This paper proposes a non-smooth human influenza model with logistic source to describe the impact on media coverage and quarantine of susceptible populations of the human influenza transmission process. First, we choose two thresholds IT and ST as a broken line control strategy: Once the number of infected people exceeds IT, the media influence comes into play, and when the number of susceptible individuals is greater than ST, the control by quarantine of susceptible individuals is open. Furthermore, by choosing different thresholds IT and ST and using Filippov theory, we study the dynamic behavior of the Filippov model with respect to all possible equilibria. It is shown that the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or bistability endemic equilibria under some conditions. The regular/virtulal equilibrium bifurcations are also given. Lastly, numerical simulation results show that choosing appropriate threshold values can prevent the outbreak of influenza, which implies media coverage and quarantine of susceptible individuals can effectively restrain the transmission of influenza. The non-smooth system with logistic source can provide some new insights for the prevention and control of human influenza.
Citation: Guodong Li, Wenjie Li, Ying Zhang, Yajuan Guan. Sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6800-6837. doi: 10.3934/mbe.2023293
[1] | Md Nazmul Hassan, Angela Peace . Mechanistically derived Toxicant-mediated predator-prey model under Stoichiometric constraints. Mathematical Biosciences and Engineering, 2020, 17(1): 349-365. doi: 10.3934/mbe.2020019 |
[2] | Yawen Yan, Hongyue Wang, Xiaoyuan Chang, Jimin Zhang . Asymmetrical resource competition in aquatic producers: Constant cell quota versus variable cell quota. Mathematical Biosciences and Engineering, 2023, 20(2): 3983-4005. doi: 10.3934/mbe.2023186 |
[3] | Huanyi Liu, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao . Dynamical analysis of an aquatic amensalism model with non-selective harvesting and Allee effect. Mathematical Biosciences and Engineering, 2021, 18(6): 8857-8882. doi: 10.3934/mbe.2021437 |
[4] | Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040 |
[5] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[6] | Lina Hao, Meng Fan, Xin Wang . Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system. Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841 |
[7] | Yueping Dong, Jianlu Ren, Qihua Huang . Dynamics of a toxin-mediated aquatic population model with delayed toxic responses. Mathematical Biosciences and Engineering, 2020, 17(5): 5907-5924. doi: 10.3934/mbe.2020315 |
[8] | Md Nazmul Hassan, Kelsey Thompson, Gregory Mayer, Angela Peace . Effect of Excess Food Nutrient on Producer-Grazer Model under Stoichiometric and Toxicological Constraints. Mathematical Biosciences and Engineering, 2019, 16(1): 150-167. doi: 10.3934/mbe.2019008 |
[9] | Santanu Bhattacharya, Nandadulal Bairagi . Dynamic optimization of fishing tax and tourism fees for sustainable bioeconomic resource management. Mathematical Biosciences and Engineering, 2025, 22(7): 1751-1789. doi: 10.3934/mbe.2025064 |
[10] | Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391 |
This paper proposes a non-smooth human influenza model with logistic source to describe the impact on media coverage and quarantine of susceptible populations of the human influenza transmission process. First, we choose two thresholds IT and ST as a broken line control strategy: Once the number of infected people exceeds IT, the media influence comes into play, and when the number of susceptible individuals is greater than ST, the control by quarantine of susceptible individuals is open. Furthermore, by choosing different thresholds IT and ST and using Filippov theory, we study the dynamic behavior of the Filippov model with respect to all possible equilibria. It is shown that the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or bistability endemic equilibria under some conditions. The regular/virtulal equilibrium bifurcations are also given. Lastly, numerical simulation results show that choosing appropriate threshold values can prevent the outbreak of influenza, which implies media coverage and quarantine of susceptible individuals can effectively restrain the transmission of influenza. The non-smooth system with logistic source can provide some new insights for the prevention and control of human influenza.
We are pleased to present the edition in Mathematical Biosciences and Engineering of a Special Issue that highlights machine learning in molecular biology. Our aim is to report latest developments both in computational methods and analysis expanding the existed biological knowledge in molecular biological systems. We feature both web-based resources, which provide easy access to users, downloadable tools of particular use for in-house processing, and the inclusion into pipelines being developed in the laboratory.
In this special issue, Zhu et al. [1] developed a new approach to computationally reconstruct the 3D structure of the X-chromosome during XCI, in which the chain of DNA beads representing a chromosome is stored and simulated inside a 3D cubic lattice. They first generated the 3D structures of the X-chromosome before and after XCI by applying simulated annealing and Metropolis-Hastings simulations. Then, Xist localization intensities on the X-chromosome (RAP data) are used to model the traveling speeds or acceleration between all bead pairs during the process of XCI. With their approach, the 3D structures of the X-chromosome at 3 hours, 6 hours, and 24 hours after the start of the Xist expression, which initiates the XCI process, have been reconstructed.
Long noncoding RNAs (lncRNA) play important roles in gene expression regulation in diverse biological contexts. While lncRNA-gene interactions are closely related to the occurrence and development of cancers, the new target genes could be detected from known lncRNA regulated genes. Lu et al. [2] developed a method by using a biclustering approach for elucidating lncRNA-gene interactions, which allows for the identification of particular expression patterns across multiple datasets, indicating networks of lncRNA and gene interactions. Their method was applied and evaluated on the breast cancer RNA-seq datasets along with a set of known lncRNA regulated genes. Their method provides useful information for future studies on lncRNAs.
RNA modification site prediction offers an insight into diverse cellular processing in the regulation of organisms. Deep learning can detect optimal feature patterns to represent input data other than feature engineering from traditional machine learning methods. Sun et al. [3] developed DeepMRMP (Multiple Types RNA Modification Sites Predictor), a predictor for multiple types of RNA modifications method, which is based on the bidirectional Gated Recurrent Unit (BGRU) and transfer learning. Using multiple RNA site modification data and correlation among them, DeepMRMP build predictor for different types of RNA modification sites. DeepMRMP identifies N1-methyladenosine (m1A), pseudouridine (Ψ), 5-methylcytosine (m5C) modification sites through 10-fold cross-validation of the RNA sequences of H. sapiens, M. musculus and S. cerevisiae,
In biomedical research, near infrared spectroscopy (NIRS) is widely applied to analysis of active ingredients in medicinal fungi. Huang et al. [4] introduced an autonomous feature extraction method to model original NIRS vectors using attention based residual network (ABRN). Attention module in ABRN is employed to enhance feature wave bands and to decay noise. Different from traditional NIRS analysis methods, ABRN does not require any preprocessing of artificial feature selections which rely on expert experience. Comparing with other methods on various benchmarks and measurements, ABRN has better performance in autonomously extracting feature wave bands from original NIRS vectors, which can decrease the loss of tiny feature peaks.
Selectively and non-covalently interact with hormone, the soluble carrier hormone binding protein (HBP) plays an important role in the growth of human and other animals. Since experimental methods are still labor intensive and cost ineffective to identify HBP, it's necessary to develop computational methods to accurately and efficiently identify HBP. In Tan et al.'s paper [5], a machine learning-based method named as HBPred2.0 was proposed to identify HBP, in which the samples were encoded by using the optimal tripeptide composition obtained based on the binomial distribution method. The proposed method yielded an overall accuracy of 97.15% in the 5-fold cross-validation test. A user-friendly webserver is also provided.
Sun et al. [6] propose novel machine learning methods for recognition cancer biomarkers in saliva. As cancer tissues can make disease-specific changes in some salivary proteins through some mediators in the pathogenesis of systemic diseases, effectively identify these salivary proteins as potential markers is one of the challenging issues. With the proposed approach, salivary secreted proteins are recognized which are considered as candidate biomarkers of cancers. SVC-KM method is used to cluster the remaining proteins, and select negative samples from each cluster in proportion. Experimental results show the proposed methods can improve the accuracy of recognition by solving the problems of unbalanced sample size and uneven distribution in training set. They analyze the gene expression data of three types of cancer, and predict that 33 genes will appear in saliva after they are translated into proteins. This study provides a computational tool to help biologists and researchers reduce the number of candidate proteins and the cost of research in saliva diagnosis.
We hope that the readers will find this Special Issue helpful in identifying tools and analysis to help them in their study of particular molecular biological problems. In addition, this Issue is also providing an insight into current developments in bioinformatics where the articles describe the strategies being employed to exploring and interpreting sophisticate biological mechanisms, inferring underling relationships and interactions, predicting consequences from disturbance and building hypothesis in molecular biological systems.
Last but not least, we thank all the authors contributing to this special issue, and editor May Zhao's help and excellent work.
[1] |
D. M. Morens, A. S. Fauci, The 1918 influenza pandemic: insights for the 21st century, J. Infect. Dis., 195 (2007), 1018–1028. https://doi.org/10.1086/511989 doi: 10.1086/511989
![]() |
[2] | M. Babakir-Mina, S. Dimonte, M. Ciccozzi, C. F. Perno, M. Ciotti, The novel swine-origin H1N1 influenza A virus riddle: is it a domestic bird H1N1-derived virus, New Microbiol., 33 (2010), 77–81. |
[3] | F. Ferrajoli, Influenza in the Italian army & the recent Asiatic pandemic in the group. Ⅱ. The so-called Asiatic flu pandemic in the army, G. Med. Mil., 108 (1958), 309–337. |
[4] |
T. D. Rozen, Daily persistent headache after a viral illness during a worldwide pandemic may not be a new occurrence: Lessons from the 1890 Russian/Asiatic flu, Cephalalgia, 40 (2020), 1406–1409. https://doi.org/10.1177/0333102420965132 doi: 10.1177/0333102420965132
![]() |
[5] |
A. Sutter, M. Vaswani, P. Denice, K. H. Choi, J. Bouchard, V. M. Esses, Ageism toward older adults during the COVID‐19 pandemic: intergenerational conflict and support, J. Soc. Issues, 2022 (2022). https://doi.org/10.1111/josi.12554 doi: 10.1111/josi.12554
![]() |
[6] |
S. Saha, G. Samanta, J. J. Nieto, Impact of optimal vaccination and social distancing on COVID-19 pandemic, Math. Comput. Simul., 200 (2022), 285–314. https://doi.org/10.1016/j.matcom.2022.04.025 doi: 10.1016/j.matcom.2022.04.025
![]() |
[7] |
D. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J. Schünemann, et al., Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis, Lancet, 395 (2020), 1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9 doi: 10.1016/S0140-6736(20)31142-9
![]() |
[8] |
H. W. Berhe, O. D. Makinde, Computational modelling and optimal control of measles epidemic in human population, Biosystems, 190 (2020), 104102. https://doi.org/10.1016/j.biosystems.2020.104102 doi: 10.1016/j.biosystems.2020.104102
![]() |
[9] |
H. W. Berhe, O. D. Makinde, D. M. Theuri, Optimal control and cost-effectiveness analysis for dysentery epidemic model, Appl. Math. Inf. Sci., 12 (2018), 1183–1195. https://doi.org/10.18576/amis/120613 doi: 10.18576/amis/120613
![]() |
[10] |
A. Omame, N. Sene, I. Nometa, C. I. Nwakanma, E. U. Nwafor, N. O. Iheonu, et al., Analysis of COVID‐19 and comorbidity co‐infection model with optimal control, Optim. Control. Appl. Methods, 42 (2021), 1568–1590. https://doi.org/10.1002/oca.2748 doi: 10.1002/oca.2748
![]() |
[11] |
A. Babaei, M. Ahmadi, H. Jafari, A. Liya, A mathematical model to examine the effect of quarantine on the spread of coronavirus, Chaos, Solitons Fractals, 142 (2021), 110418. https://doi.org/10.1016/j.chaos.2020.110418 doi: 10.1016/j.chaos.2020.110418
![]() |
[12] |
M. Z. Ndii, Y. A. Adi, Understanding the effects of individual awareness and vector controls on malaria transmission dynamics using multiple optimal control, Chaos, Solitons Fractals, 153 (2021), 111476. https://doi.org/10.1016/j.chaos.2021.111476 doi: 10.1016/j.chaos.2021.111476
![]() |
[13] |
W. Li, J. Ji, L. Huang, J. Wang, Bifurcations and dynamics of a plant disease system under non-smooth control strategy, Nonlinear Dyn., 99 (2020), 3351–3371. https://doi.org/10.1007/s11071-020-05464-2 doi: 10.1007/s11071-020-05464-2
![]() |
[14] |
W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Amer. Math. Soc., 148 (2020), 4389–4403. https://doi.org/10.1090/proc/15095 doi: 10.1090/proc/15095
![]() |
[15] |
J. Deng, S. Tang, H. Shu, Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698 doi: 10.1016/j.jtbi.2021.110698
![]() |
[16] |
T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos, Solitons Fractals, 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
![]() |
[17] |
A. Kouidere, L. E. L. Youssoufi, H. Ferjouchia, O. Balatif, M. Rachik, Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness, Chaos, Solitons Fractals, 145 (2021), 110777. https://doi.org/10.1016/j.chaos.2021.110777 doi: 10.1016/j.chaos.2021.110777
![]() |
[18] |
C. A. K. Kwuimy, F. Nazari, X. Jiao, P. Rohani, C. Nataraj, Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action, Nonlinear Dyn., 101 (2020), 1545–1559. https://doi.org/10.1007/s11071-020-05815-z doi: 10.1007/s11071-020-05815-z
![]() |
[19] |
M. A. Khan, A. Atangana, E. Alzahrani, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equations, 2020 (2020), 1–22. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
![]() |
[20] |
A. Aleta, D. Martín-Corral, A. P. Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, et al., Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19, Nat. Hum. Behav., 4 (2020), 964–971. https://doi.org/10.1038/s41562-020-0931-9 doi: 10.1038/s41562-020-0931-9
![]() |
[21] |
Y. Yuan, N. Li, Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness, Physica A, 603 (2022), 127804. https://doi.org/10.1016/j.physa.2022.127804 doi: 10.1016/j.physa.2022.127804
![]() |
[22] |
A. Wang, Y. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination, Int. J. Bifurcation Chaos, 23 (2013), 1350144. https://doi.org/10.1142/S0218127413501447 doi: 10.1142/S0218127413501447
![]() |
[23] |
M. De la Sen, A. Ibeas, On an SE(Is)(Ih)AR epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic, Adv. Differ. Equations, 2021 (2021), 1–30. https://doi.org/10.1186/s13662-021-03248-5 doi: 10.1186/s13662-021-03248-5
![]() |
[24] |
O. Agossou, M. N. Atchadé, A. M. Djibril, Modeling the effects of preventive measures and vaccination on the COVID-19 spread in Benin Republic with optimal control, Results Phys., 31 (2021), 104969. https://doi.org/10.1016/j.rinp.2021.104969 doi: 10.1016/j.rinp.2021.104969
![]() |
[25] |
C. Chen, N. S. Chong, R. Smith, A Filippov model describing the effects of media coverage and quarantine on the spread of human influenza, Math. Biosci., 296 (2018), 98–112. https://doi.org/10.1016/j.mbs.2017.12.002 doi: 10.1016/j.mbs.2017.12.002
![]() |
[26] |
J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
![]() |
[27] |
J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith, C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1–14. https://doi.org/10.1186/1471-2458-11-S1-S5 doi: 10.1186/1471-2458-11-S1-S5
![]() |
[28] |
Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 1–9. https://doi.org/10.1038/srep07838 doi: 10.1038/srep07838
![]() |
[29] |
Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
![]() |
[30] |
W. Li, Y. Chen, L. Huang, J. Wang, Global dynamics of a Filippov predator-prey model with two thresholds for integrated pest management, Chaos, Solitons Fractals, 157 (2022), 111881. https://doi.org/10.1016/j.chaos.2022.111881 doi: 10.1016/j.chaos.2022.111881
![]() |
[31] |
C. Chen, C. Li, Y. Kang, Modelling the effects of cutting off infected branches and replanting on fire-blight transmission using Filippov systems, J. Theor. Biol., 439 (2018), 127–140. https://doi.org/10.3917/nrt.401.0127 doi: 10.3917/nrt.401.0127
![]() |
[32] |
W. Zhou, Y. Xiao, J. M. Heffernan, A two-thresholds policy to interrupt transmission of West Nile Virus to birds, J. Theor. Biol., 463 (2019), 22–46. https://doi.org/10.1016/j.jtbi.2018.12.013 doi: 10.1016/j.jtbi.2018.12.013
![]() |
[33] |
C. Dong, C. Xiang, W. Qin, Y. Yang, Global dynamics for a Filippov system with media effects, Math. Biosci. Eng., 19 (2022), 2835–2852. https://doi.org/10.3934/mbe.2022130 doi: 10.3934/mbe.2022130
![]() |
[34] |
W. Li, J. Ji, L. Huang, Z. Guo, Global dynamics of a controlled discontinuous diffusive SIR epidemic system, Appl. Math. Lett., 121 (2021), 107420 https://doi.org/10.1016/j.aml.2021.107420 doi: 10.1016/j.aml.2021.107420
![]() |
[35] |
W. Li, J. Ji, L. Huang, L. Zhang, Global dynamics and control of malicious signal transmission in wireless sensor networks, Nonlinear Anal. Hybrid Syst., 48 (2023), 101324. https://doi.org/10.1016/j.nahs.2022.101324 doi: 10.1016/j.nahs.2022.101324
![]() |
[36] |
Z. Cai, L. Huang, Generalized Lyapunov approach for functional differential inclusions, Automatica, 113 (2020), 108740. https://doi.org/10.1016/j.automatica.2019.108740 doi: 10.1016/j.automatica.2019.108740
![]() |
[37] |
W. Li, Y. Zhang, L. Huang, Dynamics analysis of a predator–prey model with nonmonotonic functional response and impulsive control, Math. Comput. Simul., 204 (2023), 529–555. https://doi.org/10.1016/j.matcom.2022.09.002 doi: 10.1016/j.matcom.2022.09.002
![]() |
[38] |
W. Li, J. Ji, L. Huang, Global dynamics analysis of a water hyacinth fish ecological system under impulsive control, J. Franklin Inst., 359 (2022), 10628–10652. https://doi.org/10.1016/j.jfranklin.2022.09.030 doi: 10.1016/j.jfranklin.2022.09.030
![]() |
[39] |
Z. Cai, L. Huang, Z. Wang, Fixed/Preassigned-time stability of time-varying nonlinear system with discontinuity: application to Chua's circuit, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2022), 2987–2991. https://doi.org/10.1109/TCSII.2022.3166776 doi: 10.1109/TCSII.2022.3166776
![]() |
[40] |
Z. Cai, L. Huang, Z. Wang, Novel fixed-time stability criteria for discontinuous nonautonomous systems: Lyapunov method with indefinite derivative, IEEE Trans. Cybern., 52 (2020), 4286–4299. https://doi.org/10.1109/TCYB.2020.3025754 doi: 10.1109/TCYB.2020.3025754
![]() |
[41] |
H. Tu, X. Wang, S. Tang, Exploring COVID-19 transmission patterns and key factors during epidemics caused by three major strains in Asia, J. Theor. Biol., 557 (2023), 111336. https://doi.org/10.1016/j.jtbi.2022.111336 doi: 10.1016/j.jtbi.2022.111336
![]() |
[42] |
J. Wang, Z. Huang, Z. Wu, J. Cao, H. Shen, Extended dissipative control for singularly perturbed PDT switched systems and its application, Trans. Circuits Syst. I Regul. Pap., 67 (2020), 5281–5289. https://doi.org/10.1109/TCSI.2020.3022729 doi: 10.1109/TCSI.2020.3022729
![]() |
[43] |
W. Li, J. Ji, L. Huang, Y. Zhang, Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy, Chaos, Solitons Fractals, 167 (2023), 113077. https://doi.org/10.1016/j.chaos.2022.113077 doi: 10.1016/j.chaos.2022.113077
![]() |
[44] |
J. Li, Q. Zhu, Stability of neutral stochastic delayed systems with switching and distributed-delay dependent impulses, Nonlinear Anal. Hybrid Syst., 47 (2023), 101279. https://doi.org/10.1016/j.nahs.2022.101279 doi: 10.1016/j.nahs.2022.101279
![]() |
[45] |
C. Chen, P. Wang, L. Zhang, A two-thresholds policy for a Filippov model in combating influenza, J. Math. Biol., 81 (2020), 435–461. https://doi.org/10.1007/s00285-020-01514-w doi: 10.1007/s00285-020-01514-w
![]() |
[46] |
Y. A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcation Chaos, 13 (2003), 2157–2188. https://doi.org/10.1142/S0218127403007874 doi: 10.1142/S0218127403007874
![]() |
[47] |
N. S. Chong, B. Dionne, R. Smith, An avian-only Filippov model incorporating culling of both susceptible and infected birds in combating avian influenza, J. Math. Biol., 73 (2016), 751–784. https://doi.org/10.1007/s00285-016-0971-y doi: 10.1007/s00285-016-0971-y
![]() |
1. | Igor Pantic, Jovana Paunovic, Snezana Pejic, Dunja Drakulic, Ana Todorovic, Sanja Stankovic, Danijela Vucevic, Jelena Cumic, Tatjana Radosavljevic, Artificial intelligence approaches to the biochemistry of oxidative stress: Current state of the art, 2022, 358, 00092797, 109888, 10.1016/j.cbi.2022.109888 | |
2. | Arindam Ghosh, Aritri Bir, Evaluating ChatGPT's Ability to Solve Higher-Order Questions on the Competency-Based Medical Education Curriculum in Medical Biochemistry, 2023, 2168-8184, 10.7759/cureus.37023 |