Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article

On the fractional total domatic numbers of incidence graphs

  • For a hypergraph H with vertex set X and edge set Y, the incidence graph of hypergraph H is a bipartite graph I(H)=(X,Y,E), where xyE if and only if xX, yY and xy. A total dominating set of graph G is a vertex subset that intersects every open neighborhood of G. Let M be a family of (not necessarily distinct) total dominating sets of G and rM be the maximum times that any vertex of G appears in M. The fractional domatic number G is defined as FTD(G)=supM|M|rM. In 2018, Goddard and Henning showed that the incidence graph of every complete k-uniform hypergraph H with order n has FTD(I(H))=nnk+1 when n2k4. We extend the result to the range n>k2. More generally, we prove that every balanced n-partite complete k-uniform hypergraph H has FTD(I(H))=nnk+1 when nk and HK(n)n, where FTD(I(K(n)n))=1.

    Citation: Yameng Zhang, Xia Zhang. On the fractional total domatic numbers of incidence graphs[J]. Mathematical Modelling and Control, 2023, 3(1): 73-79. doi: 10.3934/mmc.2023007

    Related Papers:

    [1] Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074
    [2] Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045
    [3] Xuejiao Chen, Yuanfei Li . Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow. Electronic Research Archive, 2023, 31(1): 421-441. doi: 10.3934/era.2023021
    [4] Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104
    [5] Liting Yu, Lenan Wang, Jianzhong Pei, Rui Li, Jiupeng Zhang, Shihui Cheng . Structural optimization study based on crushing of semi-rigid base. Electronic Research Archive, 2023, 31(4): 1769-1788. doi: 10.3934/era.2023091
    [6] Mingjun Zhou, Jingxue Yin . Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, 2021, 29(3): 2417-2444. doi: 10.3934/era.2020122
    [7] Wenya Qi, Padmanabhan Seshaiyer, Junping Wang . A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29(3): 2517-2532. doi: 10.3934/era.2020127
    [8] Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197
    [9] Pan Zhang, Lan Huang . Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384
    [10] Karl Hajjar, Lénaïc Chizat . On the symmetries in the dynamics of wide two-layer neural networks. Electronic Research Archive, 2023, 31(4): 2175-2212. doi: 10.3934/era.2023112
  • For a hypergraph H with vertex set X and edge set Y, the incidence graph of hypergraph H is a bipartite graph I(H)=(X,Y,E), where xyE if and only if xX, yY and xy. A total dominating set of graph G is a vertex subset that intersects every open neighborhood of G. Let M be a family of (not necessarily distinct) total dominating sets of G and rM be the maximum times that any vertex of G appears in M. The fractional domatic number G is defined as FTD(G)=supM|M|rM. In 2018, Goddard and Henning showed that the incidence graph of every complete k-uniform hypergraph H with order n has FTD(I(H))=nnk+1 when n2k4. We extend the result to the range n>k2. More generally, we prove that every balanced n-partite complete k-uniform hypergraph H has FTD(I(H))=nnk+1 when nk and HK(n)n, where FTD(I(K(n)n))=1.



    The Forchheimer model equation describes the flow in a polar medium, which is widely used in fluid mechanics (see [1,2]). Increasing scholars have studied the spatial properties of the solution to the fluid equation defined on a semi-infinite cylinder, and a large number of results have emerged (see [3,4,5,6,7,8,9]).

    In 2002, Payne and Song [3] have studied the following Forchheimer model

    \begin{align} b|\mathit{\boldsymbol{u}}|u_i+(1+\gamma T) u_i = -p_{,i}+g_i T,\ &in\ \Omega\times\{t > 0\}, \end{align} (1.1)
    \begin{align} u_{i,i} = 0,\ &in\ \Omega\times\{t > 0\}, \end{align} (1.2)
    \begin{align} \partial_{t}T+u_i T_{,i} = \Delta T, \ &in\ \Omega\times\{t > 0\}, \end{align} (1.3)

    where i = 1, 2, 3 . u_i, p, T represent the velocity, pressure, and temperature of the flow, respectively. g_i is a known function. \Delta is the Laplace operator, \gamma > 0 is a constant, and b is the Forchheimer coefficient. For simplicity, we assume that

    \begin{align*} g_ig_i\leq1. \end{align*}

    In (1.1)–(1.3), \Omega is defined as

    \Omega = \Big\{(x_1, x_2, x_3)\Big|(x_1, x_2)\in D,\ x_3\geq0\Big\},

    where D is a bounded simply-connected region on (x_1, x_2) -plane.

    In this paper, the comma is used to indicate partial differentiation and the usual summation convection is employed, with repeated Latin subscripts summed from 1 to 3, e.g., u_{i, j}u_{i, j} = \sum_{i, j = 1}^3\Big(\frac{\partial u_i }{\partial x_j}\Big)^2 . We also use the summation convention summed from 1 to 2, e.g., u_{\alpha, \beta}u_{\alpha, \beta} = \sum_{\alpha, \beta = 1}^2\Big(\frac{\partial u_\alpha}{\partial x_\beta}\Big)^2 .

    The Eqs (1.1)–(1.3) also satisfy the following initial-boundary conditions

    \begin{align} u_i(x_1, x_2, x_3, t) = 0, \ T(x_1, x_2, x_3, t) = 0,\ & on\ \partial D\times\{x_3 > 0\}\times\{t > 0\}, \end{align} (1.4)
    \begin{align} u_i(x_1, x_2, 0, t) = f_i(x_1, x_2, t),\ & on\ D\times\{t > 0\}, \end{align} (1.5)
    \begin{align} T(x_1, x_2, 0, t) = H(x_1, x_2, t),\ &on\ D\times\{t > 0\}, \end{align} (1.6)
    \begin{align} T(x_1, x_2, x_3, 0) = 0, \ &(x_1, x_2, x_3)\in \Omega, \end{align} (1.7)
    \begin{align} |\mathit{\boldsymbol{u}}|, |T| = O(1), \ |u_3|, |\nabla T|, |p| = o(x_3^{-1}), \ &as\ x_3\rightarrow \infty. \end{align} (1.8)

    where f_i and H are differentiable functions.

    In this paper, we will study the structural stability of Eqs (1.1)–(1.8) on \Omega by using the spatial decay results obtained in [3]. Since the concept of structural stability was proposed by Hirsch and Smale [10], the structural stability of various types of partial differential equations defined in a bounded domain has received sufficient attention(see [11,12,13,14,15,16,17,18,19]). Some perturbations are inevitable in the process of model establishment and simplification, so it is necessary to study that whether such small perturbations of the equations themselves will cause great changes in the solutions. This gives rise to the phenomenon of structural stability.

    If the bounded domain is replaced by a semi-infinite pipe, the structural stability of the partial differential equations is very interesting and has begun to attract attention. Li and Lin [20] considered the continuous dependence on the Forchheimer coefficient of Forchheimer equations in a semi-infinite pipe. Different from the studies of[11,12,13,14,15,16,17,18,19], we should consider not only the time variable but also the space variable. Therefore, the methods in the literature cannot be directly applied to the semi-infinite region. Compared with [3], we not only reconfirmed the spatial decay result of [3], but also proved the structural stability of the solution to b and \gamma .

    We also introduce the notations:

    \Omega_z = \Big\{(x_1, x_2, x_3)| (x_1, x_2)\in D, x_3\geq z\geq 0\Big\},
    D_z = \Big\{(x_1, x_2, x_3)| (x_1, x_2)\in D, x_3 = z\geq 0\Big\},

    where z is a running variable along the x_3 axis.

    First, to obtain the main result, we shall make frequent use of the following three inequalities.

    Lemma 2.1.(see[21]) If \phi is a Dirichlet integrable function on \Omega and \int_\Omega\phi dx = 0 , then there exists a Dirichlet integrable function \textbf{w} = (w_1, w_2, w_3) such that

    \begin{align*} w_{i,i} = \phi,\ in\ \Omega, \ w_i = 0, \ on\ \partial \Omega, \end{align*}

    and a positive constant k_1 depends only on the geometry of \Omega such that

    \int_\Omega w_{i,j}w_{i,j}dx\leq k_1\int_\Omega (w_{i, i})^2dx.

    Lemma 2.2.(see [3,4]) If \phi\Big|_{\partial D} = 0, then

    \begin{align*} \lambda\int_D\phi^2dA\leq\int_D\phi_{,\alpha}\phi_{,\alpha} dA, \end{align*}

    where \lambda is the smallest positive eigenvalue of

    \Delta_2\vartheta+\lambda\vartheta = 0, \ in\ D,\ \vartheta = 0,\ on\ \partial D.

    Here \Delta_2 is a two-dimensional Laplace operator.

    Now, we give a lemma which has been proved by Horgan and Wheeler [4] and has been used by Payne and Song [6].

    Lemma 2.3.(see [3,4]) If \phi is a Dirichlet integrable function and \phi\Big|_{\partial D} = 0, \phi\rightarrow \infty (as x_3\rightarrow \infty ),

    \int_{\Omega_z}|\phi|^4dx\leq k_2\Big(\int_{\Omega_z}\phi_{,j}\phi_{,j}dx\Big)^2,

    where k_2 > 0 .

    Lemma 2.4. If \phi\in C_0^1(\Omega) , then

    \int_{\Omega_z}|\phi|^6dx\leq \Lambda\Big(\int_{\Omega_z}\phi_{,i}\phi_{,i}dx\Big)^3,

    where [22,23] have proved that the optimal value of \Lambda is determined to be \Lambda = \frac{1}{27}\Big(\frac{3}{4}\Big)^4 .

    Using the maximum principle for the temperature T , we can have the following lemma which has been used in Song [5].

    Lemma 2.5. Assume that H\in L^\infty(\Omega) , then

    \sup\limits_{\Omega\times\{t > 0\}}|T|\leq T_M,

    where T_M = \sup_{\Omega\times\{t > 0\}}H .

    Second, we list some useful results which have been derived by Payne and Song [3].

    Payne and Song have established a function

    \begin{align} P(z, t)& = \int_0^t\int_{\Omega_{z}}(\xi-z)T_{,i}T_{,i}dxd\eta+a_1\int_0^t\int_{\Omega_{z}}|\mathit{\boldsymbol{u}}|^3dxd\eta +a_2\int_0^t\int_{\Omega_{z}}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dxd\eta, \end{align} (2.1)

    where a_1 and a_2 are positive constants. From Eqs (3.27) and (3.36) of [3], we know that

    \begin{align} P(z, t)\leq P(0,t)e^{-\frac{z}{k_3}},\ P(0, t)\leq k_4(t), \end{align} (2.2)

    where k_3 is a positive constant and k_4(t) is a function related to the boundary values.

    Combining Eqs (2.1) and (2.2), we have the following lemma.

    Lemma 2.6. Assume that H\in L^\infty(\Omega) and \int_DfdA = 0 , then

    \begin{align} a_1\int_0^t\int_{\Omega_{z}}|\mathit{\boldsymbol{u}}|^3dxd\eta +a_2\int_0^t\int_{\Omega_{z}}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dxd\eta \leq k_4(t)e^{-\frac{z}{k_3}}. \end{align}

    In order to derive the main result, we need bounds for ||\textbf{u}||_{L^2(\Omega)}^2 and ||\textbf{u}||_{L^2(\Omega)}^3 .

    Lemma 2.7. Assume that f_i\in H^1(\Omega), H, \widetilde{H}\in L^\infty(\Omega) , \int_Df_3dA = 0 and f_{\alpha, \alpha}-\gamma f_3 = 0 then

    b\int_{\Omega}|\mathit{\boldsymbol{u}}|^3dx+\int_{\Omega}|\mathit{\boldsymbol{u}}|^2dx\leq k_5(t),

    where k_6(t) is a positive function.

    Proof. To deal with boundary terms, we set \textbf{S} = (S_1, S_2, S_3) , where

    \begin{align} S_i = f_ie^{-\gamma_1 x_3}, \ \gamma_1 > 0. \end{align} (2.3)

    Using Eq (1.1), we have

    \begin{align} \ \int_{\Omega}\Big[b|\mathit{\boldsymbol{u}}|u_i+(1+\gamma T) u_i+p_{,i}-g_i T\Big](u_i-S_i)dx = 0. \end{align}

    Using the divergence theorem, we have

    \begin{align} b\int_{\Omega}|\mathit{\boldsymbol{u}}|^3dx+\int_{\Omega}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dx& = b\int_{\Omega}|\mathit{\boldsymbol{u}}|u_iS_idx +\int_{\Omega}(1+\gamma T)u_iS_idx \\ &-\int_{\Omega}g_iTu_idx+\int_{\Omega}g_iTS_idx. \end{align} (2.4)

    Using the Hölder inequality and Young's inequality, we have

    \begin{align} b\int_{\Omega}|\mathit{\boldsymbol{u}}|u_iS_idx&\leq b\Big(\int_{\Omega}|\mathit{\boldsymbol{u}}|^3dx\Big)^\frac{2}{3} \Big(\int_{\Omega}|\mathit{\boldsymbol{S}}|^3dx\Big)^\frac{1}{3} \\ &\leq \frac{2}{3}b\varepsilon_1\int_{\Omega}|\mathit{\boldsymbol{u}}|^3dx+ \frac{1}{3}b\varepsilon_1^{-2}\int_{\Omega}|\mathit{\boldsymbol{S}}|^3dx, \end{align} (2.5)
    \begin{align} \int_{\Omega}(1+\gamma T)u_iS_idx&\leq\frac{1}{4}\int_{\Omega}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dx +(1+\gamma T_M)\int_{\Omega}|\mathit{\boldsymbol{S}}|^2dx, \end{align} (2.6)
    \begin{align} -\int_{\Omega}g_iTu_idx&\leq \sqrt{T_M}\Big(\int_{\Omega}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dx\int_{\Omega}g_ig_idx\Big)^\frac{1}{2} \\ &\leq \frac{1}{4}\int_{\Omega}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dx+\frac{T_M}{\gamma}\int_{\Omega}g_ig_idx, \end{align} (2.7)
    \begin{align} \int_{\Omega}g_iTS_idx&\leq T_M\int_{\Omega}|g_iS_i|dx. \end{align} (2.8)

    Inserting Eqs (2.5)–(2.8) into Eq (2.4) and choosing that \varepsilon_1 = \frac{3}{4} , we obtain

    \begin{align} b\int_{\Omega}|\mathit{\boldsymbol{u}}|^3dx+\int_{\Omega}(1+\gamma T)|\mathit{\boldsymbol{u}}|^2dx& \leq\frac{2}{3}b\varepsilon_1^{-2}\int_{\Omega}|\mathit{\boldsymbol{S}}|^3dx +2(1+\gamma T_M)\int_{\Omega}|\mathit{\boldsymbol{S}}|^2dx \\ &+\frac{2T_M}{\gamma}\int_{\Omega}g_ig_idx+2T_M\int_{\Omega}|g_iS_i|dx. \end{align} (2.9)

    After choosing

    \begin{align} k_5(t)& = \frac{2}{3}b\varepsilon_1^{-2}\int_{\Omega}|\mathit{\boldsymbol{S}}|^3dx +2(1+\gamma T_M)\int_{\Omega}|\mathit{\boldsymbol{S}}|^2dx \\ &+\frac{2T_M}{\gamma}\int_{\Omega}g_ig_idx+2T_M\int_{\Omega}|g_iS_i|dx, \end{align} (2.10)

    we can complete the proof of Lemma 2.7.

    In this section, we derive an important lemma which leads to our main result.

    Assume that (u_i^*, T^*, p^*) is a solution of Eqs (1.1)–(1.8) when b = b^* . If we let

    \mathcal{D}_i = u_i-u_i^*,\ \Sigma = T-T^*,\ \pi = p-p^*, \ \widetilde{b} = b-b^*,

    then (\mathcal{D}_i, \Sigma, \pi) satisfies

    \begin{align} [b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*]+(1+\gamma T)\mathcal{D}_i+\gamma\Sigma u_i^* = -\pi_{,i}+g_i\Sigma,\ &in\ \Omega\times\{t > 0\}, \end{align} (3.1)
    \begin{align} \mathcal{D}_{i,i} = 0,\ &in\ \Omega\times\{t > 0\}, \end{align} (3.2)
    \begin{align} \partial_{t}\Sigma+u_i\Sigma_{,i}+\mathcal{D}_i T^*_{,i} = \Delta\Sigma, \ &in\ \Omega\times\{t > 0\}, \end{align} (3.3)
    \begin{align} \mathcal{D}_i = 0, \Sigma = 0,\ & on\ \partial D\times\{x_3 > 0\}\times\{t > 0\}, \end{align} (3.4)
    \begin{align} \mathcal{D}_i = 0, \Sigma = 0,\ & on\ D\times\{t > 0\}, \end{align} (3.5)
    \begin{align} \Sigma(x_1, x_2, x_3, 0) = 0, \ &in \ \Omega \end{align} (3.6)
    \begin{align} |\mathit{\boldsymbol{u}}|, |\Sigma| = O(1), |\mathcal{D}_3|, |\nabla\Sigma|, |\pi| = o(x_3^{-1}),&\ as\ x_3\rightarrow \infty. \end{align} (3.7)

    We can have the following lemma.

    Lemma 3.1. Assume that (\mathcal{D}_i, \Sigma, \pi) is a solution to Eqs (3.1)–(3.6) with \int_Df_3dA = 0, H\in L^\infty(\Omega) and the boundary data (e.g., H ) satisfies Eq (3.21), then

    \begin{align*} \Phi(z, t)&\leq n_6^*\Big[-\frac{\partial}{\partial z}\Phi(z, t)\Big]+n_7(t)\widetilde{b}^2e^{-\frac{z}{k_3}}, \end{align*}

    where n_6^* is the maximum of n_6(t) and n_6(t), n_7(t) will be defined in Eq (3.39).

    Proof. We define an auxiliary function

    \begin{align} \Phi_1(z, t)& = \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\pi\mathcal{D}_3dx d\eta, \end{align} (3.8)

    where \omega > 0 .

    Using the divergence theorem and Eq (3.1), we have

    \begin{align} \Phi_1(z, t)& = -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\pi_{,i}\mathcal{D}_idx d\eta \\ & = \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_i[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*]dx d\eta \\ & +\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\gamma\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_i\Sigma u_i^*dx d\eta -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_ig_i\Sigma dx d\eta. \end{align} (3.9)

    Since

    \begin{align} \mathcal{D}_i\Big[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*\Big] & = \frac{\widetilde{b}}{2}\mathcal{D}_i\Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big] +\frac{b_1+b_2}{2}\mathcal{D}_i\Big[|\mathit{\boldsymbol{u}}|u_i-|\mathit{\boldsymbol{u}}^*|u_i^*\Big] \\ & = \frac{\widetilde{b}}{2}\Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]\mathcal{D}_i +\frac{b_1+b_2}{4}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_i \\ &+\frac{b_1+b_2}{4}\Big[|\mathit{\boldsymbol{u}}|-|\mathit{\boldsymbol{u}}^*|\Big]^2\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big], \end{align}

    from Eq (3.9) we have

    \begin{align} \Phi_1(z, t)& = \frac{b_1+b_2}{4}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta+ \\ & \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{\widetilde{b}}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z) \Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]\mathcal{D}_idx d\eta \\ & +\frac{b_1+b_2}{4} \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|-|\mathit{\boldsymbol{u}}^*|\Big]^2 \Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]dx d\eta \\ &+\gamma\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_i\Sigma u_i^*dx d\eta -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_ig_i\Sigma dx d\eta. \end{align} (3.10)

    Using the Hölder inequality, Young's inequality and Lemma 2.6, we obtain

    \begin{align} \frac{\widetilde{b}}{2}&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} \Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]\mathcal{D}_idx d\eta \\ &\geq-\frac{\widetilde{b}}{2}\Big(\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}|\mathit{\boldsymbol{u}}|\mathcal{D}_i\mathcal{D}_idx d\eta\Big)^\frac{1}{2} \Big(\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}|\mathit{\boldsymbol{u}}|^3dx d\eta\Big)^\frac{1}{2} \\ &+-\frac{\widetilde{b}}{2}\Big(\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}|\mathit{\boldsymbol{u}}^*|\mathcal{D}_i\mathcal{D}_idx d\eta\Big)^\frac{1}{2} \Big(\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}|\mathit{\boldsymbol{u}}|^3dx d\eta\Big)^\frac{1}{2} \\ &\geq-\frac{b_1+b_2}{16}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &-\frac{4\widetilde{b}^2}{b_1+b_2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx d\eta \\ &\geq-\frac{b_1+b_2}{16}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta-\frac{8\widetilde{b}^2}{a_1(b_1+b_2)}k_4(t)e^{-\frac{z}{k_3}}. \end{align} (3.11)

    Using the Hölder inequality, Young's inequality and Lemmas 2.3 and 2.7, we obtain

    \begin{align} &\gamma\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_i\Sigma u_i^*dx d\eta \\&\geq-\gamma\int_{0}^{t}e^{-\omega\eta}\Big(\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|\mathcal{D}_i\mathcal{D}_idx\Big)^\frac{1}{2} \Big(\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|^2dx\Big)^\frac{1}{4} \Big(\int_{\Omega_z}\Sigma^4dx\Big)^\frac{1}{4} d\eta \\ &\geq-\gamma\sqrt[4]{k_5(t)k_2}\int_{0}^{t}e^{-\omega\eta}\Big(\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|\mathcal{D}_i\mathcal{D}_idx\Big)^\frac{1}{2} \Big(\int_{\Omega_z}\Sigma_{,i}\Sigma_{,i}dx\Big)^\frac{1}{2} d\eta \\ &\geq -\frac{b_1+b_2}{16}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}|\mathit{\boldsymbol{u}}^*|\mathcal{D}_i\mathcal{D}_idx d\eta \\ &-\frac{4\gamma^2\sqrt{k_5(t)k_2}}{b_1+b_2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta, \end{align} (3.12)
    \begin{align} &-\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_ig_i\Sigma dx d\eta \\& \geq-\frac{1}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta -\frac{1}{2\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta. \end{align} (3.13)

    Calculating the differential of Eq (3.10) and then inserting Eqs (3.11)–(3.13) into Eq (3.10), we have

    \begin{align} -\frac{\partial}{\partial z}\Phi_1(z, t) &\geq\frac{b_1+b_2}{8}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta+ \\ &\frac{1}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &-\frac{4\gamma^2\sqrt{k_5(t)k_2}}{b_1+b_2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta -\frac{1}{2\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta \\ &-\frac{8\widetilde{b}^2}{a_1(b_1+b_2)}k_4(t)e^{-\frac{z}{k_3}}, \end{align} (3.14)

    where we have dropped the fourth term of Eq (3.10).

    Similarly, we have

    \begin{align} \Phi_2(z, t)& = -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma\Sigma_{,3}dxd\eta+\frac{1}{2}\int_{0}^{t}\\ &\int_{\Omega_z}e^{-\omega\eta}u_3\Sigma^2dxd\eta +\int_0^t\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_{3}T^*\Sigma dxd\eta \\ &\doteq \Phi_{21}(z, t)+\Phi_{22}(z, t)+\Phi_{23}(z, t). \end{align} (3.15)

    Using the divergence theorem and Eq (3.2), we have

    \begin{align} \Phi_2(z, t)& = \frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{2}\omega\Sigma^2+\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_{i}\Sigma_{,i}T^*dxd\eta. \end{align} (3.16)

    Using the Hölder inequality and Lemma 2.5, we have

    \begin{align} -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_{i}\Sigma_{,i}T^*dxd\eta&\geq-\frac{1}{2}\int_{0}^{t}\\ &\int_{\Omega_z}e^{-\omega\eta} \Sigma_{,i}\Sigma_{,i}dxd\eta -\frac{1}{2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_{i}\mathcal{D}_{i}dxd\eta. \end{align} (3.17)

    Calculating the differential of Eq (3.16) and then inserting Eq (3.17) into Eq (3.16), we have

    \begin{align} -\frac{\partial}{\partial z}\Phi_2(z, t)& = \frac{1}{2}e^{-\omega t}\int_{\Omega_z}\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[ \frac{1}{2}\omega\Sigma^2+\frac{1}{2}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{1}{2\gamma}T_M^2\int_{0 }^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_{i}\mathcal{D}_{i}dxd\eta. \end{align} (3.18)

    Now, we define

    \begin{align} -\frac{\partial}{\partial z}\Phi(z, t) = \frac{2}{\gamma}T_M^2\Big[-\frac{\partial}{\partial z}\Phi_1(z, t)\Big] +\Big[-\frac{\partial}{\partial z}\Phi_2(z, t)\Big]. \end{align} (3.19)

    Combining Eqs (3.14) and (3.18), we have

    \begin{align} -\frac{\partial}{\partial z}\Phi(z, t) &\geq\frac{b_1+b_2}{4\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta+ \frac{1}{2\gamma}T_M^2\\ &\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[ \frac{1}{2}\omega\Sigma^2+\frac{1}{2}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{8\gamma\sqrt{k_5(t)k_2}}{b_1+b_2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta -\frac{1}{\gamma^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta \\ &-\frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}T_M^2k_4(t)e^{-\frac{z}{k_3}}. \end{align} (3.20)

    Choosing \omega > \frac{4}{\gamma^2}T_M^2 and the boundary data (e.g., H ) satisfies

    \begin{align} \frac{8\gamma\sqrt{k_5(t)k_2}}{b_1+b_2} < \frac{1}{4}, \end{align} (3.21)

    from Eq (3.20) we obtain

    \begin{align} -\frac{\partial}{\partial z}\Phi(z, t) &\geq\frac{b_1+b_2}{4\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta+ \frac{1}{2\gamma}T_M^2\\ &\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}T_M^2k_4(t)e^{-\frac{z}{k_3}}. \end{align} (3.22)

    Integrating Eq (3.22) from z to \infty , we obtain

    \begin{align} \Phi(z, t) &\geq\frac{b_1+b_2}{4\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{2\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}k_3T_M^2k_4(t)e^{-\frac{z}{k_3}}. \end{align} (3.23)

    We note that

    \begin{align} \int_{D_z}\mathcal{D}_{3}dA = \int_{D}\mathcal{D}_{3}dA+\int_{0}^{z}\int_{D_\xi}\frac{\partial \mathcal{D}_3 }{\partial x_3}dAd\xi = -\int_{0}^{z}\int_{D_\xi}\mathcal{D}_{\alpha,\alpha}dAd\xi = 0. \end{align}

    According to Lemma 2.1, there exists a vector function \textbf{w} = (w_1, w_2, w_3) such that

    \begin{align*} w_{i, i} = \mathcal{D}_3,\ in\ \Omega;\quad w_i = 0, \ on\ \partial \Omega. \end{align*}

    Therefore, using Eq (3.1) we obtain

    \begin{align} & \frac{2}{\gamma}T_M^2\Phi_{1}(z, t)\\& = \frac{2}{\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\pi w_{i, i}dx d\eta = -\frac{2}{\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\pi_{,i} w_{i}dx d\eta \\ & = \frac{2}{\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big\{[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*]+(1+\gamma T)\mathcal{D}_i+\gamma\Sigma u_i^* -g_i\Sigma\Big\}w_{i}dx d\eta. \end{align} (3.24)

    Since

    \begin{align} &\Big[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}\\& = \frac{\widetilde{b}}{2} \Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}+ \frac{b_1+b_2}{2}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] \mathcal{D}_iw_i \\ &+\frac{b_1+b_2}{2}\Big[|\mathit{\boldsymbol{u}}|-|\mathit{\boldsymbol{u}}^*|\Big](u_i+u_i^*)w_i \\ & = \frac{\widetilde{b}}{2} \Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}+ \frac{b_1+b_2}{2}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] \mathcal{D}_iw_i \\ &+\frac{b_1+b_2}{2}\frac{(u_j-u_j^*)(u_j+u_j^*)}{|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|}(u_i+u_i^*)w_i \\ &\leq\frac{\widetilde{b}}{2} \Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}+ \frac{b_1+b_2}{2}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] \mathcal{D}_iw_i \\ &+\frac{b_1+b_2}{2}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]|\mathcal{{\boldsymbol{D}}}||\mathit{\boldsymbol{w}}|, \end{align}

    we have

    \begin{align} & \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}dx d\eta \\&\leq\frac{\widetilde{b}}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}dx d\eta \\ &+\frac{b_1+b_2}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] \mathcal{D}_iw_idx d\eta \\ &+\frac{b_1+b_2}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] |\mathcal{{\boldsymbol{D}}}||\mathit{\boldsymbol{w}}|dx d\eta. \end{align} (3.25)

    Using the Hölder inequality, Lemmas 2.2, 2.3, 2.1, 2.7 and 2.6, and Young's inequality, we obtain

    \begin{align} &\frac{\widetilde{b}}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} \\&\Big[|\mathit{\boldsymbol{u}}|u_i+|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}dx d\eta \\ &\leq\frac{\widetilde{b}}{2}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx \Big]^\frac{2}{3}\Big[\int_{\Omega_z}\Big(w_{i}w_{i}\Big)^\frac{3}{2}dx\Big]^\frac{1}{3}d\eta \\ &\leq\frac{\widetilde{b}}{2}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx \Big]^\frac{2}{3}\Big[\int_{\Omega_z}w_{i}w_{i}dx\Big]^\frac{1}{6} \\ &\cdot\Big[\int_{\Omega_z}\Big(w_{i}w_{i}\Big)^2dx\Big]^\frac{1}{6} d\eta \\ &\leq\frac{\widetilde{b}\sqrt[6]{k_2}}{2\sqrt[6]{\lambda}}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx \Big]^\frac{2}{3}\Big[\int_{\Omega_z}w_{i,\alpha}w_{i,\alpha}dx\Big]^\frac{1}{6} \\ &\cdot\Big[\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big]^\frac{1}{3} d\eta \\ &\leq\frac{\widetilde{b}\sqrt[6]{k_2}}{2\sqrt[6]{\lambda}}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx \Big]^\frac{2}{3}\Big[\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big]^\frac{1}{2}d\eta \\ &\leq\frac{\widetilde{b}\sqrt[6]{k_2}\sqrt{k_1}}{2\sqrt[6]{\lambda}} \int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx \Big]^\frac{1}{6} \\ &\cdot\Big[\int_{\Omega_z}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx \Big]^\frac{1}{2}\Big[\int_{\Omega_z}\mathcal{D}_3^2dx\Big]^\frac{1}{2}d\eta \\ &\leq\frac{\widetilde{b}^2\sqrt[3]{2k_5(t)k_2}k_1}{4\sqrt[3]{b\lambda}}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|^3+|\mathit{\boldsymbol{u}}^*|^3\Big]dx d\eta+\frac{1}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_3^2dxd\eta \\ &\leq\frac{\widetilde{b}^2\sqrt[3]{2k_5(t)k_2}k_1k_4(t)}{2a\sqrt[3]{b\lambda}}e^{-\frac{z}{k_3}} +\frac{1}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_3^2dxd\eta. \end{align} (3.26)

    Using the Hölder inequality, Lemmas 2.3, 2.1 and 2.7, and Young's inequality, we obtain

    \begin{align} &\frac{b_1+b_2}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} \\&\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] \mathcal{D}_iw_idx d\eta \\ &\leq\frac{b_1+b_2}{2}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}|\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2} \Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}|^2dx\Big]^\frac{1}{4}\Big[\int_{\Omega_z}(w_iw_i)^2dx\Big]^\frac{1}{4}d\eta \\ &+\frac{b_1+b_2}{2}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2} \Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|^2dx\Big]^\frac{1}{4}\Big[\int_{\Omega_z}(w_iw_i)^2dx\Big]^\frac{1}{4}d\eta \\ &\leq\frac{b_1+b_2}{2}\sqrt[4]{k_2k_5(t)}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}|\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2}\Big[\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big]^\frac{1}{2}d\eta \\ &+\frac{b_1+b_2}{2}\sqrt[4]{k_2k_5(t)}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2}\Big[\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big]^\frac{1}{2}d\eta \\ &\leq\frac{b_1+b_2}{4}\sqrt[4]{k_1k_2k_5(t)}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}| +|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_i dx d\eta \\ &+\frac{b_1+b_2}{2}\sqrt[4]{k_1k_2k_5(t)}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_3^2dxd\eta. \end{align} (3.27)

    Using the Hölder inequality, Lemmas 2.4, 2.1 and 2.7, and Young's inequality, we obtain

    \begin{align}& \frac{b_1+b_2}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\\&\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big] |\mathcal{{\boldsymbol{D}}}||\mathit{\boldsymbol{w}}|dx d\eta \\ &\leq\frac{b_1+b_2}{2}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}|\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2} \Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}|^3dx\Big]^\frac{1}{3}\Big[\int_{\Omega_z}(w_iw_i)^3dx\Big]^\frac{1}{6}d\eta \\ &+\frac{b_1+b_2}{2}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}|\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2} \Big[\int_{\Omega_z}|\mathit{\boldsymbol{u}}^*|^3dx\Big]^\frac{1}{3}\Big[\int_{\Omega_z}(w_iw_i)^3dx\Big]^\frac{1}{6}d\eta \\ &\leq(b_1+b_2)\sqrt[3]{\frac{k_5(t)}{b}}\sqrt[6]{\Lambda}\int_{0}^{t}e^{-\omega\eta}\Big[\int_{\Omega_z}\mathcal{D}_i\mathcal{D}_i dx\Big]^\frac{1}{2}\Big[\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big]^\frac{1}{2}d\eta \\ &\leq\frac{b_1+b_2}{2}\sqrt[3]{\frac{k_1k_5(t)}{b}}\sqrt[6]{\Lambda}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_i dxd\eta. \end{align} (3.28)

    Inserting Eqs (3.26)–(3.28) into Eq (3.25), we have

    \begin{align} \int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}&\Big[b_1|\mathit{\boldsymbol{u}}|u_i-b_2|\mathit{\boldsymbol{u}}^*|u_i^*\Big]w_{i}dx d\eta \leq \frac{\widetilde{b}^2\sqrt[3]{2k_5(t)k_2}k_1k_4(t)}{2a\sqrt[3]{b\lambda}}e^{-\frac{z}{k_3}} \\ &+\frac{b_1+b_2}{4}\sqrt[4]{k_2k_5(t)}\varepsilon_3\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}| +|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_i dx d\eta \\ &+\Big[\frac{b_1+b_2}{2}\sqrt[3]{\frac{k_1k_5(t)}{b}}\sqrt[6]{\Lambda}+\frac{b_1+b_2}{2}\sqrt[4]{k_2k_5(t)}+\frac{1}{2}\Big] \\ &\cdot\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} (1+\gamma T)\mathcal{D}_i\mathcal{D}_i dxd\eta. \end{align} (3.29)

    Using the Hölder inequality, Young's inequality and Lemmas 2.5, 2.2, 2.1, 2.7 and 2.3, we have

    \begin{align}& \int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_iw_idx d\eta \\&\leq(1+\gamma T_M)\Big[\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \int_0^t\int_{\Omega_z}e^{-\omega\eta}w_iw_idx d\eta\Big]^\frac{1}{2} \\ &\leq\frac{(1+\gamma T_M)}{\sqrt{\lambda}}\Big[\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \int_0^t\int_{\Omega_z}e^{-\omega\eta}w_{i,\alpha}w_{i,\alpha}dx d\eta\Big]^\frac{1}{2} \end{align}
    \begin{align} &\leq\frac{(1+\gamma T_M)\sqrt{k_1}}{\sqrt{\lambda}}\Big[\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \int_0^t\int_{\Omega_z}e^{-\omega\eta}\mathcal{D}_{3}^2dx d\eta\Big]^\frac{1}{2} \\ &\leq\frac{(1+\gamma T_M)\sqrt{k_1}}{\sqrt{\lambda}}\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta, \end{align} (3.30)
    \begin{align} & \gamma\int_0^t\int_{\Omega_z}e^{-\omega\eta}w_i\Sigma u_i^*dx d\eta \\&\leq\gamma\int_0^t e^{-\omega\eta} \Big(\int_{\Omega_z}(u_3^*)^2dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}\Sigma^4dx\Big)^\frac{1}{4}\Big(\int_{\Omega_z}(w_iw_i)^2dx\Big)^\frac{1}{4} d\eta \\ &\leq\gamma\sqrt{k_5(t)k_2}\int_0^te^{-\omega\eta} \Big(\int_{\Omega_z}\Sigma_{,i}\Sigma_{,i}dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}w_{i,j}w_{i,j}dx\Big)^\frac{1}{2} d\eta \\ &\leq\gamma\sqrt{k_5(t)k_2k_1}\int_0^te^{-\omega\eta} \Big(\int_{\Omega_z}\Sigma_{,i}\Sigma_{,i}dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}\mathcal{D}_{3}^2dx\Big)^\frac{1}{2} d\eta \\ &\leq \frac{\sqrt{\gamma k_5(t)k_2k_1}}{T_M}\Big[\frac{1}{4}\int_0^t\int_{\Omega_z}e^{-\omega\eta}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dxd\eta \\ &+\frac{1}{\gamma}T_M^2 \int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_{3}^2dxd\eta\Big], \end{align} (3.31)
    \begin{align} \int_0^t\int_{\Omega_z}e^{-\omega\eta}w_i\Sigma g_idx d\eta &\leq \sqrt{\frac{k_1\gamma}{T_M\omega}}\Big[\frac{1}{\gamma}T_M^2 \int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma T)\mathcal{D}_{3}^2dxd\eta \\ &+ \frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta\Big] . \end{align} (3.32)

    Inserting Eqs (3.29)–(3.32) into Eq (3.24), we obtain

    \begin{align} \frac{2}{\gamma}T_M^2\Phi_{1}(z, t)&\leq n_1(t)\widetilde{b}^2e^{-\frac{z}{k_3}} +n_2(t)\cdot\frac{(b_1+b_2)T_M^2}{4\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}| +|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_i dx d\eta \\ &+n_3(t)\cdot\frac{T_M^2}{2\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta} (1+\gamma T)\mathcal{D}_i\mathcal{D}_i dxd\eta \\ &+n_4(t)\cdot\frac{1}{4}\int_0^t\int_{\Omega_z}e^{-\omega\eta}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dxd\eta +n_5(t)\cdot \frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta. \end{align} (3.33)

    where

    \begin{align} n_1(t)& = \frac{2}{\gamma}T_M^2\frac{\sqrt[3]{2k_5(t)k_2}k_1k_4(t)}{2a\sqrt[3]{b\lambda}}, n_2(t) = 2\sqrt[4]{k_2k_5(t)}, \\ n_3(t)& = 2\Big[\frac{b_1+b_2}{2}\sqrt[3]{\frac{k_1k_5(t)}{b}}\sqrt[6]{\Lambda}+\frac{b_1+b_2}{2}\sqrt[4]{k_2k_5(t)}+\frac{1}{2}\Big] \\ &+2\frac{(1+\gamma T_M)\sqrt{k_1}}{\sqrt{\lambda}}+\frac{2\sqrt{\gamma k_5(t)k_2k_1}T_M}{\gamma}+\frac{1}{\gamma}T_M^2\sqrt{\frac{k_1\gamma}{T_M\omega}}, \\ n_4(t)& = \frac{2\sqrt{\gamma k_5(t)k_2k_1}T_M}{\gamma}, n_5(t) = \frac{1}{\gamma}T_M^2\sqrt{\frac{k_1\gamma}{T_M\omega}}. \end{align}

    Now, we begin to derive a bound of \Phi_2(z, t) which has been defined in Eq (3.15). Using the Hölder inequality, Young's inequality, Lemmas 2.7 and 2.3, we have

    \begin{align} \Phi_{21}(z, t)&\leq\frac{1}{\sqrt{\omega}}\Big[\frac{1}{4}\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,3}^2dx d\eta +\frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta\Big], \end{align} (3.34)
    \begin{align} \Phi_{22}(z, t)&\leq\frac{1}{2}\int_0^t e^{-\omega\eta} \Big(\int_{\Omega_z}u_3^2dx\Big)^\frac{1}{2}\Big(\int_{\Omega_z}\Sigma^4dx\Big)^\frac{1}{2} d\eta \\ &\leq\sqrt{2k_5(t)k_2}\cdot\frac{1}{4}\int_0^t \int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta, \end{align} (3.35)
    \begin{align} \Phi_{23}(z, t)&\leq\sqrt{\frac{2\gamma}{\omega}}\Big[\frac{1}{2\gamma}T_M^2\int_0^t\int_{\Omega_z} e^{-\omega\eta}(1+\gamma T)\mathcal{D}_3^2dxd\eta+ \frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta\Big]. \end{align} (3.36)

    Inserting Eqs (3.34)–(3.36) into Eq (3.15), we obtain

    \begin{align} \Phi_2(z, t)&\leq\Big[\frac{1}{\sqrt{\omega}}+\sqrt{2k_5(t)k_2} \Big]\cdot\frac{1}{4}\int_0^t \int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta \\ &+\Big[\frac{1}{\sqrt{\omega}}+\sqrt{\frac{2\gamma}{\omega}}\Big]\cdot\frac{1}{4}\omega\int_0^t\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta \\ &+\sqrt{\frac{2\gamma}{\omega}}\cdot\frac{1}{2\gamma}T_M^2\int_0^t\int_{\Omega_z} e^{-\omega\eta}(1+\gamma T)\mathcal{D}_3^2dxd\eta. \end{align} (3.37)

    Combining Eqs (3.19), (3.22), (3.33) and (3.37), we obtain

    \begin{align} \Phi(z, t)&\leq n_6(t)\Big[-\frac{\partial}{\partial z}\Phi(z, t)\Big]+n_7(t)\widetilde{b}^2e^{-\frac{z}{k_3}}, \end{align} (3.38)

    where

    \begin{align} n_6(t)& = \max\Big\{n_2(t), n_3(t)+\sqrt{\frac{2\gamma}{\omega}}, n_5(t)+\frac{1}{\sqrt{\omega}}+\sqrt{\frac{2\gamma}{\omega}}, n_4(t)+\frac{1}{\sqrt{\omega}}+\sqrt{2k_5(t)k_2}\Big\}, \\ n_7(t)& = \frac{16}{a_1\gamma(b_1+b_2)}T_M^2k_4(t)n_6(t)+n_1(t). \end{align} (3.39)

    In this section, we will analysis Lemma 3.1 to derive the following theorem.

    Theorem 4.1. Let (u_i, T, p) and (u_i^*, T^*, p^*) be solutions of the Eqs (1.1)–(1.8) in \Omega , corresponding to b_1 and b_2 , respectively. If \int_Df_3dA = 0 , Equation (3.21) holds and f_{\alpha, \alpha}-\gamma_1f_3 = 0, H\in L^\infty(\Omega\times\{t > 0\}) , then

    (u_i, T)\rightarrow (u_i^*, T^*),\ as\ b_1\rightarrow b_2.

    Specifically, either the inequality

    \begin{align} \frac{b_1+b_2}{4\gamma}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{2\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}k_3T_M^2k_4(t)e^{-\frac{z}{k_3}}+ \widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z} \end{align}

    holds, or the inequality

    \begin{align} \frac{b_1+b_2}{4\gamma}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{2\gamma}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma T)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{16\widetilde{b}^2}{a_1\gamma(b_1+b_2)}k_3T_M^2k_4(t)e^{-\frac{z}{k_3}}+ \\ &\widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}] \end{align}

    holds.

    Proof. Using Lemma 3.1, we have

    \begin{align} \frac{\partial }{\partial z}\Big\{\Phi(z, t)e^{\frac{1}{n_6^*}z}\Big\}\leq \widetilde{b}^2\frac{n_7(t)}{n_6^*}e^{(\frac{1}{n_6^*}-\frac{1}{k_3})z},\ z\geq 0. \end{align} (4.1)

    Now, we consider (4.1) for two cases.

    Ⅰ. If n_6^* = k_3 , we integrate Eq (4.1) from 0 to z to obtain

    \begin{align} \Phi(z, t)&\leq \Phi(0, t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z}. \end{align} (4.2)

    Ⅱ. If n_6^*\neq k_3 , we integrate Eq (4.1) from 0 to z to obtain

    \begin{align} \Phi(z, t)&\leq \Phi(0, t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}]. \end{align} (4.3)

    From Eqs (4.2) and (4.3), to obtain the main result, we can conclude that we have to derive a bound for \Phi(0, t) . We choose z = 0 in Lemma 3.1 to obtain

    \begin{align} \Phi(0, t)\leq n_6^*\Big[-\frac{\partial \Phi}{\partial z}(0, t)\Big]+\widetilde{b}^2n_7(t). \end{align} (4.4)

    Clearly, if we want to derive a bound for \Phi(0, t) , we only need derive a bound for -\frac{\partial \Phi}{\partial z}(0, t) . To do this, choosing z = 0 in Eq (3.19) and combining Eqs (3.8) and (3.15), we have

    \begin{align} -\frac{\partial \Phi}{\partial z}(0, t)& = \frac{2}{\gamma}T_M^2\int_{0}^{t}\int_{D}e^{-\omega\eta}\pi\mathcal{D}_3dAd\eta -\int_{0}^{t}\int_{D}e^{-\omega\eta}\Sigma\Sigma_{,3}dAd\eta \\ &+\frac{1}{2}\int_{0}^{t}\int_{D}e^{-\omega\eta}u_3\Sigma^2dAd\eta +\int_0^t\int_{D}e^{-\omega\eta}\mathcal{D}_{3}T^*\Sigma dAd\eta. \end{align} (4.5)

    In light of the boundary conditions (3.4)–(3.6), from Eq (4.5) we can know that

    \begin{align} -\frac{\partial \Phi}{\partial z}(0, t) = 0. \end{align} (4.6)

    Inserting Eq (4.6) into Eq (4.4), we obtain

    \begin{align} \Phi(0, t)\leq \widetilde{b}^2n_7(t). \end{align} (4.7)

    Therefore, from Eqs (4.2), (4.3) and (4.7) we have

    \begin{align} \Phi(z, t)&\leq \widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z},\ \text{if}\ n_6^* = k_3, \end{align} (4.8)
    \begin{align} \Phi(z, t)&\leq \widetilde{b}^2n_7(t)e^{-\frac{1}{n_6^*}z} +\widetilde{b}^2\frac{n_7(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}],\ \text{if }\ n_6^*\neq k_3. \end{align} (4.9)

    Combining Eqs (3.24), (4.8) and (4.9) we can complete the proof of Theorem 4.1.

    Remark 4.1 Theorem 1 shows that the small perturbation of Forchheimer coefficient will not cause great changes to the solution of Eqs (1.1)–(1.8). Meanwhile, Theorem 1 also shows that the solutions of Eqs (2.12)–(2.21) decay exponentially as the space variable z\rightarrow \infty .

    This section shows how to use the prior estimates in Section 2 and the method in Section 3 to derive the continuous dependence of the solution on \gamma . Assume that (u_i^*, T^*, p^*) is a solution of Eqs (1.1)–(1.8) with \gamma = \gamma^* .

    If we also let

    \mathcal{D}_i = u_i-u_i^*,\ \Sigma = T-T^*,\ \pi = p-p^*,\ \widetilde{\gamma} = \gamma-\gamma^*,

    then (\mathcal{D}_i, \Sigma, \pi) satisfies

    \begin{align} b[|\mathit{\boldsymbol{u}}|u_i-|\mathit{\boldsymbol{u}}^*|u_i^*]+\widetilde{\gamma}Tu_i+\gamma_2\Sigma u_i+(1+\gamma T^*)\mathcal{D}_i+\gamma\Sigma u_i^* = -\pi_{,i}+g_i\Sigma,\ &in\ \Omega\times\{t > 0\}, \end{align} (5.1)
    \begin{align} \mathcal{D}_{i,i} = 0,\ &in\ \Omega\times\{t > 0\}, \end{align} (5.2)
    \begin{align} \partial_{t}\Sigma+u_i\Sigma_{,i}+\mathcal{D}_i T^*_{,i} = \Delta\Sigma, \ &in\ \Omega\times\{t > 0\}, \end{align} (5.3)
    \begin{align} \mathcal{D}_i = 0, \Sigma = 0,\ on\ \partial D\times\{x_3 > 0\}&\times\{t > 0\}, \end{align} (5.4)
    \begin{align} \mathcal{D}_i = 0, \Sigma = 0,\ & on\ D\times\{t > 0\}, \end{align} (5.5)
    \begin{align} \Sigma(x_1, x_2, x_3, 0) = 0, \ &in \ \Omega \end{align} (5.6)
    \begin{align} |\mathit{\boldsymbol{u}}|, |\Sigma| = O(1), |\mathcal{D}_i|, |\nabla\Sigma|, |\pi| = o(x_3^{-1}),&\ as\ x_3\rightarrow \infty. \end{align} (5.7)

    We also define \Phi_1(z, t) as that in Eq (3.8). Similar to Eq (3.10), we have

    \begin{align} \Phi_1(z, t) & = \frac{b}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{b}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|-|\mathit{\boldsymbol{u}}^*|\Big]^2\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]dx d\eta \\ &+\gamma_2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_i\Sigma u_i^*dx d\eta -\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\mathcal{D}_ig_i\Sigma dx d\eta \\ &+\widetilde{\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)Tu_i\mathcal{D}_i dx d\eta. \end{align} (5.8)

    Using the Hölder inequality, Young's inequality and Lemmas 2.5 and 2.6, we obtain

    \begin{align} & \widetilde{\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}Tu_i\mathcal{D}_i dx d\eta\\ & \geq-\frac{1}{2}T_M^2\widetilde{\gamma}^2\int_0^t\int_{\Omega_z}e^{-\omega\eta}u_{i}u_{i}dxd\eta -\frac{1}{2}\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idxd\eta \\ &\geq-\frac{k_4(t)}{2a_2}T_M^2\widetilde{\gamma}^2e^{-\frac{z}{k_3}} -\frac{1}{2}\int_0^t\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idxd\eta, \end{align} (5.9)

    Combining Eqs (3.12), (3.13), (5.8) and (5.9), we obtain

    \begin{align}& -\frac{\partial}{\partial z}\Phi_1(z, t)\\ &\geq\frac{b}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta +\frac{1}{2}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &-\frac{4\gamma_2^2\sqrt{k_5(t)k_2}}{b}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma_{,i}\Sigma_{,i}dx d\eta -\frac{1}{2\gamma}\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Sigma^2dx d\eta \\ &-\frac{k_4(t)}{2a_2}T_M^2\widetilde{\gamma}^2e^{-\frac{z}{k_3}}. \end{align} (5.10)

    Inserting Eqs (3.18) and (5.10) into Eq (3.19), choosing \omega > \frac{4T_M^2}{\gamma^2} and the boundary data satisfies

    \begin{align} \frac{8(\gamma^*)^2\sqrt{k_5(t)k_2}}{b}\leq\frac{1}{4}, \end{align} (5.11)

    we have

    \begin{align} & -\frac{\partial}{\partial z}\Phi(z, t)\\ &\geq\frac{b}{\gamma^*}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta +\frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{k_4(t)}{2a_2\gamma^*}T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}. \end{align} (5.12)

    Integrating Eq (5.12) from z to \infty , we obtain

    \begin{align} \Phi(z, t)&\geq\frac{b}{\gamma^*}T_M^2\\ &\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta +\frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(1+\gamma_2 T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &-\frac{k_4(t)}{2a_2\gamma^*}k_3T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}. \end{align} (5.13)

    Similar to the calculation in Eqs (3.33) and (3.37), we can get

    \begin{align} \Phi(z, t)&\leq n_6'(t)\Big[-\frac{\partial}{\partial z}\Phi(z, t)\Big]+n_7'(t)\widetilde{b}^2e^{-\frac{z}{k_3}}, \end{align} (5.14)

    for n_6'(t), n_7'(t) > 0 .

    After similar analysis as in the previous section, we can get the following theorem from Eq (5.14).

    Theorem 5.1. Let (u_i, T, p) and (u_i^*, T^*, p^*) be solutions of the Eqs (1.1)–(1.8) in \Omega , corresponding to b_1 and b_2 , respectively. If \int_Df_3dA = 0 , Equation (5.11) holds and f_{\alpha, \alpha}-\gamma_1f_3 = 0, H\in L^\infty(\Omega\times\{t > 0\}) , then

    (u_i, T)\rightarrow (u_i^*, T^*),\ as\ b_1\rightarrow b_2.

    Specifically, either the inequality

    \begin{align} \frac{b}{\gamma^*}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma^* T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{k_4(t)}{2a_2\gamma^*}k_3T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}+ \widetilde{\gamma}^2n_7'(t)e^{-\frac{1}{n_6^*}z} +\widetilde{\gamma}^2\frac{n_7'(t)}{n_6^*}ze^{-\frac{1}{n_6^*}z} \end{align}

    holds, or the inequality

    \begin{align} \frac{b}{\gamma^*}T_M^2&\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[|\mathit{\boldsymbol{u}}|+|\mathit{\boldsymbol{u}}^*|\Big]\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+ \frac{1}{(\gamma^*)^2}T_M^2\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)(1+\gamma^* T^*)\mathcal{D}_i\mathcal{D}_idx d\eta \\ &+\frac{1}{2}e^{-\omega t}\int_{\Omega_z}(\xi-z)\Sigma^2dx+\int_{0}^{t}\int_{\Omega_z}e^{-\omega\eta}(\xi-z)\Big[ \frac{1}{4}\omega\Sigma^2+\frac{1}{4}\Sigma_{,i}\Sigma_{,i}\Big]dxd\eta \\ &\leq \frac{k_4(t)}{2a_2\gamma^*}k_3T_M^4\widetilde{\gamma}^2e^{-\frac{z}{k_3}}+ \widetilde{\gamma}^2n_7'(t)e^{-\frac{1}{n_6^*}z} +\widetilde{\gamma}^2\frac{n_7'(t)}{n_6^*(\frac{1}{n_6^*}-\frac{1}{k_3})}b_3(t)[e^{-\frac{1}{k_3}z}-e^{-\frac{1}{n_6^*}z}] \end{align}

    holds.

    In this paper, using a priori estimates of the solutions, we show how to control the nonlinear term, and obtain the structural stability of the solution of the Forchheimer equation in a semi-infinite cylinder. Meanwhile, the spatial decay results of the solution are also obtained. The methods in this paper can bring some inspiration for the structural stability of other nonlinear partial differential equations.

    The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work is supported by the Tutor System Rroject of Guangzhou Huashang College (2021HSDS13) and the Key projects of universities in Guangdong Province (NATURAL SCIENCE) (2019KZDXM042).

    The authors declare there is no conflict of interest. Conceptualization, and validation, Z. Li.; formal analysis, Z W. Zhang; investigation, Y. Li. All authors have read and agreed to the published version of the manuscript.



    [1] W. Goddard, M. Henning, Thoroughly dispersed colorings, J. Graph Theor., 88 (2018), 174–191. http://doi.org/10.1002/jgt.22204 doi: 10.1002/jgt.22204
    [2] M. Henning, A. Yeo, A note on fractional disjoint transversals in hypergraphs, Discrete Math., 340 (2017), 2349–2354. http://doi.org/10.1016/j.disc.2017.05.001 doi: 10.1016/j.disc.2017.05.001
    [3] B. Bollobás, D. Pritchard, T. Rothvoß, A. Scott, Cover-decomposition and polychromatic numbers, SIAM Journal of Discrete Mathematics, 27 (2013), 240–256. http://doi.org/10.1137/110856332 doi: 10.1137/110856332
    [4] A. Kostochka, D. Woodall, Density conditions for panchromatic colourings of hypergraphs, Combinatorica, 21 (2001), 515–541. http://doi.org/10.1007/s004930100011 doi: 10.1007/s004930100011
    [5] T. Li, X. Zhang, Polychromatic colorings and cover decompositions of hypergraphs, Appl. Math. Comput., 339 (2018), 153–157. http://doi.org/10.1016/j.amc.2018.07.019 doi: 10.1016/j.amc.2018.07.019
    [6] M. Henning, A. Yeo, 2-colorings in k-regular k-uniform hypergraphs, Eur. J. Combin., 34 (2013), 1192–1202. http://doi.org/10.1016/j.ejc.2013.04.005 doi: 10.1016/j.ejc.2013.04.005
    [7] Z. Jiang, J. Yue, X. Zhang, Polychromatic colorings of hypergraphs with high balance, AIMS Mathematics, 5 (2020), 3010–3018. http://doi.org/10.3934/math.2020195 doi: 10.3934/math.2020195
    [8] B. Chen, J. Kim, M. Tait, J. Verstraete, On coupon colorings of graphs, Discrete Appl. Math., 193 (2015), 94–101. http://doi.org/10.1016/j.dam.2015.04.026 doi: 10.1016/j.dam.2015.04.026
    [9] W. Goddard, M. Henning, Fractional Domatic, Idomatic, and Total Domatic Numbers of a Graph. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds) Structures of Domination in Graphs, Developments in Mathematics, 66 (2021), 79–99. Springer, Cham. http://doi.org/10.1007/978-3-030-58892-2_4
  • This article has been cited by:

    1. Yuanfei Li, A study on continuous dependence of layered composite materials in binary mixtures on basic data, 2024, 32, 2688-1594, 5577, 10.3934/era.2024258
    2. Yanping Wang, Yuanfei Li, Structural Stability of Pseudo-Parabolic Equations for Basic Data, 2024, 29, 2297-8747, 105, 10.3390/mca29060105
    3. Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen, Spatial decay estimates for a coupled system of wave-plate type, 2025, 33, 2688-1594, 1144, 10.3934/era.2025051
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1876) PDF downloads(121) Cited by(0)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog