiV(Γ) and xi,yiV(D[Γ]) are the corresponding clone vertices of qi. Therefore, the σ index of D[Γ] is

    σ(D[Γ])=q1q2E(D[Γ])(dD[Γ](q1)dD[Γ](q2))2=xixjE(D[Γ])(dD[Γ](xi)dD[Γ](xj))2+yiyjE(D[Γ])(dD[Γ](yi)dD[Γ](yj))2+xiyjE(D[Γ])(dD[Γ](xi)dD[Γ](yj))2+xjyiE(D[Γ])(dD[Γ](xj)dD[Γ](yi))2=4qiqjE(Γ)(2dΓ(qi)2dΓ(qj))2=16qiqjE(Γ)(dΓ(qi)dΓ(qj))2=16σ(Γ).

    Theorem 3.15. The σ index of the strong double graph SD[Γ] of Γ is

    σ(SD[Γ])=16σ(Γ).

    Proof. By the definition of strong double graph, it is easy to see that dSD[Γ](xi)=dSD[Γ](yi)=2dΓ(qi)+1, where qiV(Γ) and xi,yiV(SD[Γ]) are the corresponding clone vertices of qi. Therefore, the σ index of SD[Γ] is

    σ(SD[Γ])=q1q2E(SD[Γ])(dSD[Γ](q1)dSD[Γ](q2))2=xixjE(SD[Γ])(dSD[Γ](xi)dSD[Γ](xj))2+yiyjE(SD[Γ])(dSD[Γ](yi)dSD[Γ](yj))2+xiyjE(SD[Γ])(dSD[Γ](xi)dSD[Γ](yj))2+xjyiE(SD[Γ])(dSD[Γ](xj)dSD[Γ](yi))2+ni=1(dSD[Γ](xi)dSD[Γ](yi))2=4qiqjE(Γ)(2dΓ(qi)+12dΓ(qj)1)2=16qiqjE(Γ)(dΓ(qi)dΓ(qj))2=16σ(Γ).

    Theorem 3.16. The σ index of the extended double cover graph Γ of Γ is

    σ(Γ)=2σ(Γ).

    Proof. By the definition of extended double cover graph, it is easy to observe that dΓ(xi)=dΓ(yi)=dΓ(qi)+1, where qiV(Γ) and xi,yiV(Γ) are the related clone vertices of qi. Therefore, the σ index of Γ is

    σ(Γ)=q1q2E(Γ)(dΓ(q1)dΓ(q2))2=xiyjE(Γ)(dΓ(xi)dΓ(yj))2+xjyiE(Γ)(dΓ(xj)dΓ(yi))2+ni=1(dΓ(xi)dΓ(yi))2=2qiqjE(Γ)(dΓ(qi)+1dΓ(qj)1)2=2qiqjE(Γ)(dΓ(qi)dΓ(qj))2=2σ(Γ).

    Finally, we give the results related to the discrepancy of derived graphs.

    Theorem 3.17. The discrepancy of subdivision graph S(Γ) of Γ is given by

    2(n+m)2(m(m+n)+2m|nm|)Disc(S(Γ))2(n+m)2(m(m+3n)+2m|nm|).

    Proof. By using Eq 2.1 in formula (1.5), we get

    Disc(S(Γ))=1n+mqV(S(Γ))|dS(Γ)(q)2(2m)n+m|=1n+m(qV(Γ)|dΓ(q)4mn+m|+qE(Γ)|24mn+m|).

    Since |a||b||ab||a|+|b|. Thus we have

    Disc(S(Γ))1n+m(qV(Γ)|dΓ(q)|qV(Γ)|4mn+m|+m|2n+2m4m|n+m)=1n+m(2m4mnn+m)+4m|nm|(n+m)2=1n+m(2m(n+m2n)n+m)+4m|nm|(n+m)2=2(n+m)2(m(m+n)+2m|nm|).

    Similarly

    Disc(S(Γ))1n+m(qV(Γ)|dΓ(q)|+qV(Γ)|4mn+m|+m|2n+2m4m|n+m)=1n+m(2m+4mnn+m)+4m|nm|(n+m)2=1n+m(2m(n+m+2n)n+m)+4m|nm|(n+m)2=2(n+m)2(m(m+3n)+2m|nm|).

    This accomplishes the proof.

    Theorem 3.18. The discrepancy of line graph L(Γ) of Γ is

    0Disc(L(Γ))2mM1(Γ).

    Proof. By using Eq 2.2 in formula (1.5), we get

    Disc(L(Γ))=1mqV(L(Γ))|dL(Γ)(q)2(1/2M1(Γ)m)m|=1mq=xyE(Γ)|dΓ(x)+dΓ(y)2M1(Γ)2mm|=1mq=xyE(Γ)|dΓ(x)+dΓ(y)M1(Γ)m|.

    Since |a||b||ab||a|+|b|. Thus we have

    Disc(L(Γ))1m(q=xyE(Γ)|dΓ(x)+dΓ(y)|q=xyE(Γ)|M1(Γ)m|)=1m(M1(Γ)mM1(Γ)m)=0.

    Similarly

    Disc(L(Γ))1m(q=xyE(Γ)|dΓ(x)+dΓ(y)|+q=xyE(Γ)|M1(Γ)m|)=1m(M1(Γ)+mM1(Γ)m)=2mM1(Γ).

    This finishes the proof.

    Theorem 3.19. The discrepancy of semi-total point graph T1(Γ) of Γ is

    2m(n+m)2(2mn+|n2m|)Disc(T1(Γ))2m(n+m)2(2m+5n+|n2m|).

    Proof. By using Eq 2.3 in formula (1.5), we get

    Disc(T1(Γ))=1n+mqV(T1(Γ))|dT1(Γ)(q)2(3m)n+m|=1n+m(qV(Γ)|2dΓ(q)6mn+m|+qE(Γ)|26mn+m|).

    Since |a||b||ab||a|+|b|. Thus we have

    Disc(T1(Γ))1n+m(2qV(Γ)|dΓ(q)|qV(Γ)|6mn+m|+2m|n+m3m|n+m)=2n+m(2m3mnn+m)+2m|n2m|(n+m)2=2n+m(2mn+2m23mnn+m)+2m|n2m|(n+m)2=2m(n+m)2(2mn+|n2m|).

    Similarly

    Disc(T1(Γ))1n+m(2qV(Γ)|dΓ(q)|+qV(Γ)|6mn+m|+2m|n+m3m|n+m)=2n+m(2m+3mnn+m)+2m|nm|(n+m)2=2n+m(2mn+2m2+3mn)n+m)+2m|n2m|(n+m)2=2m(n+m)2(2m+5n+|n2m|).

    This accomplishes the proof.

    Theorem 3.20. The discrepancy of semi-total line graph T2(Γ) of Γ is

    0Disc(T2(Γ))2n+m(M1(Γ)+2m).

    Proof. By using Eq 2.4 in formula (1.5), we get

    Disc(T2(Γ))=1n+mqV(T2(Γ))|dT2(Γ)(q)2(1/2M1(Γ)+m)n+m|=1n+m(qV(Γ)|dΓ(q)M1(Γ)+2mn+m|+q=xyE(Γ)|dΓ(x)+dΓ(y)M1(Γ)+2mn+m|).

    Since |a||b||ab||a|+|b|. Thus we have

    Disc(T2(Γ))1n+m(qV(Γ)|dΓ(q)|qV(Γ)|M1(Γ)+2mn+m|)+1n+m(q=xyE(Γ)|dΓ(x)+dΓ(y)|q=xyE(Γ)|M1(Γ)+2mn+m|)=1n+m(2mn(M1(Γ)+2m)n+m+M1(Γ)m(M1(Γ)+2m)n+m)=0.

    Similarly

    Disc(T2(Γ))1n+m(qV(Γ)|dΓ(q)|+qV(Γ)|M1(Γ)+2mn+m|)+1n+m(q=xyE(Γ)|dΓ(x)+dΓ(y)|+q=xyE(Γ)|M1(Γ)+2mn+m|)=1n+m(2m+n(M1(Γ)+2m)n+m+M1(Γ)+m(M1(Γ)+2m)n+m)=1n+m(2m+(n+m)(M1(Γ)+2m)n+m+M1(Γ))=2n+m(M1(Γ)+2m).

    This finishes the proof.

    Theorem 3.21. The discrepancy of total graph T(Γ) of Γ is

    0Disc(T(Γ))2n+m(M1(Γ)+4m).

    Proof. By using Eq 2.5 in formula (1.5), we get

    Disc(T(Γ))=1n+mqV(T(Γ))|dT(Γ)(q)2(1/2M1(Γ)+2m)n+m|=1n+m(qV(Γ)|2dΓ(q)M1(Γ)+4mn+m|+q=xyE(Γ)|dΓ(x)+dΓ(y)M1(Γ)+4mn+m|).

    Since |a||b||ab||a|+|b|.

    Disc(T(Γ))1n+m(qV(Γ)|2dΓ(q)|qV(Γ)|M1(Γ)+4mn+m|)+1n+m(q=xyE(Γ)|dΓ(x)+dΓ(y)|q=xyE(Γ)|M1(Γ)+4mn+m|)=1n+m(4mn(M1(Γ)+4m)n+m+M1(Γ)m(M1(Γ)+4m)n+m)=0.

    Similarly

    Disc(T(Γ))1n+m(qV(Γ)|2dΓ(q)|+qV(Γ)|M1(Γ)+4mn+m|)+1n+m(q=xyE(Γ)|dΓ(x)+dΓ(y)|+q=xyE(Γ)|M1(Γ)+4mn+m|)=1n+m(4m+n(M1(Γ)+4m)n+m+M1(Γ)+m(M1(Γ)+4m)n+m)=1n+m(4m+(n+m)(M1(Γ)+4m)n+m+M1(Γ))=2n+m(M1(Γ)+4m).

    This accomplishes the proof.

    Theorem 3.22. The discrepancy of the paraline graph PL(Γ) of Γ is given by

    0Disc(PL(Γ))12m(M1(Γ)+4m).

    Proof. From formula (1.5), we get

    Disc(PL(Γ))=12mqV(PL(Γ))|dPL(Γ)(v)2(1/2M1(S(Γ))2m)2m|=12mq=xyE(S(Γ))|dS(Γ)(x)+dS(Γ)(y)2M1(S(Γ))4m2m|=12mq=xyE(S(Γ))|dS(Γ)(x)+dS(Γ)(y)M1(S(Γ))2m|

    Since |a||b||ab||a|+|b|.

    Disc(PL(Γ))12m(q=xyE(S(Γ))|dS(Γ)(x)+dS(Γ)(y)|q=xyE(S(Γ))|M1(S(Γ))2m|)=12m(M1(S(Γ))2mM1(S(Γ))2m)=0.

    Similarly

    Disc(PL(Γ))12m(q=xyE(S(Γ))|dS(Γ)(x)+dS(Γ)(y)|+q=xyE(S(Γ))|M1(S(Γ))2m|)=12m(M1(S(Γ))+2mM1(S(Γ))2m)=12mM1(S(Γ)).

    Since M1(S(Γ))=M1(Γ)+4m.

    Disc(PL(Γ))12m(M1(Γ)+4m).

    This finishes the proof.

    Theorem 3.23. The discrepancy of the double graph D[Γ] of Γ is given by

    2mnDisc(D[Γ])6mn.

    Proof. From formula (1.5), we get

    Disc(D[Γ])=12nqV(D[Γ])|dD[Γ](v)2(2m)2n|=22nqV(Γ)|dΓ(q)2mn|

    Since |a||b||ab||a|+|b|.

    Disc(D[Γ])1n(qV(Γ)|2dΓ(q)|qV(Γ)|2mn|)=1n(4m2mnn)=2mn.

    Similarly

    Disc(D[Γ])1n(qV(Γ)|2dΓ(q)|+qV(Γ)|2mn|)=1n(4m+2mnn)=6mn.

    Theorem 3.24. The discrepancy of the strong double graph SD[Γ] of Γ is given by

    0Disc(SD[Γ])8mn.

    Proof. From formula (1.5), we get

    Disc(SD[Γ])=12nqV(SD[Γ])|dSD[Γ](v)2(4m+n)2n|=22nqV(Γ)|2dΓ(q)+14m+nn|=1nqV(Γ)|2dΓ(q)4mn|.

    Since |a||b||ab||a|+|b|.

    Disc(SD[Γ])1n(qV(Γ)|2dΓ(q)|qV(Γ)|4mn|)=1n(4m4mnn)=0.

    Similarly

    Disc(SD[Γ])1n(qV(Γ)|2dΓ(q)|+qV(Γ)|4mn|)=1n(4m+4mnn)=8mn.

    This accomplishes the proof.

    Theorem 3.25. The discrepancy of extended double cover graph Γ of Γ is

    0Disc(Γ)4mn.

    Proof. From formula (1.5), we get

    Disc(Γ)=12nqV(Γ)|dΓ(v)2(2m+n)2n|=22nqV(Γ)|dΓ(q)+12m+nn|=1nqV(Γ)|dΓ(q)2mn|.

    Since |a||b||ab||a|+|b|.

    Disc(Γ)1n(qV(Γ)|dΓ(q)|qV(Γ)|2mn|)=1n(2m2mnn)=0.

    Similarly

    Disc(Γ)1n(qV(Γ)|dΓ(q)|+qV(Γ)|2mn|)=1n(2m+2mnn)=4mn.

    Thus we have the required result.

    The analysis of graphs by using numerical graph invariants is a successful strategy, which plays an appreciable role in predicting the physico-chemical properties of the given chemical structure. Thereby, the computation of topological descriptors is an interesting and attractive line of research. In this paper, we have provided the expressions for the variance of vertex degrees, σ irregularity index and the discrepancy index of subdivision graph, vertex-semi total graph, edge-semi total graph, total graph, line graph, paraline graph, double graph, strong double graph and extended double cover of a graph.

    The authors declare no conflict of interest.



    [1] D. Vukičević, Bond additive modeling 5. Mathematical properties of the variable sum exdeg index, Croat. Chem. Acta, 84 (2011), 93–101.
    [2] E. Estrada, Quantifying network heterogeneity, Phys. Rev. E, 82 (2010), 066102. https://doi.org/10.1103/PhysRevE.82.066102 doi: 10.1103/PhysRevE.82.066102
    [3] I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
    [4] V. R. Kulli, F-Revan index and F-Revan polynomial of some families of benzenoid systems, J. Global Res. Math. Arch., 5 (2018), 1–6.
    [5] V. R. Kulli, Revan indices of oxide and honeycomb networks, Int. J. Math. Appl., 55 (2017), 7.
    [6] A. Miličević, S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004), 97–101.
    [7] E. D. Molina, J. M. Rodríguez, J. L. Sánchez, J. M. Sigarreta, Some properties of the arithmetic–geometric index, Symmetry, 13 (2021), 857. https://doi.org/10.3390/sym13050857 doi: 10.3390/sym13050857
    [8] J. Pineda, C. Martínez, J. A. Méndez, J. Muños, J. M. Sigarreta, Application of bipartite networks to the study of water quality, Sustainability, 12 (2020), 5143. https://doi.org/10.3390/su12125143 doi: 10.3390/su12125143
    [9] N. Zahra, M. Ibrahim, M. K. Siddiqui, On topological indices for swapped networks modeled by optical transpose interconnection system, IEEE Access, 8 (2020), 200091–200099. https://doi.org10.1109/ACCESS.2020.3034439 doi: 10.1109/ACCESS.2020.3034439
    [10] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2020), 249–311.
    [11] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 63 (2010), 433–440.
    [12] Z. Du, B. Zhou, N. Trinajstić, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem., 47 (2010), 842–855. https://doi.org/10.1007/s10910-009-9604-7 doi: 10.1007/s10910-009-9604-7
    [13] R. Cruz, J. Monsalve, J. Rada, On chemical trees that maximize atombond connectivity index, its exponential version, and minimize exponential geometric-arithmetic index, MATCH Commun. Math. Comput. Chem., 84 (2020), 691–718.
    [14] R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randic index, Discrete Appl. Math., 283 (2020), 634–643. https://doi.org/10.1016/j.dam.2020.03.009 doi: 10.1016/j.dam.2020.03.009
    [15] R. Cruz, J. Rada, Extremal values of exponential vertex-degree-based topological indices over graphs, Kragujevac J. Math., 46 (2022), 105–113.
    [16] K. C. Das, Y. Shang, Some extremal graphs with respect to sombor index, Mathematics, 9 (2021), 1202. https://doi.org/10.3390/math9111202 doi: 10.3390/math9111202
    [17] M. A. Iranmanesh, M. Saheli, On the harmonic index and harmonic polynomial of Caterpillars with diameter four, Iran. J. Math. Chem., 5 (2014), 35–43. https://doi.org/10.22052/IJMC.2015.9044 doi: 10.22052/IJMC.2015.9044
    [18] X. Li, I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Croat. Chem. Acta, 79 (2006).
    [19] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260.
    [20] D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta, 83 (2010), 261–273.
    [21] W. Carballosa, J. A. Méndez-Bermúdez, J. M. Rodríguez, J. M. Sigarreta, Inequalities for the variable inverse sum deg index, Submitted.
    [22] H. Chen, H. Deng, The inverse sum indeg index of graphs with some given parameters, Discr. Math. Algor. Appl., 10 (2018), 1850006. https://doi.org/10.1142/S1793830918500064 doi: 10.1142/S1793830918500064
    [23] F. Falahati-Nezhad, M. Azari, T. Došlić, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math., 217 (2017), 185–195. https://doi.org/10.1016/j.dam.2016.09.014 doi: 10.1016/j.dam.2016.09.014
    [24] I. Gutman, M. Matejić, E. Milovanović, I. Milovanović, Lower bounds for inverse sum indeg index of graphs, Kragujevac J. Math., 44 (2020), 551–562.
    [25] I. Gutman, J. M. Rodríguez, J. M. Sigarreta, Linear and non-linear inequalities on the inverse sum indeg index, Discrete Appl. Math., 258 (2019), 123–134. https://doi.org/10.1016/j.dam.2018.10.041 doi: 10.1016/j.dam.2018.10.041
    [26] M. An, L. Xiong, Some results on the inverse sum indeg index of a graph, Inf. Process. Lett., 134 (2018), 42–46. https://doi.org/10.1016/j.ipl.2018.02.006 doi: 10.1016/j.ipl.2018.02.006
    [27] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math., 184 (2015), 202–212. https://doi.org/10.1016/j.dam.2014.11.013 doi: 10.1016/j.dam.2014.11.013
    [28] M. A. Rashid, S. Ahmad, M. K. Siddiqui, M. K. A. Kaabar, On computation and analysis of topological index-based invariants for complex coronoid systems, Complexity, 2021 (2021), 4646501. https://doi.org/10.1155/2021/4646501 doi: 10.1155/2021/4646501
    [29] M. K. Siddiqui, S. Manzoor, S. Ahmad, M. K. A. Kaabar, On computation and analysis of entropy measures for crystal structures, Math. Probl. Eng., 2021 (2021), 9936949. https://doi.org/10.1155/2021/9936949 doi: 10.1155/2021/9936949
    [30] D. A. Xavier, E. S. Varghese, A. Baby, D. Mathew, M. K. A. Kaabar, Distance based topological descriptors of zinc porphyrin dendrimer, J. Mol. Struct., 1268 (2022), 133614. https://doi.org/10.1016/j.molstruc.2022.133614 doi: 10.1016/j.molstruc.2022.133614
    [31] W. Carballosa, J. M. Rodríguez, J. M. Sigarreta, Extremal problems on the variable sum exdeg index, MATCH Commun. Math. Comput. Chem., 84 (2020), 753–772.
    [32] J. C. Hernández, J. M. Rodríguez, O. Rosario, J. M. Sigarreta, Extremal problems on the general Sombor index of graph, AIMS Math., 7 (2022), 8330–8334. https://doi.org/10.3934/math.2022464 doi: 10.3934/math.2022464
    [33] D. Vukičević, Bond additive modeling 4. QSPR and QSAR studies of the variable Adriatic indices, Croat. Chem. Acta, 84 (2011), 87–91.
    [34] R. Todeschini, P. Gramatica, E. Marengo, R. Provenzani, Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons, Chemom. Intell. Lab. Syst., 27 (1995), 221–229. https://doi.org/10.1016/0169-7439(95)80026-6 doi: 10.1016/0169-7439(95)80026-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2042) PDF downloads(67) Cited by(1)

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog