Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach

  • Received: 18 December 2022 Revised: 04 February 2023 Accepted: 12 February 2023 Published: 24 February 2023
  • The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.

    Citation: Ibrahim M. Hezam, Aref M. Al-Syadi, Abdelaziz Foul, Ahmad Alshamrani, Jeonghwan Gwak. Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach[J]. Electronic Research Archive, 2023, 31(4): 2286-2314. doi: 10.3934/era.2023117

    Related Papers:

    [1] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [2] Dan Mao, Keli Zheng . Derivations of finite-dimensional modular Lie superalgebras ¯K(n,m). Electronic Research Archive, 2023, 31(7): 4266-4277. doi: 10.3934/era.2023217
    [3] Yusi Fan, Chenrui Yao, Liangyun Chen . Structure of sympathetic Lie superalgebras. Electronic Research Archive, 2021, 29(5): 2945-2957. doi: 10.3934/era.2021020
    [4] Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
    [5] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [6] Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059
    [7] Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
    [8] Shengxiang Wang, Xiaohui Zhang, Shuangjian Guo . The Hom-Long dimodule category and nonlinear equations. Electronic Research Archive, 2022, 30(1): 362-381. doi: 10.3934/era.2022019
    [9] Bing Sun, Liangyun Chen, Yan Cao . On the universal α-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, 2021, 29(4): 2619-2636. doi: 10.3934/era.2021004
    [10] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
  • The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.



    Ternary Lie algebras appeared first in Nambu's generalization of Hamiltonian mechanics [1] which use a generalization of Poisson algebras with a ternary bracket. The structure of n-Lie algebra was studied by Filippov [2]. The theory of cohomology for first-class n-Lie superalgebras can be found in [3]. In [4], the structure and cohomology of 3-Lie algebras induced by Lie algebras have been investigated. The reference [5] constructed super 3-Lie algebras by super Lie algebras. In [6], generalizations of n-ary algebras of Lie type and associative type by twisting the identities using linear maps have been introduced. These generalizations include n-ary Hom-algebra structures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associative type including n-ary totally associative and n-ary partially associative algebras. In [7], a method was demonstrated of how to construct ternary multiplications from the binary multiplication of a Hom-Lie algebra, a linear twisting map, and a trace function satisfying certain compatibility conditions; and it was shown that this method can be used to construct ternary Hom-Nambu-Lie algebras from Hom-Lie algebras. This construction was generalized to n-Lie algebras and n-Hom-Nambu-Lie algebras in [8]. The reference [9] constructed (n+1)-Hom-Lie algebras by n-Hom-Lie algebras. A method of constructing induced ternary Lie brackets were proposed in [10]. This method in a more general form can be described as follows: Given a Lie algebra g and a generalized trace τ:gC on it, one can define the induced ternary Lie bracket by the formula

    [x,y,z]=τ(x)[y,z]+τ(y)[z,x]+τ(z)[x,y], (1.1)

    where x,yg and [,,] is a Lie bracket of g. The structure of induced n-Lie algebras with n-Lie brackets constructed by means of a generalized trace, their cohomologies and Hom-generalizations were studied in the papers [4,8,9]. An extension of the method of constructing induced 3-Lie-algebras to 3-Lie-superalgebras by means of a generalized supertrace and possible application of this method in BRST-formalism of quantum field theory was proposed in the papers [11,12]. Later the method of constructing 3-Lie-superalgebras by means of supertrace proposed in [11,12] was extended to ternary Hom-Lie superalgebras by By me and my advisor in [13].

    The reference [14] constructed 3-Lie superalgebras induced by means of derivation and involution, and it also constructed induced representation of induced 3-Lie superalgebras by means of supertrace. The paper generalizes the reference [14] to the case of 3-Hom-Lie superalgebras.

    In Section 2, we construct induced 3-Hom-Lie superalgebras, whose ternary graded Hom-Lie brackets have the structure similar to (1.1). First of all, we propose two identities, which give sufficient and necessary conditions for graded skew-symmetric Hom-ternary bracket to satisfy the graded Filippov-Jacobi identity, in other words, to determine a 3-Hom-Lie superalgebra. Next we construct binary graded Hom-Lie brackets and then ternary graded Hom-Lie brackets on a commutative Hom-superalgebra with involution, where the structure of a ternary graded Hom-Lie bracket is similar to (1.1) and it is constructed by means of even degree derivation and involution. In Section 3, we construct induced representation of induced 3-Hom-Lie superalgebras by means of supertrace and prove that this is a representation of induced 3-Hom-Lie superalgebra.

    Definition 2.1. [15] A Hom-superalgebra is a triple (g,μ,α) in which g=gˉ0gˉ1 is a Z2-graded vector space, μ:g×gg is an even linear map, α:gg is an even linear map such that αμ=μα2.

    Definition 2.2. [16] A 3-Hom-Lie superalgebra is a triple (g,[,,],α1,α2) consisting of a Z2-graded vector space g=gˉ0gˉ1, an even trilinear map (bracket) [,,]:g×g×gg and an algebra endomorphism αi:gg(i=1,2) is an even linear map. If it satisfies the following conditions:

    |[x1,x2,x3]|=|x1|+|x2|+|x3|;[x1,x2,x3]=(1)|x1||x2|[x2,x1,x3],[x1,x2,x3]=(1)|x2||x3|[x1,x3,x2];[α1(x),α2(y),[z,u,v]]=[[x,y,z],α1(u),α2(v)]+(1)|z|(|x|+|y|)[α1(z),[x,y,u],α2(v)]+(1)(|z|+|u|)(|x|+|y|)[α1(z),α2(u),[x,y,v]].

    where |x| is the Z2-degree of the homogeneous element x in g.

    Suppose that (g,[,,],α1,α2) is a 3-Hom-Lie superalgebra, if α1=α2=α, it is satisfied

    α[x1,x2,x3]=[α(x1),α(x2),α(x3)],x1,x2,x3g.

    Then (g,[,,]ρ,α1,α2) is called as multiplicative.

    In this section we consider a commutative Hom-superalgebra (g,μ,α) in which g=gˉ0gˉ1 endowed with an involution xgxg and an even degree derivation δ:gg. By involution we mean an even degree linear mapping (even degree means that it preserves grading of any homogeneous element), which satisfies (x)=x,xg. By derivation of degree m, where m is an integer either ˉ0 or ˉ1, we mean linear mapping δ:gg, which satisfies the graded Leibniz rule δ(uv)=δ(u)α(v)+(1)mˆuˆvα(u)δ(v), where ˆx,ˆy are gradings of homogeneous elements x,y, respectively. Using an involution and derivation we construct three graded Hom-Lie brackets on Hom-superalgebra g. Furthermore, by considering a generalized supertrace we apply methods described in [5] and yield induced 3-Lie Hom-superalgebras whose bracket is defined using involution, derivation and both of them, together with generalized supertrace.

    First of all, we start by proposing equivalent form to the graded Filippov-Jacobi identity. To simplify the equations, we will use the notation ^xy=ˆx+ˆy.

    Proposition 2.3. Assume g=gˉ0gˉ1 is a super vector space and let

    [,,]:g×g×gg (2.1)

    be a skew-symmetric multilinear map, such that ^[x,y,z]=^xyz.α1:gg and α2:gg are algebra endomorphisms. Then (g,[,,],α1,α2) is a 3-Lie Hom-superalgebra if and only if the equalities

    [[x,y,z],α1(u),α2(v)]=(1)ˆu^xyz+ˆx^yz[[u,y,z],α1(x),α2(v)]+(1)ˆu^yz+ˆyˆz[[x,u,z],α1(y),α2(v)]+(1)ˆuˆz[[x,y,u],α1(z),α2(v)] (2.2)

    and

    [[x,y,z],α1(u),α2(v)]+(1)^xy^zuv+ˆz^uv[[u,v,z],α1(x),α2(y)](1)ˆyˆu+ˆyˆz+ˆzˆu[[x,u,z],α1(y),α2(v)](1)ˆv^yzu+ˆx^yzu+ˆxˆv[[v,y,z],α1(u),α2(x)](1)^yv^zu+ˆvˆy[[x,v,z],α1(u),α2(y)](1)^xu^yz+ˆxˆu[[u,y,z],α1(x),α2(v)]=0 (2.3)

    hold for bracket [,,]:g×g×gg.

    Proof. Let g=gˉ0gˉ1 be a super vector space and assume that (g,[,,],α1,α2) is a 3-Lie Hom-superalgebra. If this is the case, then the Filippov-Jacobi identity must hold:

    [α1(x),α2(y),[z,u,v]]=[[x,y,z],α1(u),α2(v)]+(1)^xyˆz[α1(z),[x,y,u],α2(v)]+(1)^xy^zu[α1(z),α2(u),[x,y,v]]. (2.4)

    To show that identity (2.2) holds for bracket (2.1), apply Filippov-Jacobi identity (2.4) recursively to itself on the right-most bracket. This yields us the following result:

    [α1(x),α2(y),[z,u,v]]=[[x,y,z],α1(u),α2(v)]+(1)^xyˆz[α1(z),[x,y,u],α2(v)]+(1)^xy^zu([[z,u,x],α1(y),α2(v)]+(1)^zuˆx[α1(x),[z,u,y],α2(v)]+(1)^zu^xy[α1(x),α2(y),[z,u,v]])=[[x,y,z],α1(u),α2(v)]+(1)^xyˆz[α1(z),[x,y,u],α2(v)]+(1)^xy^zu[[z,u,x],α1(y),α2(v)]+(1)^xy^zu+^zuˆx[α1(x),[z,u,y],α2(v)]+(1)^xy^zu+^zu^xy[α1(x),α2(y),[z,u,v]],

    which gives

    [[x,y,z],α1(u),α2(v)]=(1)^xyˆz[α1(z),[x,y,u],α2(v)](1)^xy^zu[[z,u,x],α1(y),α2(v)](1)^zuˆy[α1(x),[z,u,y],α2(v)]. (2.5)

    We need to show that the right hand sides of (2.2) and (2.5) coincide. It is indeed the case:

    (1)^zuˆy[α1(x),[z,u,y],α2(v)]=(1)3(1)^zuˆy+ˆx^zuy+ˆuˆz+ˆzˆy[[u,y,z],α1(x),α2(v)]=(1)ˆu^xyz+ˆx^yz[[u,y,z],α1(x),α2(v)],(1)^xy^zu[[z,u,x],α1(y),α2(v)]=(1)3(1)^xy^zu+ˆzˆu+ˆzˆx+ˆxˆu[[x,u,z],α1(y),α2(v)]=(1)ˆu^yz+ˆyˆz[[x,u,z],α1(y),α2(v)],(1)^xyˆz[α1(z),[x,y,u],α2(v)]=(1)(1)^xyˆz+ˆz^xyu[[x,y,u],α1(z),α2(v)]=(1)ˆuˆz[[x,y,u],α1(z),α2(v)].

    From those equalities we can deduce that if (g,[,,],α1,α2) is indeed a 3-Lie Hom-superalgebra, then identity (2.2) holds for bracket [,,].

    In order to prove the identity (2.3), we can apply Filippov-Jacobi identity recursively to itself once again, but this time to both the right-most and middle brackets on the right hand side of identity (2.4).

    [α1(x),α2(y),[z,u,v]]=[[x,y,z],α1(u),α2(v)](1)^xyˆz+ˆv^xyu[α1(z),α2(v),[x,y,u]]+(1)^xy^zu[α1(z),α2(u),[x,y,v]]=[[x,y,z],α1(u),α2(v)](1)^xyˆz+ˆv^xyu([[z,v,x],α1(y),α2(u)]+(1)^zvˆx[α1(x),[z,v,y],α2(u)]+(1)^zv^xy[α1(x),α2(y),[z,v,u]])+(1)^xy^zu([[z,u,x],α1(y),α2(v)]+(1)^zuˆx[α1(x),[z,u,y],α2(v)]+(1)^zu^xy[α1(x),α2(y),[z,u,v]])=[[x,y,z],α1(u),α2(v)](1)^xyˆz+ˆv^xyu([[z,v,x],α1(y),α2(u)](1)^xyˆz+ˆv^xyu+^zvˆx[α1(x),[z,v,y],α2(u)](1)^xyˆz+ˆv^xyu+^zv^xy[α1(x),α2(y),[z,v,u]]+(1)^xy^zu[[z,u,x],α1(y),α2(v)]+(1)^xy^zu+^zuˆx[α1(x),[z,u,y],α2(v)]+(1)^xy^zu+^zu^xy[α1(x),α2(y),[z,u,v]].

    Reordering the summands in the last equation results in

    [[x,y,z],α1(u),α2(v)](1)^xyˆz+ˆv^xyu+^zv^xy[α1(x),α2(y),[z,v,u]]+(1)^xy^zu[[z,u,x],α1(y),α2(v)](1)^xyˆz+ˆv^xyu+^zvˆx[α1(x),[z,v,y],α2(u)](1)^xyˆz+ˆv^xyu[[z,v,x],α1(y),α2(u)]+(1)^xy^zu+^zuˆx[α1(x),[z,u,y],α2(v)]=0,

    which is exactly (2.3) once the elements are ordered accordingly within the brackets:

    (1)^xyˆz+ˆv^xyu+^zv^xy[α1(x),α2(y),[z,v,u]]=+(1)^xy^zuv+ˆz^uv[[u,v,z],α1(x),α2(y)]+(1)^xy^zu[[z,u,x],α1(y),α2(v)]=(1)ˆyˆu+ˆyˆz+ˆzˆu[[x,u,z],α1(y),α2(v)](1)^xyˆz+ˆv^xyu+^zvˆx[α1(x),[z,v,y],α2(u)]=(1)ˆv^yzu+ˆx^yzu+ˆxˆv[[v,y,z],α1(u),α2(x)](1)^xyˆz+ˆv^xyu[[z,v,x],α1(y),α2(u)]=(1)^yv^zu+ˆvˆy[[x,v,z],α1(u),α2(y)]+(1)^xy^zu+^zuˆx[α1(x),[z,u,y],α2(v)]=(1)^xu^yz+ˆxˆu[[u,y,z],α1(x),α2(v)].

    This completes the proof of necessity. Sufficiency can be shown analogously.

    Let g=gˉ0gˉ1 be a Hom-superalgebra. We say that superalgebra g is commutative Hom-superalgebra if for any two homogeneous elements u,vg it holds that uv=(1)ˆuˆv. Let mZ2. linear mapping δ:gg is said to be a degree m derivation of a superalgebra g if ^δ(u)=ˆu+m, for all ug, and it satisfies the graded leibniz rule

    δ(uv)=δ(u)α(v)+(1)mˆuˆvα(u)δ(v).

    In case m=0, we call it even degree derivation, and otherwise, for m=1, we call it odd degree derivation. We denote the degree of δ as ˆδ. Consequently, if δ is an even degree derivation of Hom-superalgebra g, then ^δ(u)=ˆu. Or, in other words, derivation δ does not change the degree of homogeneous element ug. Furthermore, in case of even δ the Leibniz rule for any u,vg simplifies to

    δ(uv)=δ(u)α(v)+α(u)δ(v).

    Mapping ():gg,uu is said to be an involution of a Hom-superalgebra g if it satisfies the following conditions:

    (1) involution is an even degree mapping of a Hom-superalgebra g,gigi,iZ2,^u=ˆu;

    (2) it is linear, (λu+μv)=λu+μv;

    (3)():gg is its own inverse, (u)=u;

    (4)(uv)=(1)ˆuˆvvu;

    (5)(α(u))=α(u).

    In the case of commutative Hom-superalgebra the condition (4) takes on the form (uv)=uv.

    Making use of involution and even degree derivation we can construct graded Hom-Lie brackets on a Hom-superalgebra g. To achieve that, let us define

    [u,v]=uα(v)(1)ˆuˆvvα(u); (2.6)
    [u,v]δ=α(u)δ(v)(1)ˆuˆvα(v)δ(u); (2.7)
    [u,v],δ=(α(u)α(u))δ(v)(1)ˆuˆv(α(v)α(v))δ(u). (2.8)

    Proposition 2.4. Brackets (2.6) and (2.7) are graded Hom-Lie brackets. If involution ():gg and an even degree derivation δ:gg satisfy the condition

    (δ(u))=δ(u),

    then bracket (2.8) is also a graded Hom-Lie bracket.

    Proof. Proving the proposition is similar for all three brackets (2.6)–(2.8). Let us only observe (2.8), which is the most involved. To assure linearity, pick coefficients λ,μK and homogeneous elements u,v,wg such that ˆv=ˆw. Note that ˆω=^λv+μw=ˆv=ˆw as both v and w are homogeneous, and calculate

    [u,λv+μw],δ=(α(u)α(u))δ(λv+μw)(1)ˆuˆw(α(λv+μw)α(λv+μw))δ(u)=λ(α(u)α(u))δ(v)+μ(α(u)α(u))δ(w)(1)ˆuˆw(λ(α(v)α(v))+μ(α(w)α(w)))δ(u)=λ(α(u)α(u))δ(v)+μ(α(u)α(u))δ(w)(1)ˆuˆwλ(α(v)α(v))δ(u)(1)ˆuˆwμ(α(w)α(w))δ(u)=λ{(α(u)α(u))δ(v)(1)ˆuˆw(α(v)α(v))δ(u)}+μ{(α(u)α(u))δ(w)(1)ˆuˆw(α(w)α(w))δ(u)}=λ[u,v],δ+μ[u,w],δ.

    Antisymmetry is a result of direct computation

    [u,v],δ=(α(u)α(u))δ(v)(1)ˆuˆv(α(v)α(v))δ(u)=(1)ˆuˆv{(α(v)α(v))δ(u)(1)ˆuˆv(α(u)α(u))δ(v)}=(1)ˆuˆv[v,u],δ.

    In order to complete the proof, we still need to show that bracket defined by (2.8) satisfies the Hom-Jacobi identity. To achieve that, first observe that due to the commutativity of g we can write bracket [,],δ as

    [u,v],δ=α(u)δ(v)α(u)δ(v)δ(u)α(v)+δ(u)α(v).

    Furthermore, if δ is even and (δ(u))=δ(u), then we can write

    [α(u),α(v)δ(w)],δ=α2(u)δ(α(v))αδ(w)+α2(u)α2(v)δ2(w)α2(u)δ(α(v))αδ(w)α2(u)α2(v)δ2(w)δα(u)α2(v)αδ(w)δα(u)α2(v)αδ(w).
    [α(u),δ(v)α(w)],δ=α2(u)δ2(v)α2(w)+α2(u)αδ(v)δα(w)α2(u)δ2(v)α2(w)α2(u)αδ(v)δα(w)δα(u)αδ(v)α2(w)δα(u)αδ(v)α2(w).

    Using the results above we can now calculate [α(u),[v,w],δ],δ:

    [α(u),[v,w],δ],δ=[α(u),α(v)δ(w)],δ[α(u),α(v)δ(w)],δ[α(u),δ(v)α(w)],δ+[α(u),δ(v)α(w)],δ=α2(u)δ(α(v))αδ(w)+α2(u)α2(v)δ2(w)α2(u)δ(α(v))αδ(w)α2(u)α2(v)δ2(w)δα(u)α2(v)αδ(w)δα(u)α2(v)αδ(w)α2(u)δ(α(v))αδ(w)α2(u)α2(v)δ2(w)+α2(u)δ(α(v))αδ(w)+α2(u)α2(v)δ2(w)+δα(u)α2(v)αδ(w)+δα(u)α2(v)αδ(w)α2(u)δ2(v)α2(w)α2(u)αδ(v)δα(w)+α2(u)δ2(v)α2(w)+α2(u)αδ(v)δα(w)+δα(u)αδ(v)α2(w)+δα(u)αδ(v)α2(w)+α2(u)δ2(v)α2(w)+α2(u)αδ(v)δα(w)α2(u)δ2(v)α2(w)α2(u)αδ(v)δα(w)δα(u)αδ(v)α2(w)δα(u)αδ(v)α2(w). (2.9)

    As a next step we can apply (2.9) also to [α(v),[w,u],δ],δ and [α(w),[u,v],δ],δ, yielding all elements on the left hand side of Jacobi identity.

    [α(u),[v,w],δ],δ+(1)ˆu^vw[α(v),[w,u],δ],δ+(1)ˆw^uv[α(w),[u,v],δ],δ=
    +α2(u)δ(α(v))αδ(w)+α2(u)α2(v)δ2(w)α2(u)δ(α(v))αδ(w)α2(u)α2(v)δ2(w)δα(u)α2(v)αδ(w)δα(u)α2(v)αδ(w)α2(u)δ(α(v))αδ(w)α2(u)α2(v)δ2(w)+α2(u)δ(α(v))αδ(w)+α2(u)α2(v)δ2(w)+δα(u)α2(v)αδ(w)+δα(u)α2(v)αδ(w)α2(u)δ2(v)α2(w)α2(u)αδ(v)δα(w)+α2(u)δ2(v)α2(w)+α2(u)αδ(v)δα(w)+δα(u)αδ(v)α2(w)+δα(u)αδ(v)α2(w)+α2(u)δ2(v)α2(w)+α2(u)αδ(v)δα(w)α2(u)δ2(v)α2(w)α2(u)αδ(v)δα(w)δα(u)αδ(v)α2(w)δα(u)αδ(v)α2(w)}[α(u),[v,w],δ],δ
    +αδ(u)α2(v)δ(α(w))+δ2(u)α2(v)α2(w)αδ(u)α2(v)δ(α(w))δ2(u)α2(v)α2(w)αδ(u)δα(v)α2(w)αδ(u)δα(v)α2(w)αδ(u)α2(v)δ(α(w))δ2(u)α2(v)α2(w)+αδ(u)α2(v)δ(α(w))+δ2(u)α2(v)α2(w)+αδ(u)δα(v)α2(w)+αδ(u)δα(v)α2(w)α2(u)α2(v)δ2(w)δα(u)α2(v)αδ(w)+α2(u)α2(v)δ2(w)+δα(u)α2(v)αδ(w)+α2(u)δα(v)αδ(w)+α2(u)δα(v)αδ(w)+α2(u)α2(v)δ2(w)+δα(u)α2(v)αδ(w)α2(u)α2(v)δ2(w)δα(u)α2(v)αδ(w)α2(u)δα(v)αδ(w)α2(u)δα(v)αδ(w)}(1)ˆu^vw[α(v),[w,u],δ],δ
    +δ(α(u))αδ(v)α2(w)+α2(u)δ2(v)α2(w)δα(u)αδ(v)α2(w)α2(u)δ2(v)α2(w)α2(u)αδ(v)δα(w)α2(u)αδ(v)δα(w)δ(α(u))αδ(v)α2(w)α2(u)δ2(v)α2(w)+δ(α(u))αδ(v)α2(w)+α2(u)δ2(v)α2(w)+α2(u)αδ(v)δα(w)+α2(u)αδ(v)δα(w)δ2(u)α2(v)α2(w)αδ(u)δα(v)α2(w)+δ2(u)α2(v)α2(w)+αδ(u)δα(v)α2(w)+αδ(u)α2(v)δα(w)+αδ(u)α2(v)δα(w)+δ2(u)α2(v)α2(w)+αδ(u)δα(v)α2(w)δ2(u)α2(v)α2(w)αδ(u)δα(v)α2(w)αδ(u)α2(v)δα(w)αδ(u)α2(v)δα(w)}(1)ˆw^uv[α(w),[u,v],δ],δ

    = 0.

    This means that Hom-Jacobi identity indeed holds, and [,],δ is a graded Hom-Lie bracket.

    What the proposition tells us is that graded Hom-Lie brackets (2.6), (2.7) naturally define Hom-Lie superalgebra structures (g,[u,v]δ,α) and (g,[u,v],β) on commutative Hom-superalgebra g. In case we further assume that the derivation δ is even, and together with involution it satisfies the condition (δ(u))=δ(u), then graded Hom-Lie bracket (2.8) defines another Hom-Lie superalgebra structure (g,[u,v],δ,γ) on g. Next let us consider the generalized supertraces on those Hom-Lie superalgebras:

    ξ:(g,[u,v])K, (2.10)
    η:(g,[u,v]δ)K, (2.11)
    χ:(g,[u,v],δ)K. (2.12)

    With the help of those generalized supertraces we can induce ternary Hom-Lie superalgebras out of the binary Lie superalgebras, by following the construction described in [13].

    Theorem 2.5. Let (g,μ,α) in which g=gˉ0gˉ1 be a commutative Hom-superalgebra, and let ():gg and δ:gg be involution and derivation of g, respectively. If (2.10) and (2.11) are supertraces, then graded ternary brackets [,,]:g3g and [,,]δ:g3g, defined by

    [u,v,w]=ξ(u)[v,w]+(1)ˆu^vwξ(v)[w,u]+(1)ˆw^uvξ(w)[u,v], (2.13)
    [u,v,w]δ=η(u)[v,w]δ+(1)ˆu^vwη(v)[w,u]δ+(1)ˆw^uvη(w)[u,v]δ (2.14)

    are graded ternary Hom-Lie brackets. If δ is even, (δ(u))=δ(u) and (2.12) is a supertrace, then graded Hom-ternary bracket [,,]:g3g, defined as

    [u,v,w],δ=χ(u)[v,w],δ+(1)ˆu^vwχ(v)[w,u],δ+(1)ˆw^uvχ(w)[u,v],δ (2.15)

    is ternary Hom-Lie bracket.

    Consequences of the theorem are that each and every one of (g,[,,]δ,α),(g,[,,],β) and (g,[,,],δ,γ) are all ternary Hom-Lie superalgebras. Of course granted that for the latter the derivation and involution satisfy the required condition.

    In this section we consider 3-Hom-Lie superalgebras. It was shown [7] that the method of constructing an induced 3-Hom-Lie algebras with the help of a generalized trace can be extended to the case of Hom-Lie superalgebras by means of a concept of a generalized supertrace. Let (g,[,],α) in which g=gˉ0gˉ1 be a Hom-Lie superalgebra. Then by generalized supertrace we mean a linear function Sτ:gC such that it vanishes on graded Hom-Lie brachet of g, i.e., Sτ([x,y])=0, and it also vanishes when restricted to gˉ1, i.e., Sτ|gˉ10.

    Let (η,[,,],α) in which η=ηˉ0ηˉ1 be a 3-Hom-Lie superalgebra, (V,[,],α) in which V=Vˉ0Vˉ1 be a super vector space and End(V) be the super vector space of endomorphisms of V. The graded commutator of two endomorphisms A,BEnd(V) of a super vector space V, defined by formula [A,B]=AB(1)ˆAˆBBA, where A,B are homogeneous endomorphisms and ˆA,ˆB are their gradings, determines the structure of the Lie superalgebra on End(V) and we denote this Hom-Lie superalgebra by sgl(V). There is a canonical structure of a super vector space on the tensor product ηη, which is defined as follows:

    ηη=(ηη)ˉ0(ηη)ˉ1,

    where (ηη)ˉ0=(ηˉ0ηˉ0)(ηˉ1ηˉ1) and (ηη)ˉ1=(ηˉ0ηˉ1)(ηˉ1ηˉ0). In [5], the supertrace of an endomorphism a:VV be defined by

    str(a)={Tr(a|V0)Tr(a|V1),if a is even;0,if a is odd.

    Definition 3.1. A representation of a multiplicative 3-Hom-Lie superalgebra (g,[,,],α) on a vector space V=Vˉ0Vˉ1 with respect to a linear autmorphism β(βGL(V)) is a even linear map ρ:g×gsgl(V) such that for all x,y,z,u,vg. We have

    (1)ρ(x,y)=(1)ˆxˆyρ(y,x);

    (2)ρ(α(x),α(y))β=βρ(x,y);

    (3)ρ(α(x),α(y))ρ(u,v)(1)^xy^uvρ(α(u),α(v))ρ(x,y)=ρ([x,y,u],α(v))β+(1)ˆu^xyρ(α(u),[x,y,v])β;

    (4)ρ([x,y,z],α(u))β=ρ(α(x),α(y))ρ(z,u)+(1)ˆx^yzρ(α(y),α(z))ρ(x,u)+(1)ˆz^xyρ(α(z),α(x))ρ(y,u). We will this representation of 3-Hom-Lie superalgebra g in a super vector space V by (g,ρ,V,β).

    An evident example of a representation of 3-Hom-Lie superalgebra (g,[,,],α) is an adjoint representation. Fix two elements x,y of a 3-Hom-Lie superalgebra g and for any ug, define ad(x,y)u=[x,y,u]. Thus ad:ggEnd(g), and (g,ad,g,α) is a representation of multiplicative 3-Hom-Lie superalgebra (g,[,,],α) on g with respect to α. In fact, conditions (1) and (2) of Definition 3.1 immediately follow from the properties of graded ternary Lie bracket. In order to prove condition (3) of Definition 3.1, we calculate the graded commutator of two linear operators ad(x,y) and ad(u,v) by means of graded Filippov-Jacobi identity. Then we have

    (ad(α(x),α(y))ad(u,v)(1)^xy^uvad(α(u),α(v))ad(x,y))z=[α(x),α(y)),[u,v,z]](1)^xy^uv[α(u),α(v),[x,y,z]]=[[x,y,u],α(v),α(z)]+(1)ˆu^xy[α(u),[x,y,v],α(z)]+(1)^uv^xy[α(u),α(v),[x,y,z]](1)^xy^uv[α(u),α(v),[x,y,z]]=[[x,y,u],α(v),α(z)]+(1)ˆu^xy[α(u),[x,y,v],α(z)]=ad([x,y,u],α(v))α(z)+(1)ˆu^xyad(α(u),[x,y,v])α(z).

    The last property of Definition 3.1 can be checked as follows:

    ad([x,y,z],α(u))α(v)=[[x,y,z],α(u),α(v)]=(1)^uv^xyz[α(u),α(v),[x,y,z]]. (3.1)

    Now making use of graded Filippov-Jacobi identity, we obtain

    [α(u),α(v),[x,y,z]]=[[u,v,x],α(y),α(z)]+(1)ˆx^uv[α(x),[u,v,y],α(z)]+(1)^uv^xy[α(x),α(y),[u,v,z]].

    Now we should substitute this expression into the right hand side of formula (3.1), but first we will calculate the sign of each term in resulting expression. In the term [α(x),α(y),[u,v,z]], we will do the following permutation of the arguments [α(x),α(y),[z,u,v]], which will entail multiplicaion by (1)ˆz^uv. Therefore, the coefficient of this term will be (1) in power

    ^uv^xyz+^uv^xy+ˆz^uv=^uv^xyz+^uv^xyz=0.

    Analogously, we permute the arguments of the double bracket [[u,v,x],α(y),α(z)] as follows [α(y),α(z),[x,u,v]] and this entails the appearance of the factor (1) in power ^yz^uvx+ˆx^uv. All together it gives the following sign

    ^uv^xyz+^yz^uvx+ˆx^uv=^uv^yz+^yz^uvx=^yzˆx.

    Similarly, we permute the arguments of the double bracket [α(x),[u,v,y],α(z)] to cast it into the form [α(z),α(x),[y,u,v]], then calculate the sign, which turns out be ˆz^xy. Hence, we get

    ad([x,y,z],α(u))α=ad(α(x),α(y))ad(z,u)+(1)ˆx^yzad(α(y),α(z))ad(x,u)+(1)ˆz^xyad(α(z),α(x))ad(y,u).

    Now we assume that η=ηˉ0ηˉ1 is a 3-Hom-Lie superalgebra, V=Vˉ0Vˉ1 is a super vector space and ρ:ηηEnd(V) is a graded skew-symmetric mapping. Consider the direct sum ηV. We equip it with a structure of super vector space if we associate grade ˉ0 to elements x+v(elements of even grade), where xηˉ0,vVˉ0, and grade ˉ1 to elements x+v(elements of odd grade), where xηˉ1,vVˉ1. Then ηV=(ηV)ˉ0(ηV)ˉ1, where (ηV)ˉ0=ηˉ0Vˉ0 and (ηV)ˉ1=ηˉ1Vˉ1. In analogy with representations of 3-Lie algebra [8], we define the ternary bracket on the super vector space ηV as follows:

    [x1+v1,x2+v2,x3+v3]=[x1,x2,x3]+ρ(x1,x2)v3+(1)^x1^x2x3ρ(x2,x3)v1+(1)^x3^x1x2ρ(x3,x1)v2. (3.2)

    It is easy to show that this ternary bracket is a graded ternary bracket. Indeed, if we assume that all arguments of this ternary bracket are homogenous elements ηV, then the grading of xi+vi is equal to the grading of xi(or vi). Thus it is sufficient to show that the grading of ternary bracket (3.2) is ^x1+^x2+^x3. But this is true, because the grading of the first term [x1,x2,x3] is ^x1+^x2+^x3 and the grading of the each term of the form ρ(xi,xj)vk, where i,j,k is a cyclic permutation of 1,2,3, is the same integer, because

    ^xi+^xj+^vk=^xi+^xj+^xk=^x1+^x2+^x3.

    The fact that this ternary bracket has the correct graded symmetries is checked on the permutation of the first two arguments x1+v1,x2+v2. Making use of the graded symmetry properties of a graded ternary Hom-Lie bracket in η and the property (2) of Definition 3.1, we get

    [x2+v2,x1+v1,x3+v3]=[x2,x1,x3]+ρ(x2,x1)v3+(1)^x2^x1x3ρ(x1,x3)v2+(1)^x3^x1x2ρ(x3,x2)v1=(1)^x1^x2[x1,x2,x3](1)^x1^x2ρ(x1,x2)v3(1)^x1^x3ρ(x2,x3)v1(1)^x1^x2+^x3^x1x2ρ(x3,x1)v2=(1)^x1^x2[x1+v1,x2+v2,x3+v3].

    We will need the following theorem or the induced representation, which will be discussed later in this paper.

    Theorem 3.2. Let η=ηˉ0ηˉ1 be a 3-Hom-Lie superalgebra, V=Vˉ0Vˉ1 be a super vector space, ρ:η×ηgl(V) be a graded skew-symmetric bilinear mapping. Then (η,ρ,V) is a representation of 3-Hom-Lie superalgebras η in a super vector space V if and only if the direct sum of super vector space ηV equipped with the graded ternary bracket (3.2) is a 3-Hom-Lie superalgebra, or, in the words, the graded ternary bracket (3.2) satisfies the graded Filippov-Jacobi identity.

    Proof. First of all, we prove that if (η,ρ,V) is a representation of a 3-Hom-Lie superalgebra η, then the graded ternary bracket (3.2) defines the structure of 3-Hom-Lie superalgebra on the direct sum of super vector spaces ηV. Since we have already proved that the ternary bracket (3.2) is a graded ternary bracket, the only thing we need to prove is that this bracket satisfies the graded Filippov-Jacobi identity. To this end, we introduce the following notations:

    Y=y+v,Z=z+w,Xi=xi+ui,

    where i=1,2,3,y,z,xiη and v,w,uiV. We assume that all elements Y,Z,Xi are homogeneous with respect to super vector space structure of ηV. Evidently the grading of Y is equal to ˆy, grading of Z is ˆz and the grading of Xi is ^xi. Now our aim is to prove the graded Filippov-Jacobi identity for graded ternary bracket (3.2), that is, we need to show that the following expression

    [α(Y),α(Z),[X1,X2,X3]][[Y,Z,X1],α(X2),α(X3)]](1)^x1^yz[α(X1),[Y,Z,X2],α(X3)](1)^x1x2^yz[α(X1),α(X2),[Y,Z,X3]] (3.3)

    is equal to zero. If we expand each double ternary bracket in this expression by means of (3.2), then the η-component of resulting expression is

    [α(y),α(z),[x1,x2,x3]][[y,z,x1],α(x2),α(x3)]](1)^x1^yz[α(x1),[y,z,x2],α(x3)](1)^x1x2^yz[α(x1),α(x2),[y,z,x3]] (3.4)

    and this is zero by virtue of the graded Filippov-Jacobi identity in a 3-Lie superalgebra η. The V-component of the resulting expression can be written in the form

    Ψ1(u1)+Ψ2(u2)+Ψ3(u3)+Ψv(v)+Ψw(w), (3.5)

    where Ψ1,Ψ2,Ψ3,Ψv,Ψwgl(V) and

    Ψ1=(1)^x1^x2x3([ρ(y,z),ρ(x2,x3)]ρ([y,z,x2],x3)(1)^x2^yzρ(x2,[y,z,x3])),Ψ2=(1)^x3^x1x2([ρ(y,z),ρ(x3,x1)]ρ([y,z,x3],x1)(1)^x3^yzρ(x3,[y,z,x1])),Ψ3=[ρ(y,z),ρ(x1,x2)]ρ([y,z,x1],x2)(1)^x1^yzρ(x1,[y,z,x2]),Ψv=(1)α(ρ([x1,x2,x3],z)ρ(x1,x2)ρ(x3,z)(1)^x1^x2x3ρ(x2,x3)ρ(x1,z)(1)^x3^x1x2ρ(x3,x1)ρ(x2,z)),Ψw=(1)β(ρ([x1,x2,x3],y)ρ(x1,x2)ρ(x3,y)(1)^x1^x2x3ρ(x2,x3)ρ(x1,y)(1)^x3^x1x2ρ(x3,x1)ρ(x2,y)),

    where α=^yz^[x1,x2,x3]+ˆyˆz+1,β=^yz^[x1,x2,x3]. Expressions Ψ1,Ψ2,Ψ3 vanish by virtue of condition (3) of Definition 3.1 and expressions Ψv,Ψw by virtue of condition (4). Hence, the V-component of expression (3.3) also vanishes and this means that the graded ternary bracket (3.2) is a graded ternary Lie bracket, i.e. it satisfies the graded Filippov-Jacobi identity.

    Now we prove that if the graded ternary bracket (3.2) satisfies the graded Filippov-Jacobi identity, then (g,ρ,V,α) is a representation of 3-Hom-Lie superalgebra η. By other words, we assume that the expression (3.3) vanishes. Vanishing of the η-component of this expression gives us nothing, because it reduces to the graded Filippov-Jacobi identity in η, which already holds according to our assumption that η is a 3-Hom-Lie superalgebra. From the equality to zero of the V-component, it immediately follows that the expression (3.5), where u1,u2,u3,v,w are arbitrary vectors of V, is equal to zero. Taking u2=u3=v=w=0, we get Ψ1(u1)=0 for any u1, which means that Ψ1=0. Hence, condition (3) of Definition 3.1 is satisfied. Analogously we can prove that condition (4) is also satisfied and (g,ρ,V,α) is a representation of 3-Hom-Lie superalgebra.

    Recall that if a Hom-Lie algebra is equipped with a generalized trace, then one can construct the induced ternary Hom-Lie algebra (Section 3). This method of constructing the induced ternary Lie algebras can be extended by means of a generalized supertrace to Hom-Lie superalgebras, as was shown in [13]. Let g=gˉ0gˉ1 be a Hom-Lie superalgebra and Sτ be a generalized supertrace of this Hom-Lie superalgebra. It can be proved then [12] that the graded ternary bracket

    [x,y,z]=Sτ(x)[y,z]+(1)ˆx^yzSτ(y)[z,x]+(1)ˆz^xySτ(z)[x,y],x,y,zg. (3.6)

    determines the 3-Lie superalgebra on the super vector space of a Lie superalgebra g. We will call this 3-Lie superalgebra constructed by means of a generalized supertrace induced 3-Lie superalgebra. Particularly, if we have a representation π:gsgl(V) of a Lie superalgebra g, then we construct the induced 3-Lie superalgebra (3.6) by simply using the supertrace of matrices in sgl(V), i.e., we define the ternary bracket as follows:

    [x,y,z]=str(π(x))[y,z]+(1)ˆx^yzstr(π(y))[z,x]+(1)ˆz^xystr(π(z))[x,y],x,y,zg. (3.7)

    We will denote the induced 3-Lie superalgebra with graded ternary bracket (3.7) by tgπ. We can also extend the method of constructing induced representations of induced 3-Hom-Lie algebras to induced 3-Hom-Lie superalgebras.

    Lemma 3.3. Let (g,[,],α) be a Hom-Lie superalgebra, π:gsgl(V) be a representation of this Hom-Lie superalgebra. If we equip the super vector space gV with the graded skew-symmetric bracket

    [[x+v,y+w]]=[x,y]+π(x).w(1)ˆxˆyπ(y).v, (3.8)

    where x,yg,v,wV and [x,y] is a Hom-Lie bracket in g, then the direct sum of two super vector spaces gV becomes a Hom-Lie superalgebra, i.e. the graded skew-symmetric bracket (3.8) satisfies the graded Jacobi-identity.

    Proof. The proof of this lemma is simply to verify the graded Jacobi-identity for the bracket (3.8). In order to simplify notations, we will denote μ1=^x1^x2x3,μ2=^x2^x1x3,μ3=^x3^x1x2 and v=^x1^x2+^x2^x3+^x1^x3. Then the first term of the graded Jacobi-identity can be expanded as follows:

    [[[[x1+v1,x2+v2]],α(x3)+α(v3)]]=[[x1,x2],α(v3)]+π([x1,x2])α(v3)(1)μ3π(α(x3))α(x1).v2+(1)vπ(α(x3))α(x2).v1.

    The second term of the identity gives

    (1)μ1[[[[x2+v2,x3+v3]],α(x1)+α(v1)]]=(1)μ1[[x2,x3],α(x1)]+(1)μ1π([x2,x3])α(v1)π(α(x1))π(x2).v3+(1)^x2^x3π(α(x1))π(x3).v2.

    The third one yields the expression

    (1)μ3[[[[x3+v3,x1+v1]],α(x2)+α(v2)]]=(1)μ3[[x3,x1],α(x2)]+(1)μ3π([x3,x1])α(v2)(1)μ1π(α(x2))π(x3).v1+(1)^x1^x2π(α(x2))π(x1).v3.

    If we now take the sum of the left hand sides of these relations, we get the left hand side of the graded Jacobi identity for bracket (3.8). The sum of the right-hand sides of these relations gives zero. Indeed, terms underlined by a solid line add up to zero, because the graded Jacobi identity holds in the Hom-Lie superalgebra g. The terms underlined with dashed lines or not underlined at all also add up to zero due to the fact that the terms in each group simply cancel each other.

    We will prove the following theorem by means of Theorem 3.2 and Lemma 3.3.

    Theorem 3.4. Let (g,[,],α) be a Hom-Lie superalgebra and π:gsgl(V) be a representation of g. If

    Tr(π(α(v)))=Tr(π(v))

    for arbitrary vg, then mapping ρ:g×gsgl(V), defined by the formula

    ρ(x,y)=str(π(x))π(y)(1)ˆxˆystr(π(y))π(x), (3.9)

    where x,yg, is a representation of induced 3-Hom-Lie superalgebra tgπ.

    Proof. According to Theorem 3.2, if we show that the graded ternary bracket (3.2), where the first term at the right hand side of (3.2) is the graded ternary bracket (3.7) and ρ is (3.9), determines 3-Hom-Lie superalgebra on the direct sum gV, then we prove that (3.9) is a representation of induced 3-Hom-Lie superalgebra tgπ. Substituting (3.7) and (3.9) into (3.2), we find

    [x1+v1,x2+v2,x3+v3]=strπ(x1)[[x2+v2,x3+v3]]+(1)^x1^x2x3strπ(x2)[[x3+v3,x1+v1]]+(1)^x3^x2x1strπ(x3)[[x1+v1,x2+v2]], (3.10)

    According to Lemma 3.3, the bracket [[x, y]] determines the structure of Hom-Lie superalgebra on gV. Thus, the graded ternary bracket (3.10) has the form of a graded ternary bracket for an induced 3-Hom-Lie superalgebra constructed with the help of a graded Hom-Lie bracket and the super trace. Hence, the graded ternary bracket (3.10) determines the induced 3-Hom-Lie superalgebra on gV and therefore, (3.9) is a representation of 3-Hom-Lie superalgebra.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors give special thanks to referees for many helpful suggestions. This work was supported by NNSF of China (No. 11771069) and the Special Project of Basic Business for Heilongjiang Provincial Education Department (No. 135509137).

    The authors declare there is no conflicts of interest.



    [1] C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, Front. Energy Res., 3 (2015). https://doi.org/10.3389/fenrg.2015.00023 doi: 10.3389/fenrg.2015.00023
    [2] L. Lai, H. Yang, L. Wang, B. K. Teh, J. Zhong, H. Chou, et al., Preparation of supercapacitor electrodes through selection of graphene surface functionalities, ACS Nano, 6 (2012), 5941–5951. https://doi.org/10.1021/nn3008096 doi: 10.1021/nn3008096
    [3] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9 (2007), 1774. https://doi.org/10.1039/b618139m doi: 10.1039/b618139m
    [4] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources, 195 (2010), 7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036 doi: 10.1016/j.jpowsour.2010.06.036
    [5] Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, H. M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS Nano, 4 (2010), 5835–5842. https://doi.org/10.1021/nn101754k doi: 10.1021/nn101754k
    [6] P. Forouzandeh, V. Kumaravel, S. C. Pillai, Electrode materials for supercapacitors: a review of recent advances, Catalysts, 10 (2020), 969. https://doi.org/10.3390/catal10090969 doi: 10.3390/catal10090969
    [7] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113 (2009), 13103–13107. https://doi.org/10.1021/jp902214f doi: 10.1021/jp902214f
    [8] Y. Shabangoli, M. S. Rahmanifar, A. Noori, M. F. El-Kady, R. B. Kaner, M. F. Mousavi, Nile blue functionalized graphene aerogel as a pseudocapacitive negative electrode material across the full pH range, ACS Nano, 13 (2019), 12567–12576. https://doi.org/10.1021/acsnano.9b03351 doi: 10.1021/acsnano.9b03351
    [9] H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, et al., Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor, Small, 13 (2017), 1701026. https://doi.org/10.1002/smll.201701026 doi: 10.1002/smll.201701026
    [10] N. Syarif, T. A. Ivandini, W. Wibowo, Direct synthesis carbon/metal oxide composites for electrochemical capacitors electrode, Int. Trans. J. Eng. Manage. Appl. Sci. Technol., 3 (2012), 21–34. Available from: https://tuengr.com/V03/21-34.pdf.
    [11] L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (2009), 2520–2531. https://doi.org/10.1039/b813846j doi: 10.1039/b813846j
    [12] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4 doi: 10.1016/S0008-6223(00)00183-4
    [13] P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more, Electrochem. Soc. Interface, 17 (2008), 38–43. https://doi.org/10.1149/2.F05081IF doi: 10.1149/2.F05081IF
    [14] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 77 (2000), 2421–2423. https://doi.org/10.1063/1.1290146 doi: 10.1063/1.1290146
    [15] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39 (2010), 4146–4157. https://doi.org/10.1039/c002690p doi: 10.1039/c002690p
    [16] Y. B. Tan, J. M. Lee, Graphene for supercapacitor applications, J. Mater. Chem. A, 1 (2013), 14814–14843. https://doi.org/10.1039/c3ta12193c doi: 10.1039/c3ta12193c
    [17] T. Y. Kim, G. Jung, S. Yoo, K. S. Suh, R. S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano, 7 (2013), 6899–6905. https://doi.org/10.1021/nn402077v doi: 10.1021/nn402077v
    [18] V. C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J Alloys Compd., 682 (2016), 381–403. https://doi.org/10.1016/j.jallcom.2016.04.242 doi: 10.1016/j.jallcom.2016.04.242
    [19] J. Y. Hwang, M. F. El-Kady, Y. Wang, L. Wang, Y. Shao, K. Marsh, et al., Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage, Nano Energy, 18 (2015), 57–70. https://doi.org/10.1016/j.nanoen.2015.09.009 doi: 10.1016/j.nanoen.2015.09.009
    [20] D. Zhao, X. Guo, Y. Gao, F. Gao, An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide, ACS Appl. Mater. Interfaces, 4 (2012), 5583–5589. https://doi.org/10.1021/am301484s doi: 10.1021/am301484s
    [21] I. Acznik, K. Lota, A. Sierczynska, G. Lota, Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors, Int. J. Electrochem. Sci., 9 (2014), 2518–2534. Available from: http://www.electrochemsci.org/papers/vol9/90502518.pdf.
    [22] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano, 4 (2010), 2822–2830. https://doi.org/10.1021/nn901311t doi: 10.1021/nn901311t
    [23] J. G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Prog. Mater. Sci., 74 (2015), 51–124. https://doi.org/10.1016/j.pmatsci.2015.04.003 doi: 10.1016/j.pmatsci.2015.04.003
    [24] D. D. Zhao, M. W. Xu, W. J. Zhou, J. Zhang, H. L. Li, Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route, Electrochim. Acta, 53 (2008), 2699–2705. https://doi.org/10.1016/j.electacta.2007.07.053 doi: 10.1016/j.electacta.2007.07.053
    [25] Y. Wang, Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15, Electrochim. Acta, 51 (2006), 3223–3227. https://doi.org/10.1016/j.electacta.2005.09.013 doi: 10.1016/j.electacta.2005.09.013
    [26] B. Li, M. Zheng, H. Xue, H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorg. Chem. Front., 3 (2016), 175–202. https://doi.org/10.1039/C5QI00187K doi: 10.1039/C5QI00187K
    [27] S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishrab, S. Kundu, One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors, RSC Adv., 7 (2017), 5898–5911. https://doi.org/10.1039/C6RA26584G doi: 10.1039/C6RA26584G
    [28] H. Wang, H. S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132 (2010), 7472–7477. https://doi.org/10.1021/ja102267j doi: 10.1021/ja102267j
    [29] Q. T. Qu, L. L. Liu, Y. P. Wu, R. Holze, Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution, Electrochim. Acta, 96 (2013), 8–12. https://doi.org/10.1016/j.electacta.2013.02.078 doi: 10.1016/j.electacta.2013.02.078
    [30] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597. https://doi.org/10.1039/c3ee44164d doi: 10.1039/c3ee44164d
    [31] Y. Liu, J. Zhou, J. Tang, W. Tang, Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors, Chem. Mater., 27 (2015), 7034–7041. https://doi.org/10.1021/acs.chemmater.5b03060 doi: 10.1021/acs.chemmater.5b03060
    [32] G. A. Snook, P. Kao, A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 196 (2011), 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084 doi: 10.1016/j.jpowsour.2010.06.084
    [33] C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett., 13 (2013), 2078–2085. https://doi.org/10.1021/nl400378j doi: 10.1021/nl400378j
    [34] Poonam, K. Sharma, A. Arora, S. K. Tripathi, Review of supercapacitors: materials and devices, J. Energy Storage, 21 (2019), 801–825. https://doi.org/10.1016/j.est.2019.01.010 doi: 10.1016/j.est.2019.01.010
    [35] M. Mastragostino, Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, 148 (2002), 493–498. https://doi.org/10.1016/S0167-2738(02)00093-0 doi: 10.1016/S0167-2738(02)00093-0
    [36] K. Xie, B. Wei, Materials and structures for stretchable energy storage and conversion devices, Adv. Mater., 26 (2014), 3592–3617. https://doi.org/10.1002/adma.201305919 doi: 10.1002/adma.201305919
    [37] I. I. Karayalcin, The analytic hierarchy process: planning, priority setting, resource allocation, Eur. J. Oper. Res., 9 (1982), 97–98. https://doi.org/10.1016/0377-2217(82)90022-4 doi: 10.1016/0377-2217(82)90022-4
    [38] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [39] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision Making Series), McGraw-Hill, (1980), 1–287.
    [40] M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, Z. Turskis, Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26 (2015), 435–451. https://doi.org/10.15388/Informatica.2015.57 doi: 10.15388/Informatica.2015.57
    [41] J. L. Deng, Introduction to Grey system theory, J. Grey Syst., 1 (1989), 1–24.
    [42] T. C. Chang, S. J. Lin, Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan, J. Environ. Manage., 56 (1999), 247–257. https://doi.org/10.1006/jema.1999.0288 doi: 10.1006/jema.1999.0288
    [43] L. Li, X. Wang, S. Wang, Z. Cao, Z. Wu, H. Wang, et al., Activated carbon prepared from lignite as supercapacitor electrode materials, Electroanalysis, 28 (2016), 243–248. https://doi.org/10.1002/elan.201500532 doi: 10.1002/elan.201500532
    [44] M. Zhang, J. Cheng, L. Zhang, Y. Li, M. S. Chen, Y. Chen, et al., Activated carbon by one-step calcination of deoxygenated agar for high voltage lithium ion supercapacitor, ACS Sustain. Chem. Eng., 8 (2020), 3637–3643. https://doi.org/10.1021/acssuschemeng.9b06347 doi: 10.1021/acssuschemeng.9b06347
    [45] F. Cheng, X. Yang, S. Zhang, W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450 (2020), 227678. https://doi.org/10.1016/j.jpowsour.2019.227678 doi: 10.1016/j.jpowsour.2019.227678
    [46] Y. J. Hsiao, L. Y. Lin, Efficient pore engineering in carbonized zeolitic imidazolate Framework-8 via chemical and physical methods as active materials for supercapacitors, J. Power Sources, 486 (2021), 229370. https://doi.org/10.1016/j.jpowsour.2020.229370 doi: 10.1016/j.jpowsour.2020.229370
    [47] Y. H. Chiu, L. Y. Lin, Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors, J. Taiwan Inst. Chem. Eng., 101 (2019), 177–185. https://doi.org/10.1016/j.jtice.2019.04.050 doi: 10.1016/j.jtice.2019.04.050
    [48] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinyaa, L. C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys., 13 (2011), 17615. https://doi.org/10.1039/c1cp21910c doi: 10.1039/c1cp21910c
    [49] Q. Liu, J. Yang, X. Luo, Y. Miao, Y. Zhang, W. Xu, et al., Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor, Ceram. Int., 46 (2020), 11874–11881. https://doi.org/10.1016/j.ceramint.2020.01.222 doi: 10.1016/j.ceramint.2020.01.222
    [50] H. Kim, B. N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources, 104 (2002), 52–61. https://doi.org/10.1016/S0378-7753(01)00903-X doi: 10.1016/S0378-7753(01)00903-X
    [51] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang, et al., Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors, Electrochim. Acta, 246 (2017), 433–442. https://doi.org/10.1016/j.electacta.2017.06.019 doi: 10.1016/j.electacta.2017.06.019
    [52] O. Ghodbane, J. L. Pascal, F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors, ACS Appl. Mater. Interfaces, 1 (2009), 1130–1139. https://doi.org/10.1021/am900094e doi: 10.1021/am900094e
    [53] J. Dong, G. Lu, F. Wu, C. Xu, X. Kang, Z. Cheng, Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors, Appl. Surf. Sci., 427 (2018), 986–993. https://doi.org/10.1016/j.apsusc.2017.07.291 doi: 10.1016/j.apsusc.2017.07.291
    [54] Z. Lu, Z. Chang, J. Liu, X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays, Nano Res., 4 (2011), 658–665. https://doi.org/10.1007/s12274-011-0121-1 doi: 10.1007/s12274-011-0121-1
    [55] P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes, Electrochim. Acta, 294 (2019), 383–390. https://doi.org/10.1016/j.electacta.2018.10.112 doi: 10.1016/j.electacta.2018.10.112
    [56] C. S. Kwak, T. H. Ko, J. H. Lee, H. Y. Kim, B. S. Kim, Flexible transparent symmetric solid-state supercapacitors based on NiO-decorated nanofiber-based composite electrodes with excellent mechanical flexibility and cyclability, ACS Appl. Energy Mater., 3 (2020), 2394–2403. https://doi.org/10.1021/acsaem.9b02073 doi: 10.1021/acsaem.9b02073
    [57] A. Ray, A. Roy, S. Saha, M. Ghosh, S. R. Chowdhury, T. Maiyalagan, et al., Electrochemical energy storage properties of Ni-Mn-Oxide electrodes for advance asymmetric supercapacitor application, Langmuir, 35 (2019), 8257–8267. https://doi.org/10.1021/acs.langmuir.9b00955 doi: 10.1021/acs.langmuir.9b00955
    [58] P. Y. Lee, L. Y. Lin, Developing zeolitic imidazolate frameworks 67-derived fluorides using 2-methylimidazole and ammonia fluoride for energy storage and electrocatalysis, Energy, 239 (2022), 122129. https://doi.org/10.1016/j.energy.2021.122129 doi: 10.1016/j.energy.2021.122129
    [59] K. L. Chiu, L. Y. Lin, Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution, J. Mater. Chem. A, 7 (2019), 4626–4639. https://doi.org/10.1039/C8TA11471D doi: 10.1039/C8TA11471D
    [60] H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, et al., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun., 4 (2013), 1894. https://doi.org/10.1038/ncomms2932 doi: 10.1038/ncomms2932
    [61] Z. Xiao, P. Liu, J. Zhang, H. Qi, J. Liu, B. Li, et al., Pillar-coordinated strategy to modulate phase transfer of α-Ni(OH)2 for enhanced supercapacitor application, ACS Appl. Energy Mater., 3 (2020), 5628–5636. https://doi.org/10.1021/acsaem.0c00596 doi: 10.1021/acsaem.0c00596
    [62] T. Xia, X. Zhang, J. Zhao, Q. Li, C. Ao, R. Hu, et al., Flexible and conductive carbonized cotton fabrics coupled with a nanostructured Ni(OH)2 coating for high performance aqueous symmetric supercapacitors, ACS Sustainable Chem. Eng., 7 (2019), 5231–5239. https://doi.org/10.1021/acssuschemeng.8b06150 doi: 10.1021/acssuschemeng.8b06150
    [63] M. J. Deng, L. H. Yeh, Y. H. Lin, J. M. Chen, T. H. Chou, 3D network V2O5 electrodes in a gel electrolyte for high-voltage wearable symmetric pseudocapacitors, ACS Appl. Mater. Interfaces, 11 (2019), 29838–29848. https://doi.org/10.1021/acsami.9b07845 doi: 10.1021/acsami.9b07845
    [64] H. C. Chen, Y. C. Lin, Y. L. Chen, C. J. Chen, Facile fabrication of three-dimensional hierarchical nanoarchitectures of VO2/Graphene@NiS2 hybrid aerogel for high-performance all-solid-state asymmetric supercapacitors with ultrahigh energy density, ACS Appl. Energy Mater., 2 (2019), 459–467. https://doi.org/10.1021/acsaem.8b01486 doi: 10.1021/acsaem.8b01486
    [65] W. Bi, Y. Wu, C. Liu, J. Wang, Y. Du, G. Gao, et al., Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors, ACS Appl. Energy Mater., 2 (2019), 668–677. https://doi.org/10.1021/acsaem.8b01676 doi: 10.1021/acsaem.8b01676
    [66] K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors, J. Phys. Chem. C, 114 (2010), 8062–8067. https://doi.org/10.1021/jp9113255 doi: 10.1021/jp9113255
    [67] C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 6 (2006), 2690–2695. https://doi.org/10.1021/nl061576a doi: 10.1021/nl061576a
    [68] Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A, 2 (2014), 6086–6091. https://doi.org/10.1039/C4TA00484A doi: 10.1039/C4TA00484A
    [69] P. Bober, N. Gavrilov, A. Kovalcik, M. Mičušík, C. Unterweger, I. A. Pašti, et al., Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues, Mater. Chem. Phys., 213 (2018), 352–361. https://doi.org/10.1016/j.matchemphys.2018.04.043 doi: 10.1016/j.matchemphys.2018.04.043
    [70] F. Zhang, J. Tang, N. Shinya, L. C. Qin, Hybrid graphene electrodes for supercapacitors of high energy density, Chem. Phys. Lett., 584 (2013), 124–129. https://doi.org/10.1016/j.cplett.2013.08.021 doi: 10.1016/j.cplett.2013.08.021
    [71] H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance, J. Mater. Chem. A, 2 (2014), 3223–3230. https://doi.org/10.1039/C3TA15046A doi: 10.1039/C3TA15046A
    [72] S. D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J. P. Ferraris, et al., Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors, Adv. Energy Mater., 1 (2011), 936–945. https://doi.org/10.1002/aenm.201100221 doi: 10.1002/aenm.201100221
    [73] L. Hu, N. Yan, Q. Chen, P. Zhang, H. Zhong, X. Zheng, et al., Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage, Chem. - A Eur. J., 18 (2012), 8971–8977. https://doi.org/10.1002/chem.201200770 doi: 10.1002/chem.201200770
    [74] Y. Yang, Y. Xi, J. Li, G. Wei, N. I. Klyui, W. Han, Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes, Nanoscale Res. Lett., 12 (2017), 394. https://doi.org/10.1186/s11671-017-2159-9 doi: 10.1186/s11671-017-2159-9
    [75] J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, et al., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. Power Sources, 195 (2010), 3041–3045. https://doi.org/10.1016/j.jpowsour.2009.11.028 doi: 10.1016/j.jpowsour.2009.11.028
    [76] J. Jaidev, S. Ramaprabhu, Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications, J. Mater. Chem., 22 (2012), 18775–18783. https://doi.org/10.1039/C2JM33627H doi: 10.1039/C2JM33627H
    [77] M. S. Nam, U. Patil, B. Park, H. B. Sim, S. C. Jun, A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application, RSC Adv., 6 (2016), 101592–101601. https://doi.org/10.1039/C6RA16078F doi: 10.1039/C6RA16078F
    [78] Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, Y. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors, J. Mater. Chem. A, 1 (2013), 13582. https://doi.org/10.1039/c3ta12902k doi: 10.1039/c3ta12902k
    [79] R. P. Raj, P. Ragupathy, S. Mohan, Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications, J. Mater. Chem. A, 3 (2015), 24338–24348. https://doi.org/10.1039/C5TA07046E doi: 10.1039/C5TA07046E
    [80] Z. S. Iro, C. Subramani, S. S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 11 (2016), 10628–10643. https://doi.org/10.20964/2016.12.50 doi: 10.20964/2016.12.50
    [81] A. M. Al-Syadi, Electrochemical performance of Na2O–Li2O–P2S5–V2S5 glass–ceramic nanocomposites as electrodes for supercapacitors, Appl. Phys. A, 127 (2021), 755. https://doi.org/10.1007/s00339-021-04899-7 doi: 10.1007/s00339-021-04899-7
    [82] A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, G. E. Enany, M. M. El-Desoky, Effect of sulfur addition on the electrochemical performance of lithium‑vanadium-phosphate glasses as electrodes for energy storage devices, J. Electroanal. Chem., 804 (2017), 36–41. https://doi.org/10.1016/j.jelechem.2017.09.041 doi: 10.1016/j.jelechem.2017.09.041
    [83] M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, G. E. Enany, Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices, J. Solid State Electrochem., 20 (2016), 2663–2671. https://doi.org/10.1007/s10008-016-3267-7 doi: 10.1007/s10008-016-3267-7
    [84] M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, Effect of sulfur addition and nanocrystallization on the transport properties of lithium–vanadium–phosphate glasses, J. Mater. Sci. Mater. Electron., 29 (2018), 968–977. https://doi.org/10.1007/s10854-017-7994-z doi: 10.1007/s10854-017-7994-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12354) PDF downloads(63) Cited by(2)

Figures and Tables

Figures(4)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog