[1]
|
C. Li, C. Zhao, J. Bao, B. Tang, Y. Wang, B. Gu, Laboratory diagnosis of coronavirus disease-2019 (COVID-19), Clin. Chim. Acta., 510 (2020), 35–46. https://doi.org/10.1016/j.cca.2020.06.045 doi: 10.1016/j.cca.2020.06.045
|
[2]
|
Y. Guo, Q. Cao, Z. Hong, Y. Tan, S. Chen, H. Jin, et al., The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status, Mil. Med. Res., 7 (2020), 1–10. https://doi.org/10.1186/s40779-020-00240-0 doi: 10.1186/s40779-020-00240-0
|
[3]
|
M. Rostami, M. Oussalah, A novel explainable COVID-19 diagnosis method by integration of feature selection with random forest, Inform. Med. Unlocked, 30 (2022), 100941. https://doi.org/10.1016/j.imu.2022.100941 doi: 10.1016/j.imu.2022.100941
|
[4]
|
X. Luo, P. Gandhi, S. S. KH, A deep language model for symptom extraction from clinical text and its application to extract COVID-19 symptoms from social media, IEEE J. Biomed. Heal Inform., 26 (2022), 1737–1748. https://doi.org/10.1109/JBHI.2021.3123192 doi: 10.1109/JBHI.2021.3123192
|
[5]
|
G. Saranya, A. Pravin, Feature selection techniques for disease diagnosis system: A survey, in Artificial Intelligence Techniques for Advanced Computing Applications, Springer, Singapore, 130 (2021), 249–258. https://doi.org/10.1007/978-981-15-5329-5_24
|
[6]
|
J. T. Pintas, L. A. F. Fernandes, A. C. B. Garcia, Feature selection methods for text classification: A systematic literature review, Artif. Intell. Rev., 54 (2021), 6149–6200. https://doi.org/10.1007/s10462-021-09970-6 doi: 10.1007/s10462-021-09970-6
|
[7]
|
L. M. Abualigah, A. T. Khader, E. S. Hanandeh, A new feature selection method to improve the document clustering using particle swarm optimization algorithm, J. Comput. Sci., 25 (2018), 456–466. https://doi.org/10.1016/j.jocs.2017.07.018 doi: 10.1016/j.jocs.2017.07.018
|
[8]
|
D. A. Elmanakhly, M. Saleh, E. A. Rashed, M. Abdel-Basset, BinHOA : Efficient binary horse herd optimization method for feature selection : Analysis and validations, IEEE Access., 10 (2022), 26795–26816. https://doi.org/10.1109/ACCESS.2022.3156593 doi: 10.1109/ACCESS.2022.3156593
|
[9]
|
R. Abu Khurmaa, I. Aljarah, A. Sharieh, An intelligent feature selection approach based on moth flame optimization for medical diagnosis, Neural Comput. Appl., 33 (2021), 7165–7204. https://doi.org/10.1007/s00521-020-05483-5 doi: 10.1007/s00521-020-05483-5
|
[10]
|
P. H. Prastyo, R. Hidayat, I. Ardiyanto, Enhancing sentiment classification performance using hybrid query expansion ranking and binary particle swarm optimization with adaptive inertia weights, ICT Express., 8 (2021), 189–197. https://doi.org/10.1016/j.icte.2021.04.009 doi: 10.1016/j.icte.2021.04.009
|
[11]
|
B. Ji, X. Lu, G. Sun, W. Zhang, J. Li, Y. Xiao, Bio-Inspired feature selection : An improved binary particle swarm optimization approach, IEEE Access., 8 (2020), 85989–86002. https://doi.org/10.1109/ACCESS.2020.2992752 doi: 10.1109/ACCESS.2020.2992752
|
[12]
|
H. K. H. Chantar, M. M. Mafarja, H. I. Alsawalqah, A. A. Heidari, I. Aljarah, H. Faris, Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification, Neural Comput. Appl., 32 (2020), 12201–12220. https://doi.org/10.1007/s00521-019-04368-6 doi: 10.1007/s00521-019-04368-6
|
[13]
|
M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, L. Abualigah. Binary aquila optimizer for selecting effective features from medical data: A COVID-19 case study, Math. MDPI., 10 (2022), 1–24. https://doi.org/10.3390/math10111929 doi: 10.3390/math10111929
|
[14]
|
J. Piri, P. Mohapatra, B. Acharya, F. S. Gharehchopogh, V. C. Gerogiannis, A. Kanavos, et al., Feature selection using artificial gorilla troop optimization for biomedical data: A case analysis with COVID-19 data, Mathematics, 10 (2022), 1–31. https://doi.org/10.3390/math10152742 doi: 10.3390/math10152742
|
[15]
|
W. Tuerxun, X. Chang, G. Hongyu, J. Zhijie, Z. Huajian, Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm, IEEE Power Energy Soc. Sect., 9 (2021), 69307–69315. https://doi.org/10.1109/ACCESS.2021.3075547 doi: 10.1109/ACCESS.2021.3075547
|
[16]
|
C. A. Flores, R. L. Figueroa, J. E. Pezoa, FREGEX: A feature extraction method for biomedical text classification using regular expressions, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2019), 6085–6088. https://doi.org/10.1109/EMBC.2019.8857471
|
[17]
|
W. M. Shaban, A. H. Rabie, A. I. Saleh, M. A. Abo-Elsoud, Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy, Pattern Recognit., 119 (2021), 108110–108110. https://doi.org/10.1016/j.patcog.2021.108110 doi: 10.1016/j.patcog.2021.108110
|
[18]
|
A. Singh, K. K. Singh, M. Greguš, I. Izonin, CNGOD-An improved convolution neural network with grasshopper optimization for detection of COVID-19, Math. Biosci. Eng., 9 (2022), 12518–12531. https://doi.org/10.3934/mbe.2022584 doi: 10.3934/mbe.2022584
|
[19]
|
Z. M. Fadhil, R. A. Jaleel, Multiple efficient data mining algorithms with genetic selection for prediction of SARS-CoV2, in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), (2022). https://doi.org/10.1109/ICACITE53722.2022.9823757
|
[20]
|
I. M. El-Hasnony, M. Elhoseny, Z. Tarek, A hybrid feature selection model based on butterfly optimization algorithm: COVID‐19 as a case study, Expert Syst., 39 (2022), e12786. https://doi.org/10.1111/exsy.12786 doi: 10.1111/exsy.12786
|
[21]
|
M. A. k. alsaeedi, S. Kurnaz, Feature selection for diagnose coronavirus (COVID-19) disease by neural network and Caledonian crow learning algorithm, Appl Nanosci., (2022), 1–16. https://doi.org/10.1007/s13204-021-02159-x doi: 10.1007/s13204-021-02159-x
|
[22]
|
T. Bezdan, M. Zivkovic, N. Bacanin, A. Chhabra, M. Suresh, Feature selection by hybrid brain storm optimization algorithm for COVID-19 classification, J. Comput. Biol., 29 (2022), 515–529. https://doi.org/10.1089/cmb.2021.0256 doi: 10.1089/cmb.2021.0256
|
[23]
|
Z. Wang, J. Liu, Flamingo search algorithm and its application to path planning problem, in 2021 4th Flamingo search algorithm and its application to path planning problem, (2021), 567–573. https://doi.org/10.1145/3488933.3489011
|
[24]
|
A. Onan, M. A. Toçoğlu, A term weighted neural language model and stacked bidirectional LSTM based framework for sarcasm identification, IEEE Access, 9 (2021), 7701–7722. https://doi.org/10.1109/ACCESS.2021.3049734 doi: 10.1109/ACCESS.2021.3049734
|
[25]
|
M. Neumann, D. King, I. Beltagy W. Ammar, ScispaCy: Fast and robust models for biomedical natural language processing, in Proceedings of the 18th BioNLP Workshop and Shared Task, (2019), 319–327. https://doi.org/10.18653/v1/W19-5034
|
[26]
|
A. Y. Mahdi, S. S. Yuhaniz, Automatic diagnosis of COVID-19 patients from unstructured data based on a novel weighting scheme, C. Mater. Contin., 74 (2022), 1375–1392. https://doi.org/10.32604/cmc.2023.032671 doi: 10.32604/cmc.2023.032671
|
[27]
|
T. Parlar, S. A. Özel, F. Song, A new feature selection method for sentiment analysis, Human-centric Comput. Inf. Sci., 8 (2018), 1–19. https://doi.org/10.1515/jisys-2018-0171 doi: 10.1515/jisys-2018-0171
|
[28]
|
S. L. Marie-Sainte, N. Alalyani, Firefly algorithm based feature selection for arabic text classification, J. King Saud Univ. Comput. Inf. Sci., 32 (2020), 320–328, https://doi.org/10.1016/j.jksuci.2018.06.004 doi: 10.1016/j.jksuci.2018.06.004
|
[29]
|
W. Zhiheng, L. Jianhua, Flamingo search algorithm: A new swarm intelligence optimization algorithm, IEEE Access., 9 (2021), 88564–88582. https://doi.org/10.1109/ACCESS.2021.3090512 doi: 10.1109/ACCESS.2021.3090512
|
[30]
|
M. Abd El Aziz, A. Hassanien, Modified cuckoo search algorithm with rough sets for feature selection, Neural Comput. Appl., 29 (2018), 925–934. https://doi.org/10.1007/s00521-016-2473-7 doi: 10.1007/s00521-016-2473-7
|
[31]
|
Z. Li, Y. Zhou, S. Zhang, J. Song, Lévy-Flight Moth-Flame algorithm for function optimization and engineering design problems, Math. Probl. Eng., (2016), 1–22. https://doi.org/10.1155/2016/1423930 doi: 10.1155/2016/1423930
|
[32]
|
P. A. Digehsara, S. N. Chegini, A. Bagheri, M. P. Roknsaraei, An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence, Cogent. Eng., 7 (2020), 1–29. https://doi.org/10.1080/23311916.2020.1737383 doi: 10.1080/23311916.2020.1737383
|
[33]
|
B. Kazimipour, X. Li, A. K. Qin, A review of population initialization techniques for evolutionary algorithms, 2014 IEEE Congr. Evol. Comput., (2014), 2585–2592. https://doi.org/10.1109/CEC.2014.6900618 doi: 10.1109/CEC.2014.6900618
|
[34]
|
W. H. Bangyal, A. Hameed, W. Alosaimi, H. Alyami, A new initialization approach in particle swarm optimization for global optimization problems, Comput. Intell. Neurosci., 2021 (2021), 1–17. https://doi.org/10.1155/2021/6628889 doi: 10.1155/2021/6628889
|
[35]
|
A. G. Gad, K. M. Sallam, R. K. Chakrabortty, M. J. Ryan, A. A. Abohany, An improved binary sparrow search algorithm for feature selection in data classification, Neural Comput. Appl., 34 (2022), 15705–15752. https://doi.org/10.1007/s00521-022-07546-1 doi: 10.1007/s00521-022-07546-1
|
[36]
|
P.H. Prastyo, A.S. Sumi, A.W. Dian, A. E Permanasari, Tweets responding to the Indonesian government's handling of COVID-19: Sentiment analysis using SVM with Normalized Poly Kernel, J. Inf. Syst. Eng. Bus. Intell., 6 (2020), 112–122. https://doi.org/10.20473/jisebi.6.2.112-122 doi: 10.20473/jisebi.6.2.112-122
|
[37]
|
K. Kowsari, K. Meimandi, M. Heidarysafa, S. Mendu, L. E. Barnes, D. E. Brown, Text classification algorithms : A survey, Inf. J., 10 (2019), 1–68. https://doi.org/10.3390/info10040150 doi: 10.3390/info10040150
|
[38]
|
M. Qaraad, S. Amjad, I. I. M. Manhrawy, H. Fathi, B. A. Hassan, P. E. Kafrawy, A hybrid feature selection optimization model for high dimension data classification, IEEE Access., 9 (2021), 42884–42895. https://doi.org/10.1109/ACCESS.2021.3065341 doi: 10.1109/ACCESS.2021.3065341
|