Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article Special Issues

Non-fragile synchronization of BAM neural networks with randomly occurring controller gain fluctuation

  • Received: 03 August 2022 Revised: 04 December 2022 Accepted: 08 December 2022 Published: 14 February 2023
  • In this research, a non-fragile synchronization of bidirectional association memory (BAM) delayed neural networks is taken into consideration. The controller gain fluctuation seems in a very random manner, that obeys sure Bernoulli distributed noise sequences. Delay dependent criteria are derived to confirm the asymptotic stability of the BAM delayed neural networks. The non-fragile controller are often obtained by determination a collection of linear matrix inequalities (LMIs). A simulation example is used to demonstrate the efficiency of the developed control.

    Citation: Ganesh Kumar Thakur, Sudesh Kumar Garg, Tej Singh, M. Syed Ali, Tarun Kumar Arora. Non-fragile synchronization of BAM neural networks with randomly occurring controller gain fluctuation[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7302-7315. doi: 10.3934/mbe.2023317

    Related Papers:

    [1] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [2] E. A. Abdel-Rehim . The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process. Electronic Research Archive, 2022, 30(7): 2487-2509. doi: 10.3934/era.2022127
    [3] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [4] Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao . A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28(4): 1439-1457. doi: 10.3934/era.2020076
    [5] Bidi Younes, Abderrahmane Beniani, Khaled Zennir, Zayd Hajjej, Hongwei Zhang . Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity. Electronic Research Archive, 2024, 32(9): 5268-5286. doi: 10.3934/era.2024243
    [6] Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [7] Jun Liu, Yue Liu, Xiaoge Yu, Xiao Ye . An efficient numerical method based on QSC for multi-term variable-order time fractional mobile-immobile diffusion equation with Neumann boundary condition. Electronic Research Archive, 2025, 33(2): 642-666. doi: 10.3934/era.2025030
    [8] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [9] Qingming Hao, Wei Chen, Zhigang Pan, Chao Zhu, Yanhua Wang . Steady-state bifurcation and regularity of nonlinear Burgers equation with mean value constraint. Electronic Research Archive, 2025, 33(5): 2972-2988. doi: 10.3934/era.2025130
    [10] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
  • In this research, a non-fragile synchronization of bidirectional association memory (BAM) delayed neural networks is taken into consideration. The controller gain fluctuation seems in a very random manner, that obeys sure Bernoulli distributed noise sequences. Delay dependent criteria are derived to confirm the asymptotic stability of the BAM delayed neural networks. The non-fragile controller are often obtained by determination a collection of linear matrix inequalities (LMIs). A simulation example is used to demonstrate the efficiency of the developed control.



    Fractional calculus (FC) theory was proposed by N. H. Abel and J. Liouville, and a description of their work is presented in [1]. By using FC, integer derivatives, and integrals can be generalized to real or variable derivatives and integrals. FC is studied since fractional differential equations (FDEs) are better suited to modeling natural physics processes and dynamic systems than integer differential equations. Furthermore, FDEs that incorporate memory effects are better suited to describing natural processes that have memory and hereditary properties. In other words, because fractional derivatives have memory effects, FDEs are more accurate in describing physical phenomena with memory or hereditary characteristics. There was a trend to consider FC to be an esoteric theory with no application until the last few years. Now, more and more researchers are investigating how it can be applied to economics, control system and finance. As a result, many fractional order differential operators were developed, such as Hadamard, Riemann-Liouville, Caputo, Riesz, Grünwald-Letnikov, and variable order differential operators. The researchers have devoted considerable effort to solving FDEs numerically so that they can be applied to a variety of problems [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. Several numerical approaches have been proposed in the literature, including eigenvector expansion, the fractional differential transform technique [21], the homotopy analysis technique [22], the homotopy perturbation transform technique [23], the generalized block pulse operational matrix technique [24] and the predictor-corrector technique [25]. In addition, the use of Legendre wavelets to integrate and differentiate fractional order matrices has been suggested as a numerical method [26,27].

    In this paper, we study the numerical solution of the time-fractional Burger's equation (TFBE) [28] as follows:

    γU(x,t)tγ+U(x,t)U(x,t)xv2U(x,t)x2=f(x,t), (1)

    which is subject to the following boundary conditions (BCs):

    U(a,t)=l1(t),U(b,t)=l2(t),axb,t[0,tf], (2)

    and the following initial condition (IC):

    U(x,0)=g(x)andaxb, (3)

    in which 0<γ1 is a parameter representing the order of the fractional time, v denotes a viscosity parameter and g(x),l1(t)andl2(t) are given functions of their argument. The TFBE is a kind of sub-diffusion convection, which is widely adopted to describe many physical problems such as unidirectional propagation of weakly nonlinear acoustic waves, shock waves in flow systems, viscous media, compressible turbulence, electromagnetic waves and weak shock propagation [29,30,31]. In recent years, there has been some technique development in the study of Burger's equation: an implicit difference scheme and algorithm implementation [32], pointwise error analysis of the third-order backward differentiation formula (BDF3) [33], pointwise error estimates of a compact difference scheme [34], efficient (BDF3) finite-difference scheme [35], semi-analytical methods [36], composite spectral methods [37], least-squares methods [38], geometric analysis methods [39], error and stability estimate techniques [40].

    Definition 1. Suppose that m is the smallest integer exceeding γ; the Caputo time fractional derivative operator of order γ>0 can be defined as follows [41]:

    CDγ0,tu(x,t)={mu(x,t)tmγ=mN1Γ(mγ)t0(tω)mγ1mu(x,ω)ωmdω,m1<γ<m,mN, (4)

    where u(x,t) is the unknown function that is (m1) times continuously differentiable and Γ(.) denotes the usual gamma function. The finite-element method has been an important method for solving both ordinary and partial differential equation, therefore, in recent research, it has been applied to solve the TFBE. In what follows, we describe the solution process by using the finite-element scheme for solving the TFBE.

    To discretize the TFBE (1), first let us define the cubic B-spline base function. We partition the interval [a,b], which represents the solution domain of (1) into M uniformly spaced points xm such that a=x0<x1<<xM1<xM=b and h=(xm+1xm). Then, the cubic B-spline Cm(x),(m=1(1)(M+1), at the knots xm which form basis on the solution interval [a,b], is defined as follows [42]:

    Cm(x)=1h3{(xxm2)3,ifx[xm2,xm1],h3+3h2(xxm1)+3h(xxm1)23(xm+1x)3,ifx[xm1,xm],h3+3h2(xm+1x)+3h(xm+1x)23(xm+1x)3,ifx[xm,xm+1],(5)(xm+2x)3,ifx[xm+1,xm+2],o,otherwise. (5)

    where the set of cubic B-splines (C1(x),C0(x),,CM(x),CM+1(x)) is a basis for the functions defined over interval [a,b]. Thus, the numerical solution UM(x,t) to the analytic solution U(x,t) can be illustrated as

    UM(x,t)=M+1m=1σm(t)Cm(x), (6)

    where σm(t) are unknown time-dependent parameters to be determined from the initial, boundary and weighted residual conditions. Since each cubic B-spline covers four consecutive elements, each element [xm,xm+1] is also covered by four cubic B-splines. So, the nodal values Um and its first and second derivatives U'm, U"m can be respectively computed in terms of the element parameter σm(t), at the knot xm as follows:

    Um=σm1+4σm+σm+1,U'm=3h(σm1σm+1),U"m=6h2(σm12σm+σm+1), (7)

    and by means of the local coordinate transformation [43] as follows:

    hη=xxm,0η1. (8)

    A cubic B-spline shape function in terms of η over the element [xm,xm+1] is formulated as:

    Cm1=(1η)3,Cm1=1+3(1η)+3(1η)23(1η)3,Cm+1=1+3η+3η23η3,Cm+2=η3 (9)

    and the variation of UM(η,t) over the typical element [xm,xm+1] is represented as

    UM(x,t)=m+2j=m1σj(t)Cj(η), (10)

    in which B-splines Cm1(η),Cm(η),Cm+1(η), Cm+2(η) and σm1(t), σm(t),σm+1 and σm+2(t) are element shape functions and element parameters, respectively.

    Based on the Galerkin's method with weight function W(x)>0, we get the following weak formula of (1):

    baW(γUtγ+UUxv2Ux2)dx=baWf(x,t); (11)

    using transformation (8) and by apply partial integration we obtain:

    10(WγUtγ+λWUη+ΦWηUη)dη=ΦWUη10+baWƑ(η,t)dη, (12)

    where λ=1hÛ, Φ=vh2 and Û=U(η,t) which is considered to be a constant on an element to simplify the integral [43]; replace the weight function W by quadratic B-spline Bm(x),m=1(1)M, at the knots xm, which forms a basis on the solution interval [a,b], introduced as follows [44]:

    Bm(x)=1h2{(xm+2x)23(xm+1x)2+3(xmx)2,ifx[xm1,xm],(xm+2x)23(xm+1x)2,ifx[xm,xm+1],(xm+2x)2,ifx[xm+1,xm+2],0,otherwise. (13)

    where (B1(x),B0(x),,BM(x)) is the set of splines for the basis of functions introduced on [a,b]. The numerical solution UM(x,t) to the analytic solution U(x,t) is expanded by

    UM(x,t)=Mm=1ϑm(t)Bm(x), (14)

    where ϑm are unknown time-dependent parameters, and by using local coordinate transformation (8), the quadratic B-spline shape functions for the typical element [xm,xm+1] are given as

    Bm1=(1η)2Bm=1+2η2η2Bm+1=η2 (15)

    The variation of the function U(η,t) is approximated by

    UM(η,t)=m+1i=m1ϑi(t)Bi(η), (16)

    where ϑm1(t), ϑm(t) and ϑm+1(t) act as element parameters and B-splines Bm1(η),Bm(η) and Bm+1(η) as element shape functions based on the above; (12) will be in the following form:

    m+2j=m1[10BiCjdη]˙σ+m+2j=m1[10(λBiC'j+ΦB'iC'j)dηΦBiC'j|10]σ=10BiƑ(η,t)dη,i=m1,m,m+1, (17)

    in which "Dot" represents the σth fractional derivative with respect to time. We can write (17) in matrix notation as follows:

    Xeij˙σe+(λYeij+Φ(ZeijQeij))σe=Eei, (18)

    in which σe=(σm1,σm,σm+1,σm+2)T are the element parameters. The element matrices Xeij,Yeij,Zeij,Qeij and Eei are rectangular 3×4 matrices introduced through the following integrals:

    Xeij=10BiCjdη=160[107138119221221191387110],
    Yeij=10BiC'jdη=110[671211341411311276],
    Zeij=10B'iC'jdη=12[357122221753],
    Qeij=BiC'j10=3[101011110101]and
    Eei=10BiƑ(η,t)dη,

    where i and j take only the values (m1,m,m+1) and (m1,m,m+1,m+2) respectively, and a lumped value for λ is defined by λ=12h(σm1+5σm+5σm+1+σm+2).

    By assembling all contributions from all elements, we get the following matrix equation:

    X˙σ+(λY+Φ(ZQ))σ=E, (19)

    where σ=(σ1,σ0,σ1,,σM,σM+1)T denotes a global element parameter. The matrices X,Z and Y represent rectangular, septa-diagonal and every sub-diagonal matrices, which include the following forms:

    X=160(1,57,302,302,57,1,0),
    Z=12(1,9,10,10,9,1,0),
    λY=110(λ1,12λ113λ2,7λ141λ26λ3,6λ1+41λ27λ3,13λ2+12λ3,λ3,0),

    in which,

    λ1=12h(σm2+5σm1+5σm+σm+1),
    λ2=12h(σm1+5σm+5σm+1+σm+2),
    λ3=12h(σm+5σm+1+5σm+2+σm+3).

    Following [45], we can approximate the temporal Caputo derivative with the help of the L1 formula:

    dγf(t)dtγtf=(Δt)γΓ(2γ)m1k=0bγk[f(tmkf(tm1k)]+O(Δt)2γ,

    where bγk=(k+1)1γk1γandΔt=tf0N, and tf=n(Δt),n=0,1,N,whereN represents a positive integer. Now, we recall the following lemma.

    Lemma 1: Suppose that 0<γ<1andbγk=(k+1)1γk1γ,k=0,1,;then,1=bγ0>bγ1>>bγk0,ask [46].

    Then, we can we write the parameter σm as follows:

    σm=dγσdtγ=(Δt)γΓ(2γ)m1k=0bγk[(σnk+1m1σnkm1)+4(σnk+1mσnkm)+(σnk+1m+1σnkm+1)]+O(Δt)2γ,bγk=(k+1)1γk1γ,

    while the parameter σ by the Crank-Nicolson scheme, is as follows:

    σm=12(σnm+σn+1m).

    Substitution both parameters above into (18), we obtain the (M+2)×(M+3) matrix system:

    [X+[(Δt)γΓ(2γ)(λY+Φ(ZQ)]2]σn+1=[X[(Δt)γΓ(2γ)(λY+Φ(ZQ)]2]σnXnk=1bγk[(σnk+1m1σnkm1)+4(σnk+1mσnkm)+(σnk+1m+1σnkm+1)]+(Δt)γΓ(2γ)E, (20)

    where σ=(σm2+σm1+σm+σm+1+σm+1+σm+2+σm+3)T; to make the matrix equation be square, we need to find an additional constraint of BC (2) and their second derivatives and we obtain discard σ1 from system (20) as follows:

    σ1(t)=4σ0(t)σ1(t)+U(x0,t);

    the variables σn1 and σnM+1 can be ignored from system (20) and then the system can be converted to an (M+1)×(M+1) matrix system. The initial vector of parameter σ0=(σ00,σ01,,σ0M) should be obtained to iterate system (20); the approximation of (6) has been reformulated on the interval [a,b] when time t=0 as follows:

    UN(x,0)=Mm=0Cmσ0m,

    where U(x,0) fulfills the following equation at node xm:

    UM(xm,0)=U(xm,0),m=0,1,,M+1
    U'M(x0,0)=U'(xM,0)=0,
    U''M(x0,0)=U''(xM,0)=0.

    Therefore, we can obtain the following system:

    [σ00σ01σ0M1σ0M60001410144141006][σ00σ01σ0M1σ0M]=[U(x0,0)h26g"(a)U(x1,0)U(xM1,0)U(xM,0)h26g"(b)]

    and we solve this identity matrix by applying the Jain algorithm [47].

    This section adopts the von Neumann stability analysis to investigate the stability of approximation obtained by scheme (20). First, we introduce the recurrence relationship between successive time levels relating unknown element parameters σn+1m(t), as follows:

    q1σn+1m2+q2σn+1m1+q3σn+1m+q4σn+1m+1+q5σn+1m+2+q6σn+1m+3=q6σnm2+q5σnm1+q4σnm+q3σnm+1+q2σnm+2+q1σnm+320nk=1bγk[((σnk+1m2σnkm2)+4(σnk+1m2σnkm2)+(σnk+1m2σnkm2))+57((σnk+1m1σnkm1)+4(σnk+1m1σnkm1)++(σnk+1m1σnkm1))+302((σnk+1mσnkm)+4(σnk+1mσnkm)+(σnk+1mσnkm))+302((σnk+1m+1σnkm+1)+4(σnk+1m+1σnkm+1)+(σnk+1m+1σnkm+1))+57((σnk+1m+2σnkm+2)+4(σnk+1m+2σnkm+2)+(σnk+1m+2σnkm+2))+((σnk+1m+3σnkm+3)+4(σnk+1m+3σnkm+3)+(σnk+1m+3σnkm+3))] (21)

    where

    q1=20300Φα60λα,q2=11402700Φα1500λα,q3=6040+3000Φα2400λα
    q4=6040+3000Φα+2400λα,q5=11402700Φα+1500λα,q6=20300Φα+60λα

    and α=(Δt)γΓ(2γ).

    The growth factor of the typical Fourier mode is defined as

    σnm=ξneiβmh (22)

    where, i=1,β is a mode number and h is the element size. Substitution of (22) into (21) yields

    ξn+1(q1e2iβh+q2eiβh+q3+q4eiβh+q5e2iβh+q6e3iβh)=ξn(q6e2iβh+q5eiβh+q4+q3eiβh+q2e2iβh+q1e3iβh)20nk=1bγk[((σnk+1m2σnkm2)+4(σnk+1m2σnkm2)+(σnk+1m2σnkm2))(e2iβh302+302eiβh+57e2iβh+e2iβh)]; (23)

    let {\xi }^{n+1} = Ϋ{\xi }^{n} and assume that Ϋ\equiv Ϋ\left(\theta \right) is independent of time, therefore, we can write Ϋ as follows:

    Ϋ = \frac{A-iB}{A+iB},

    where

    A = \left(6040+3000\mathit{\Phi} \alpha \right)\mathrm{cos}\left(\frac{\theta }{2}\right)h+\left(1140-2700\mathit{\Phi} \alpha \right)\mathrm{cos}\left(\frac{3\theta }{2}\right)h
    +\left(20-300\mathit{\Phi} \alpha \right)\mathrm{cos}\left(\frac{5\theta }{2}\right)h,
    B = \left(2400\lambda \alpha \right)\mathrm{sin}\left(\frac{\theta }{2}\right)h++\left(1500\lambda \alpha \right)\mathrm{sin}\left(\frac{3\theta }{2}\right)h+\left(60\lambda \alpha \right)\mathrm{sin}\left(\frac{\theta }{2}\right)h,

    Obviously note that \left|\mathrm{Ϋ}\right|\le 1 . Therefore, according to the Fourier condition, the scheme (20) is unconditionally stable.

    This section introduces two numerical examples, which highlight numerical results for the TFBE with different IC and BCs given by the CBSGM with quadratic weight function. In this section, we use the {L}_{2} and {L}_{\infty } to calculate the accuracy of the CBSGM with a quadratic weight function, which has been employed in this study; we will also show how the analytical results and the numerical results are close to each other. To do this, first we will find the exact solutions to the problem (1) by applying the following problems; then, we compare the results with the numerical solution obtained from the given method. To this aim, the {\boldsymbol{L}}_{{\infty }} and {\boldsymbol{L}}_{2} error norms are respectively defined as [48]

    {L}_{\infty } = {||U-{U}_{M}||}_{\infty }\cong \underset{j}{\mathit{max}}\left|{U}_{j}-{\left({U}_{M}\right)}_{j}\right|,
    {L}_{2} = {||U-{U}_{M}||}_{2}\cong \sqrt{h\sum \limits_{j = 0}^{M}{\left|{U}_{j}-{\left({U}_{M}\right)}_{j}\right|}^{2}}

    where U and {U}_{M} represent the exact solution and numerical solution, respectively.

    Example 1: Let us consider the TFBE (1) with the BCs

    U\left(O, t\right) = {l}_{1}\left(t\right) = {t}^{2} , \;\;\;\; U\left(1, t\right) = {l}_{2}\left(t\right) = -{t}^{2}, \;\;\;\;t\ge 0 ,

    and IC

    U\left(x, 0\right) = g\left(x\right) = 0, \;\;\;\;\;\; 0\le x\le 1 ,

    such that the forcing term f(x, t) is achieved as [45]

    f\left(x, t\right) = \frac{2{t}^{2-\gamma }{e}^{x}}{\mathit{\Gamma} (3-\gamma )}+{t}^{4}{e}^{2x}-v{t}^{2}{e}^{x},

    where the analytic solution is obtained as

    U\left(x, t\right) = {t}^{2}{e}^{x} .

    Numerical results are reported in Tables 13 and Figure 1. Table 1 lists the numerical solutions and the {L}_{2} and {L}_{\infty } error norms with \gamma = 0.5, \Delta t = 0.0025, {t}_{f} = 0.05\;\mathrm{a}\mathrm{n}\mathrm{d}\;v = 1 for various numbers of partitions M. As seen in Table 1, we notice that when the number of partitions M are increased, the {L}_{\infty } and {L}_{2} error norms will decrease considerably. Table 2 displays the numerical solutions with \gamma = 0.5, M = 40, t = 1, {t}_{f} = 0.05\;\mathrm{a}\mathrm{n}\mathrm{d}\;v = 1 for various values of \Delta t. In view of Table 2, we can see that when \Delta t decreases, the {L}_{\infty } and {L}_{2} error norms decrease, as was expected. Table 3 shows the numerical solutions with \Delta t = 0.00025, M = 40, t = 1, {t}_{f} = 0.05, v = 1 for various values of \gamma . As observed in Table 3, the {L}_{\infty } and {L}_{2} error norms decrease when γ increases. A comparison between the results of our proposed strategy and two other methods is demonstrated in detail, the researchers of which relied on their work on a weight function corresponding to the spline function in terms of degree; see [44,45]. Figure 1 represents the surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Table 1.  Numerical solutions with \gamma = 0.5, \Delta t = 0.0025, {t}_{f} = 0.05, v = 1 for various numbers of partitions M .
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.104360 1.105211 1.105166 1.105122 1.105101
    0.2 1.222151 1.222040 1.221593 1.221555 1.221511
    0.3 1.351010 1.350426 1.350012 1.349831 1.349789
    0.4 1.493377 1.492288 1.491990 1.491910 1.491844
    0.5 1.650589 1.650001 1.649822 1.648889 1.648731
    0.6 1.824211 1.823336 1.822449 1.822214 1.822110
    0.7 2.015587 2.014111 2.013822 2.013776 2.013692
    0.8 2.227577 2.226110 2.225699 2.225611 2.225562
    0.9 2.461410 2.461101 2.460893 2.459550 2.459491
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 1.631895 0.440555 0.160761 0.062504
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 1.764966 0.465690 0.167743 0.095754
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 1.632995 0.447720 0.161833 0.082624
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 2.291578 0.64933 0.206677 0.032882
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [49] 3.101238 0.812842 0.209495 0.069208
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [50] 2.296683 0.625018 0.207352 0.033125

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical solutions with \gamma = 0.5, M = 40, t = 1, {t}_{f} = 0.05, v = 1 for various values of \Delta t.
    x \Delta \mathrm{t} = 0.005 \Delta \mathrm{t} = 0.001 \Delta \mathrm{t} = 0.0005 \Delta \mathrm{t} = 0.00025 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105216 1.105211 1.105199 1.105186 1.105150
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.659999 0.374901 0.232591 0.092489
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.176195 0.068869
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.375012 0.232768 0.092624
    {\boldsymbol{L}}_{\mathrm{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.936512 0.529997 0.326112 0.132945
    {\boldsymbol{L}}_{\mathrm{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.665419 0.411883
    {\boldsymbol{L}}_{\mathrm{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.530231 0.328303 0.133125

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical solutions with \Delta t = 0.00025, \;M = 40, \;t = 1, \;{t}_{f} = 0.05, \;v = 1 for various values of γ.
    x \gamma =0.10 \gamma =0.25 \gamma =0.75 \gamma =0.90 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105068 1.104981 1.104890 1.104899 1.104882
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.659999 0.374901 0.232591 0.092489
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.096733 0.090053 0.035448 0.044398
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.167077 0.165443 0.159924 0.166085
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.936512 0.529997 0.328112 0.132945
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.272943 0.258623 0.124569 0.066682
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.235837 0.232645 0.224532 0.232565

     | Show Table
    DownLoad: CSV
    Figure 1.  The surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Example 2: Finally, we consider the TFBE (1) with the BCs

    U\left(0, t\right) = 0 , \;\;\;\; U\left(1, t\right) = 0, \;\;\;\;t\ge 0 ,

    and IC

    U\left(x, 0\right) = 0, \;\;\;\; 0\le x\le 1 ,

    where the source term f\left(x, t\right) can be obtained as [44]

    f\left(x, t\right) = \frac{2{t}^{2-\gamma }\mathrm{sin}\left(2\pi x\right)}{\mathit{\Gamma} (3-\gamma )}+{2\pi t}^{4}\mathrm{sin}\left(2\pi x\right)\mathrm{cos}\left(2\pi x\right)+4v{t}^{2}{\pi }^{2}\mathrm{sin}\left(2\pi x\right).

    The exact solution is

    U\left(x, t\right) = {t}^{2}\mathrm{sin}\left(2\pi x\right) .

    Numerical results are represented in Tables 4 and 5 and Figure 2. Tables 4 and 5 report the numerical solutions for various numbers of partitions M and values of \Delta t . As seen in Tables 4 and 5, when the number of partitions M increased, the error norms {L}_{\infty } and {L}_{\bf{2}} will decrease considerably, while, in Table 5, we can see that when ∆t decrease, the error norms {L}_{\infty } and {L}_{\bf{2}} decrease. Figure 2 demonstrates the surfaces of the exact and numerical solutions of the TFBE in Example (2).

    Table 4.  Numerical solutions with \gamma = 0.5, \Delta t = 0.0025, {t}_{f} = 0.05, v = 1 for various numbers of partitions M .
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.435298 0.183971 0.041943 0.001960
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 1.224329 0.177703
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 2.899412 0.577143
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.731071 0.273289 0.063201 0.004168
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 1.730469 0.253053
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 4.063808 0.813220

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical solutions with \gamma = 0.5, M = 80, t = 1, {t}_{f} = 0.05, v = 1 for various values of \Delta t. .
    x \Delta t = 0.005 \Delta t = 0.001 \Delta t = 0.0005 \Delta t = 0.00025 Exact
    0.0 1000000 1000000 1000000 1000000 1000000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.124034 0.054081 0.014255 0.001960
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.532436 0.188710
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.359489 0.017828
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.175611 0.077465 0.028523 0.004168
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.753171 0.267546
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.512105 0.0321162

     | Show Table
    DownLoad: CSV
    Figure 2.  The surfaces of the exact and numerical solutions of the TFBE in Example (2).

    This paper presented a numerical approach based on the CBSGM with a quadratic weight function for the TFBE including the time Caputo derivative. Numerical results have shown that the proposed method is an appropriate and efficient scheme for solving such problems.

    The authors declare no conflict of interest.



    [1] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, New York, 1994.
    [2] Y. Jiang, X. Li, Broadband cancellation method in an adaptive co-site interference cancellation system, Int. J. Electron., 109 (2022), 854–874. https://doi.org/10.1080/00207217.2021.1941295 doi: 10.1080/00207217.2021.1941295
    [3] R. Ye, P. Liu, K. Shi, B. Yan, State damping control: A novel simple method of rotor UAV with high performance, IEEE Access, 8 (2020), 214346–214357. https://doi.org/10.1109/ACCESS.2020.3040779 doi: 10.1109/ACCESS.2020.3040779
    [4] K. Liu, F. Ke, X. Huang, R. Yu, F. Lin, Y. Wu, et al., DeepBAN: A temporal convolution-based communication framework for dynamic WBANs, IEEE Trans. Commun., 69 (2021), 6675–6690. https://doi.org/10.1109/TCOMM.2021.3094581 doi: 10.1109/TCOMM.2021.3094581
    [5] C. Huang, F. Jiang, Q. Huang, X. Wang, Z. Han, W. Huang, Dual-graph attention convolution network for 3-D point cloud classification, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022), 1–13. https://doi.org/10.1109/TNNLS.2022.3162301 doi: 10.1109/TNNLS.2022.3162301
    [6] K. Liu, Z. Yang, W. Wei, B. Gao, D. Xin, C. Sun, et al., Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables, High Voltage, 2022 (2022), 1–10. https://doi.org/10.1049/hve2.12258 doi: 10.1049/hve2.12258
    [7] S. Xu, J. Lam, W. C. Ho, Y. Zou, Delay-dependent exponential stability for a class of neural networks with time delays, J. Comput. Appl. Math., 183 (2005), 16–28. https://doi.org/10.1016/j.cam.2004.12.025 doi: 10.1016/j.cam.2004.12.025
    [8] O. M. Kwon, S. M. Lee, J. H. Park, E. J. Cha, New approaches on stability criteria for neural networks with interval time-varying delays, Appl. Math. Comput., 218 (2012), 9953–9964. https://doi.org/10.1016/j.amc.2012.03.082 doi: 10.1016/j.amc.2012.03.082
    [9] S. Arik, An improved robust stability result for uncertain neural networks with multiple time delays, Neural Netw., 54 (2014), 1–10. https://doi.org/10.1016/j.neunet.2014.02.008 doi: 10.1016/j.neunet.2014.02.008
    [10] J. Y. Zhang, H. Tang, K. Wang, K. Xu, ASRO-DIO: Active subspace random optimization based depth inertial odometry, IEEE Trans. Rob., 2022 (2022), 1–13. https://doi.org/10.1109/TRO.2022.3208503 doi: 10.1109/TRO.2022.3208503
    [11] Q. She, R. Hu, J. Xu, M. Liu, K. Xu, H. Huang, Learning high-DOF reaching-and-grasping via dynamic representation of Gripper-Object, interaction, ACM Trans. Graph., 41 (2022).
    [12] H. Zhao, C. Zhu, X. Xu, H. Huang, K. Xu, Learning practically feasible policies for online 3D bin packing, Sci. China Inf. Sci., 65 (2021), 15–32. https://doi.org/10.1007/s11432-021-3348-6 doi: 10.1007/s11432-021-3348-6
    [13] T. W. Jiang, S. Gong, Highly selective frequency selective surface with ultrawideband rejection, IEEE Trans. Antennas Propag., 70 (2022), 3459–3468.
    [14] G. Luo, Q. Yuan, J. Li, S. Wang, F. Yang, Artificial intelligence powered mobile networks: From cognition to decision, IEEE Network, 36 (2022), 136–144.
    [15] N. Gunasekaran, N. M. Thoiyab, Q. Zhu, J. Cao, P. Muruganantham, New global asymptotic robust stability of dynamical delayed neural networks via intervalized interconnection matrices IEEE Trans. Cybern., 52 (2022), 11794–11804.
    [16] N. M. Thoiyab, P. Muruganantham, Q. Zhu, N. Gunasekaran, Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties, Chaos, Solitons Fractals, 152 (2021), 111441.
    [17] N. Gunasekaran, G. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit, Neurocomputing, 413 (2020), 499–511.
    [18] H. B. Zeng, Y. He, M. Wu, C. F. Zhang, Complete delay–decomposing approach to asymptotic stability for neural networks with time-varying delays, IEEE Trans. Neural Netw., 22 (2011), 806–812.
    [19] Y. Liu, S. M. Lee, O. M. Kwon, J. H. Park, New approach to stability criteria for generalized neural networks with interval time–varying delays, Neurocomputing, 149 (2015), 1544–1551. https://doi.org/10.1016/j.neucom.2014.08.038 doi: 10.1016/j.neucom.2014.08.038
    [20] S. Arik, An analysis of stability of neutral-type neural systems with constant time delays, J. Franklin Inst., 351 (2014), 4949–4959. https://doi.org/10.1016/j.jfranklin.2014.08.013 doi: 10.1016/j.jfranklin.2014.08.013
    [21] X. Li, S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [22] X. Li, X. Zhang, S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378–382. https://doi.org/10.1016/j.automatica.2016.08.009 doi: 10.1016/j.automatica.2016.08.009
    [23] X. Li, M. Bohner, C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173–178. https://doi.org/10.1016/j.automatica.2014.11.009 doi: 10.1016/j.automatica.2014.11.009
    [24] M. S. Ali, R. Saravanakumar, Q. Zhu, Less conservative delay-dependent H_\infty control of uncertain neural networks with discrete interval and distributed time-varying delays, Neurocomputing, 166 (2015), 84–95. https://doi.org/10.1016/j.neucom.2015.04.023 doi: 10.1016/j.neucom.2015.04.023
    [25] M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, A new augmented Lyapunov-Krasovskii functional approach for stability of linear systems with time-varying delays, Appl. Math. Comput., 217 (2011), 7197–7209. https://doi.org/10.1016/j.amc.2011.02.006 doi: 10.1016/j.amc.2011.02.006
    [26] B. Kosko, Adaptive bidirectional associative memories, Appl. Opt., 26 (1987), 4947–4960. https://doi.org/10.1364/AO.26.004947 doi: 10.1364/AO.26.004947
    [27] K. Gopalsamy, X. Z. He, Delay independent stability in bidirectional associative memory networks, IEEE Trans. Neural Netw., 5 (1994), 998–1002. https://doi.org/10.1109/72.329700 doi: 10.1109/72.329700
    [28] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2021), 151–161. https://doi.org/10.1109/TCYB.2020.2967625 doi: 10.1109/TCYB.2020.2967625
    [29] Y. Wang, X. Hu, K. Shi, X. Song, H. Shen, Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals, J. Franklin Inst., 3657 (2020), 10921–10936. https://doi.org/10.1016/j.jfranklin.2020.08.037 doi: 10.1016/j.jfranklin.2020.08.037
    [30] M. S. Ali, L. Palanisamy, N. Gunasekaran, A. Alsaedi, B. Ahmad, Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks, Discrete Contin. Dyn. Syst., 14 (2021), 1465.
    [31] N. Padmaja, P. Balasubramaniam, Mixed H_{\infty}/passivity based stability analysis of fractional-order gene regulatory networks with variable delays, Math. Comput. Simul., 192 (2021), 167–181.
    [32] J. Cao, M. Dong, Exponential stability of delayed bi-directional associative memory networks, Appl. Math. Comput., 135 (2003), 105–112. https://doi.org/10.1016/S0096-3003(01)00315-0 doi: 10.1016/S0096-3003(01)00315-0
    [33] S. Arik, Global asymptotic stability of bidirectional associative memory neural networks with time delays, IEEE Trans. Neural Netw., 16 (2005), 580–586. https://doi.org/10.1109/TNN.2005.844910 doi: 10.1109/TNN.2005.844910
    [34] S. Senan, S. Arik, Global robust stability of bidirectional associative memory neural networks with multiple time delays, IEEE Trans. Syst. Man Cybern B., 37 (2007) 1375–1381. https://doi.org/10.1109/TSMCB.2007.902244 doi: 10.1109/TSMCB.2007.902244
    [35] J. Cao, Y. Wan, Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays, Neural Netw., 53 (2014), 165–172. https://doi.org/10.1016/j.neunet.2014.02.003 doi: 10.1016/j.neunet.2014.02.003
    [36] J. Cao, Q. Song, Stability in Cohen–Grossberg-type bidirectional associative memory neural networks with time-varying delays, Nonlinearity, 19 (2006), 1601–1617. https://doi.org/10.1088/0951-7715/19/7/008 doi: 10.1088/0951-7715/19/7/008
    [37] M. S. Ali, P. Balasubramaniam, Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays, Chaos, Solitons Fractals, 42 (2009), 2191–2199. https://doi.org/10.1016/j.chaos.2009.03.138 doi: 10.1016/j.chaos.2009.03.138
    [38] H. Bao, J. Cao, Robust state estimation for uncertain stochastic bidirectional associative memory networks with time-varying delays, Phys. Scripta, 83 (2011), 065004. https://doi.org/10.1088/0031-8949/83/06/065004 doi: 10.1088/0031-8949/83/06/065004
    [39] K. Mathiyalagan, R. Sakthivel, S. Marshal Anthoni, New robust passivity criteria for stochastic fuzzy BAM neural networks with time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 1392–1407. https://doi.org/10.1016/j.cnsns.2011.07.032 doi: 10.1016/j.cnsns.2011.07.032
    [40] H. Bao, J. Cao, Exponential stability for stochastic BAM networks with discrete and distributed delays, Appl. Math. Comput., 218 (2012), 6188–6199. https://doi.org/10.1016/j.amc.2011.11.035 doi: 10.1016/j.amc.2011.11.035
    [41] M. S. Ali, R. Saravanakumar, J. Cao, New passivity criteria for memristor-based neutral-type stochastic BAM neural networks with mixed time-varying delays, Neurocomputing, 171 (2016), 1533–1547. https://doi.org/10.1016/j.neucom.2015.07.101 doi: 10.1016/j.neucom.2015.07.101
    [42] Z. Cai, L. Huang, Functional differential inclusions and dynamic behaviours for memristor-based BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1279–1300. https://doi.org/10.1016/j.cnsns.2013.09.004 doi: 10.1016/j.cnsns.2013.09.004
    [43] H. Li, H. Jiang, C. Hu, Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays, Neural Netw., 75 (2016), 97–109. https://doi.org/10.1016/j.neunet.2015.12.006 doi: 10.1016/j.neunet.2015.12.006
    [44] J. Qi, C. Li, T. Huang, Stability of interval BAM neural network with time varying delay via impulsive control, Neurocomputing, 161 (2015), 162–167. https://doi.org/10.1016/j.neucom.2015.02.052 doi: 10.1016/j.neucom.2015.02.052
    [45] M. Fang, J. H. Park, Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation, Appl. Math. Comput., 219 (2013), 8009–8017. https://doi.org/10.1016/j.amc.2013.02.030 doi: 10.1016/j.amc.2013.02.030
    [46] Z. G. Wu, J. H. Park, H. Su, J. Chu, Non-fragile synchronization control for complex networks with missing data, Int. J. Control, 86 (2013), 555–566. https://doi.org/10.1080/00207179.2012.747704 doi: 10.1080/00207179.2012.747704
    [47] R. Rakkiyappan, A. Chandrasekar, G. Petchimmal, Non-fragile robust synchronization for Markovian Jumping choatic neural networks of natural type with randomly occuring uncertainities and mode-dependent time varying delays, ISA Trans., 53 (2014), 1760–1770. https://doi.org/10.1016/j.isatra.2014.09.022 doi: 10.1016/j.isatra.2014.09.022
    [48] D. Li, Z. Wang, G. Ma, C. Ma, Non-fragile synchronization of dynamical networks with randomly occurring non linearities and controller gain fluctuations, Neurocomputing, 168 (2015), 719–725. https://doi.org/10.1016/j.neucom.2015.05.052 doi: 10.1016/j.neucom.2015.05.052
    [49] T. H. Lee, J. H. Park, S. M. Lee, O. M. Kwon, Robust synchronisation of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control, Int. J. Control, 86 (2013), 107–119. https://doi.org/10.1080/00207179.2012.720034 doi: 10.1080/00207179.2012.720034
    [50] R. Anbuvithya, K. Mathiyalagan, R. Sakthivel, P. Prakash, Non-fragile synchronization of Memristive BAM networks with random feedback gain fluctuations, Commun. Nonlinear Sci. Numer. Simulat., 29 (2015), 427–440. https://doi.org/10.1016/j.cnsns.2015.05.020 doi: 10.1016/j.cnsns.2015.05.020
    [51] J. Ren, Q. Zhang, Non-fragile PD state H_\infty control for a class of uncertain descriptor systems, Appl. Math. Comput., 218 (2012), 8806–8815.
    [52] F. Yang, H. Dong, Z. Wang, W. Ren, F. E. Alsaadi, A new approach to non-fragile state estimation for continuous neural network with time delays, Neurocomputing, 197 (2016), 205–211. https://doi.org/10.1016/j.neucom.2016.02.062 doi: 10.1016/j.neucom.2016.02.062
    [53] B. Boyd, L. Ghoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadephia, PA: SIAM, 1994. https: //doi.org/10.1137/1.9781611970777
    [54] K. Gu, An integral inequality in the stability problem of time-delay systems, in Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, (2000), 2805–2810. https: //doi.org/10.1109/CDC.2000.914233
    [55] M. V. Thuan, H. Trinh, L. V. Hien, New inequality-based approach to passivity analysis of neural networks with interval time-varying delay, Neurocomputing, 194 (2016), 301–307. https://doi.org/10.1016/j.neucom.2016.02.051 doi: 10.1016/j.neucom.2016.02.051
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1805) PDF downloads(82) Cited by(2)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog