Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Uncertain design optimization of automobile structures: A survey


  • Received: 03 December 2022 Revised: 13 December 2022 Accepted: 14 December 2022 Published: 03 January 2023
  • In real life, there are a lot of uncertainties in engineering structure design, and the potential uncertainties will have an important impact on the structural performance responses. Therefore, it is of great significance to consider the uncertainty in the initial stage of structural design to improve product performance. The consensus can be reached that the mechanical structure obtained by the reliability and robustness design optimization method considering uncertainty not only has low failure risk but also has highly stable performance. As a large mechanical system, the uncertainty design optimization of key vehicle structural performances is particularly important. This survey mainly discusses the current situation of the uncertain design optimization framework of automobile structures, and successively summarizes the uncertain design optimization of key automobile structures, uncertainty analysis methods, and multi-objective iterative optimization models. The uncertainty analysis method in the design optimization framework needs to consider the existing limited knowledge and limited test data. The importance of the interval model as a non-probabilistic model in the uncertainty analysis and optimization process is discussed. However, it should be noted that the interval model ignores the actual uncertainty distribution rule, which makes the design scheme still have some limitations. With the further improvement of design requirements, the efficiency, accuracy, and calculation cost of the entire design optimization framework of automobile structures need to be further improved iteratively. This survey will provide useful theoretical guidance for engineers and researchers in the automotive engineering field at the early stage of product development.

    Citation: Xiang Xu, Chuanqiang Huang, Chongchong Li, Gang Zhao, Xiaojie Li, Chao Ma. Uncertain design optimization of automobile structures: A survey[J]. Electronic Research Archive, 2023, 31(3): 1212-1239. doi: 10.3934/era.2023062

    Related Papers:

    [1] Wenda Pei, Yong Zeng . Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2025, 33(3): 1306-1322. doi: 10.3934/era.2025058
    [2] Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324
    [3] Guochun Wu, Han Wang, Yinghui Zhang . Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in R3. Electronic Research Archive, 2021, 29(6): 3889-3908. doi: 10.3934/era.2021067
    [4] Shuguan Ji, Yanshuo Li . Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion. Electronic Research Archive, 2023, 31(12): 7182-7194. doi: 10.3934/era.2023363
    [5] Jingjing Zhang, Ting Zhang . Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29(4): 2719-2739. doi: 10.3934/era.2021010
    [6] Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255
    [7] Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003
    [8] Guoliang Ju, Can Chen, Rongliang Chen, Jingzhi Li, Kaitai Li, Shaohui Zhang . Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. Electronic Research Archive, 2020, 28(2): 837-851. doi: 10.3934/era.2020043
    [9] Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197
    [10] Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141
  • In real life, there are a lot of uncertainties in engineering structure design, and the potential uncertainties will have an important impact on the structural performance responses. Therefore, it is of great significance to consider the uncertainty in the initial stage of structural design to improve product performance. The consensus can be reached that the mechanical structure obtained by the reliability and robustness design optimization method considering uncertainty not only has low failure risk but also has highly stable performance. As a large mechanical system, the uncertainty design optimization of key vehicle structural performances is particularly important. This survey mainly discusses the current situation of the uncertain design optimization framework of automobile structures, and successively summarizes the uncertain design optimization of key automobile structures, uncertainty analysis methods, and multi-objective iterative optimization models. The uncertainty analysis method in the design optimization framework needs to consider the existing limited knowledge and limited test data. The importance of the interval model as a non-probabilistic model in the uncertainty analysis and optimization process is discussed. However, it should be noted that the interval model ignores the actual uncertainty distribution rule, which makes the design scheme still have some limitations. With the further improvement of design requirements, the efficiency, accuracy, and calculation cost of the entire design optimization framework of automobile structures need to be further improved iteratively. This survey will provide useful theoretical guidance for engineers and researchers in the automotive engineering field at the early stage of product development.



    Recently, nonlinear evolution equations (NLEEs) has been developed as specific modules of the class of partial differential equations (PDEs). It is distinguished that investigating exact solutions for NLEEs, via many dissimilar methods shows an active part in mathematical physics and has become exciting and rich zones of research analysis for physicist and mathematicians. Lots of significant dynamic processes and phenomena in biology, chemistry, mechanics and physics can be expressed by nonlinear partial differential equations (NLPDEs). In NLEEs, nonlinear wave phenomena of diffusion, dispersion, reaction, convection and dissipation are very important. It is necessary to define exact traveling solutions for these nonlinear equations to analyze various properties of these equations. Nowadays, NLEEs has become a significant area of research. Mostly, the existence of soliton solutions for NLEEs is of much important because of their widely applications in various areas of mathematical biology, chaos, neural physics, optical fibers and solid state physics etc.

    Solitons are considered in the fields as optical communication, plasma, medical imaging, super continuum generation and nonlinear optics etc. They can transmit without changing their amplitude, velocity and wave form for a long distance. Optical soliton forms the excellent transporter minutes in the telecommunication engineering. Nowadays, some methods have been established for discovering exact traveling and solitary wave solutions of NLEEs. Various influential methods for instance, auxiliary equation method [1,2], homogeneous balance method [3,4], the Exp-function method [5,6], the tanh-function method [7], Darboux transformation method [8,9], the modified extended tanh-function method [10], the first integral method [11,12], Jacobi elliptic function method [13,14], the modified simple equation method [15,16,17], the exp(-F(x))-expansion method [18], the (G/G)-expansion method [19,20,21,22,23,24,25,26], the variational iteration method [27] the homotopy perturbation method [28,29,30,31,32], the F-expansion method [33,34,35] and many more [36,37,38,39,40,41]. Many models are existing to report this dynamic in the structure of optical fibers. The Schrodinger equation, the important model in submicroscopic phenomena and developed a fundamental importance to quantum mechanics. Such model denotes to the form of wave functions that manage the motion of small particles and classifies how these waves are transformed by external impacts. It has been measured and considered in several designs.

    In optical fibers, most of these models are frequently stated in the time domain, and when fields at dissimilar frequencies spread through the fiber the common practice is also to transcribe a distance equation for each field component. The nonlinear transformation of dielectric of the fiber termed as the Kerr effect is applied to neutralize the dispersion effect, in this state, the optical pulse might lean to form a steady nonlinear pulse known as an optical soliton. The bit rate of transmission is restricted by the dispersion of the fiber material. Soliton transmission is an area of huge interest since of the wide applications in ultrafast signal routing systems, transcontinental and short-light-pulse telecommunication [42,43,44,45]. In this work, we used the generalized Kudryashov method to construct the exact traveling wave solutions for the Kaup-Newell equation (KNE) and Biswas-Arshad equation (BAE). The KNE is a significant model with many applications in optical fibers. The dynamics of solitons in optical tools is observed as an important arena of research in nonlinear optics that has added much attention in the past few decades [46,47,48,49]. The transmission of waves in optical tools with Kerr dispersion rests important in construction to the so-called time evolution equations [50,51,52]. The three models that invent from the Nonlinear Schrodinger equation (NLSE) which are termed as the Derivative Nonlinear Schrodinger Equations (DNLSE) are classified into three classes: I, II, and III. Connected in this study is the DNLSE-I which is in its place known as the KNE. This class will be the focal point of the current study and a lot of inquiries have correctly been approved in the literature. Recently, Biswas and Arshad [53] constructed a model from the NLSE known as Biswas-Arshed equation (BAE). The BAE is one of the important models in the telecommunications industry. The extreme remarkable story of this model is that the self-phase modulation is ignored and likewise GVD is negligibly slight. The plus point of this method is that it offers further novel exact solutions in optical solitons form.

    The draft of this paper is organized like this. Section 2, contained the description of the generalized Kudryashov method. In section 3, application of GKM for KNE is presented. Section 4 presents the application of GKM for BAE. Section 5 contains results and discussion. Conclusion of the paper is discussed in section 6.

    The steps of GKM [54] are as follows

    Let NLEE in the form

    W(q,qx,qt,qxt,qtt,qxx,)=0, (2.1)

    where q=q(x,t) is a function.

    Step 1. Applying the following wave transformation

    q(x,t)=g(η),η=(xvt), (2.2)

    into (2.1), so (2.1) converts to nonlinear ODE in the form

    H(q,q,q,q,)=0, (2.3)

    here, q is a function of η and q=dq/dη and v is the wave-speed.

    Step 2. Let (2.3) has the solution in form

    g(η)=Ni=0aiSi(η)Mj=0bjSj(η), (2.4)

    where ai, bj are constants and (i0N), (j0M) such that aN0, bM0.

    S(η)=11+Aeη, (2.5)

    is the solution in the form

    dS(η)dη=S2(η)S(η), (2.6)

    where A is constant.

    Step 3. Using balancing rule in (2.3) to obtain the values of N and M.

    Step 4. Utilizing (2.4) and (2.6) into (2.3), we get an expression in Si, where (i=0,1,2,3,4,). Then collecting all the coefficients of Si with same power(i) and equating to zero, we get a system of alebraic equations in all constant terms. This system of algebraic equations can be solved by Maple to unknown parameters.

    The governing equation [55] is given as:

    iqt+aqxx+ib(|q|2q)x=0. (3.1)

    Here, q(x,t) is a complex valued function, indicates the wave pfofile and rests on variables, space x and time t. It includes the non-Kerr dispersion, evolution and and GVD terms. Also, a is the coefficient of GVD and b is the coefficient of self-steepening term.

    Suppose (3.1) has the following solution

    q(x,t)=g(η)eiϕ(x,t), (3.2)

    where

    η=αxct,ϕ(x,t)=κx+ωt. (3.3)

    Here g(η), κ, c and ω are the amplitude, frequency, speed and wave number of the pulse, respectively. Putting (3.2) into (3.1), and splitting into imaginary and real parts.

    The imaginary part has the form

    cg2aκαg+3bαg2g=0. (3.4)

    We can get easily the value of c as under

    c=2ακa,

    and the constraint condition as under

    3αbg2=0.

    The real part has the form

    aα2g+κbg3(aκ2+ω)g=0. (3.5)

    Now, balancing the g and non-linear term g3 in (3.5), we get N=M+1. So for M=1, we get N=2.

    The solution of (3.5) by generalized Kudryashov method as given in (2.4), reduces to the form

    g(η)=a0+a1S(η)+a2S2(η)b0+b1S(η), (3.6)

    a0, a1, a2, b0 and b1 are constants. Subtitling the (3.6) into (3.5) and also applying (2.6), we get an expression in S(η). Collecting the coefficients of same power of Si and equating to zero, the system of equations is obtained, as follows.

    {bκa30+(aκ2ω)a0b20=0,3bκa20a1+(aκ2ω)a1b20+aα2a1b20+2(aκ2ω)a0b0b1aα2a0b0b1=0,3bκa0a21+3bκa20a23aα2a1b20+(aκ2ω)a2b20+4aα2a2b20+3aα2a0b0b1+2(aκ2ω)a1b0b1aα2a1b0b1+(aκ2ω)a0b21+aα2a0b21=0,bκa21+6bκa0a1a2+2aα2a1b2010aα2a2b202aα2a1b0b1+aα2a1b0b1+2(aκ2ω)a2b0b1+3aα2a2b0b1aα2a0b21+(aκ2ω)a1b21=0,3bκa21a2+3bκa0a22+6aα2a2b209aα2a2b0b1+(aκ2ω)a2b21+aα2a2b21=0,3bκa1a22+6aα2a2b0b13aα2a2b21=0,bκa32+2aα2a2b21=0. (3.7)

    By solving the above system, we get various types of solutions. These solutions are deliberated below.

    Case 1.

    a0=0,a1=a1,a2=a1,b0=12b1,b1=b1,
    a=a,κ=2aα2b21a21b,ω=aα2(4a2α2b41a41b2)a41b2.

    Case 1 corresponds the following solution for Kaup-Newell equation

    q(x,t)=(a1(1+Aeαxct)a1(1+Aeαxct)212b1+b1(1+Aeαxct))×eι(2aα2b21a21bxaα2(4a2α2b41a41b2)a41b2t). (3.8)

    Case 2.

    a0=a0,a1=(b1+2b0)a0b0,a2=0,b0=b0,b1=b1.
    a=a,κ=aα2b202ba20,ω=aα2(2b2a40+b40a2α2)4b2a40.

    Case 2 corresponds the following solution for Kaup-Newell equation

    q(x,t)=(a0(b1+2b0)a0b0(1+Aeαxct)b0+b1(1+Aeαxct))×eι(aα2b202ba20xaα2(2b2a40+b40a2α2)4b2a40t). (3.9)

    Case 3.

    a0=b0a22b1,a1=a2(2b0b1)2b1,a2=a2,b0=b0,b1=b1.
    a=a,κ=2aα2b21ba22,ω=aα2(b2a42+8a2α2b41)2b2a42.

    Case 3 corresponds the following solution for Kaup-Newell equation

    q(x,t)=(b0a22b1+a2(2b0b1)2b1(1+Aeαxct)+a2(1+Aeαxct)2b0+b1(1+Aeαxct))×eι(2aα2b21ba22xaα2(b2a42+8a2α2b41)2b2a42t). (3.10)

    Case 4.

    a0=12a2,a1=a2,a2=a2,b0=1bb1,b1=b1.
    a=a,κ=2aα2b21ba22,ω=2aα2(b2a42+2a2α2b41)b2a42.

    Case 4 corresponds the following solution for Kaup-Newell equation

    q(x,t)=(12a2a2(1+Aeαxct)+a2(1+Aeαxct)21bb1+b1(1+Aeαxct))×eι(2aα2b21ba22x2aα2(b2a42+2a2α2b41)b2a42t). (3.11)

    The BAE with Kerr Law nonlinearity [56] is

    α1qxx+α2qxt+iqt+i(β1qxxx+β2qxxt)=i(λ(|q|2q)x+μ(|q|2)xq+θ|q|2qx). (4.1)

    Here q(x,t) representing the wave form. On the left of (4.1) α1 and α2 are the coefficients of GVD and STD, respectively. β1 and β2 are the coefficients of 3OD and STD, respectively. On the right of (4.1) μ and θ represents the outcome of nonlinear disperssion and λ represents the outcome of self-steepening in the nonappearance of SPM.

    Let us assumed that the solution of (4.1) is as under

    q(x,t)=g(η)eiϕ(x,t). (4.2)

    where

    ϕ(x,t)=κx+ωt+θ0,η=xvt. (4.3)

    Here g(η) shows amplitude, ϕ(x,t) is phase component. Also κ, v, θ0, ω denote the soliton frequency, speed, phase constant and wave number, respectively.

    Substituting (4.2) into (4.3) and splitting it into imaginary and real parts.

    The imaginary part has the form

    (β2vκ23β1κ2+2β2ωκv+2α2vκ2α1κ+α2ω)g+(β2v+β1)g(2μ+θ+3λ)g2g=0.

    We can get easily the value of v as under

    v=β1β2,

    and the constraints conditions as under

    {β2vκ2+2β2ωκ3β1κ2v2α1κ+2α2vκ+α2ω=0,3λ+2μ+θ=0.

    The real part has the form

    (α1α2v+3β1κ2β2vκωβ2)g(ω+α1κ2+β1κ3α2ωκβ2ωκ2)g(λ+θ)κg3=0. (4.4)

    Using balancing principal on (4.4), we attain M+1=N. So for M=1, we obtain N=2.

    Hence, solution of (4.4) by GKM as given in (2.4) will be reduced into the following form

    g(η)=a0+a1S(η)+a2S2(η)b0+b1S(η). (4.5)

    a0, a1, a2, b0 and b1 are constants.

    Substituting (4.5) into (4.4) and also applying (2.6), we acquire an expression in S(η). Collecting the coefficients of with same powerSi and equating to zero, the following system equations is got.

    {2ωβ2b21a24β2vκb21a2+κθa32+2α1b21a2+6β1κb21a22α2vb21a2+κλa32=0,3ωβ2b21a2+3α2vb21a2+6β2vκb21a29β1κb21a2+6α1b0a2b112β2vκb0a2b13α1b21a2+3κθa1a22+3κλa1a22+18β1κb0a2b16α2vb0a2b16ωβ2b0a2b1=0,α1b21a2+β2ωκ2b21a2+3κλa0a22α2vb21a2+α2ωκb21a2+18β1κa2b20+3κλa21a2+3κθa21a2+6α1a2b20+3κθa0a22β1κ3b21a26ωβ2a2b2027β1κb0a2b12β2vκb21a29α1b0a2b1+3β1κb21a26α2va2b2012β2vκa2b20+9α2vb0a2b1α1κ2b21a2ωβ2b21a2+18β2vκb0a2b1ωb21a2+9ωβ2b0a2b1=0,2β2vκb1a1b06β2vκb0a2b1+4β2vκb0b1a0+2α2ωκb0b1a2+2β2ωκ2b0b1a2+ωβ2b21a02ωβ2b20a12ωb0b1a2α1κ2b21a1β1κ3b21a1+α1b1a1b0+3α1b0a2b12α1b0b1a0+10α2va2b20+α2vb21a02α2vb20a130β1κa2b203β1κb21a0+6β1κb20a1+10ωβ2a2b2010α1a2b20ωb21a1+κθa31+κλa31+2α1b20a1α1b21a02α1κ2b0b1a22β1κ3b0b1a2+α2ωκb21a1+β2ωκ2b21a1α2vb1a1b03α2vb0a2b1+2α2vb0b1a0+3β1κb1a1b0+9β1κb0a2b16β1κb0b1a0+20β2vκa2b20+2β2vκb21a04β2vκb20a1ωβ2b1a1b03ωβ2b0a2b1+2ωβ2b0b1a0+6κλa0a1a2+6κθa0a1a2=0,2β2vκb1a1b06β2vκb0b1a0+2α2ωκb0b1a1+2β2ωκ2b0b1a1ωβ2b21a0+3ωβ2b20a1+3κλa20a2+3κλa0a21+3κθa20a2+3κθa0a212ωb0b1a1α1κ2b20a2α1κ2b21a0β1κ3b20a2β1κ3b21a0α1b1a1b0+3α1b0b1a04α2va2b20α2vb21a0+3α2vb20a1+12β1κa2b20+3β1κb21a09β1κb20a14ωβ2a2b20+4α1a2b20ωb21a0ωb20a23α1b20a1+α1b21a02β1κ3b0b1a1+α2ωκb20a2+α2ωκb21a0+β2ωκ2b20a2+β2ωκ2b21a0+α2vb1a1b03α2vb0b1a03β1κb1a1b0+9β1κb0b1a08β2vκa2b202β2vκb21a0+6β2vκb20a1+ωβ2b1a1b03ωβ2b0b1a02α1κ2b0b1a1=0,ωb20a1α1b0b1a0ωβ2b20a1α2vb20a1+ωβ2b0b1a0+α2ωκb20a1β1κ3b20a12β2vκb20a12β2vκb20a12α1κ2b0b1a0+α2vb0b1a0+3β1κb20a12β1κ3b0b1a02ωb0b1a0+α1b20a1α1κ2b20a1+3κθa20a13β1κb0b1a0+2β2vκb0b1a0+2α2ωκb0b1a0+β2ωκ2b20a1+2β2ωκ2b0b1a0+3κλa20a1=0,α2ωκb20a0+β2ωκ2b20a0+κθa30α1κ2b20a0β1κ3b20a0+κλa30ωb20a0=0. (4.6)

    On solving above system, get various types of solutions. These solutions are deliberated below.

    Case 1.

    κ=κ,λ=θ,
    ω=α2vωβ2+β2ωκ22β2vκβ1κ3+α2ωκ+3β1κ+α1α1κ2,
    a0=0,a1=a1,a2=0,b0=b1,b1=b1.

    Above these values correspond to the following solution for Biswas-Arshed equation.

    q(x,t)=a1b1[1Ae(xvt)]×ei{κx+ωt+θ0}. (4.7)

    Case 2.

    κ=κ,λ=12×2κθa20α1b203β1κb20+ωβ2b20+α2vb20+2β2vκb20κa20,
    ω=12α132β1κ+12ωβ2α1κ2+12α2vβ1κ3+β2ωκ2+β2vκ+α2ωκ,
    a0=a0,a1=a0(b1+2b0)b0,a2=0,b0=b0,b1=b1.

    Above these values correspond to the following solution for Biswas-Arshed equation

    q(x,t)=a0b0[b0Ae(xvt)(b0+b1)b0Ae(xvt)+(b0+b1)]×ei{κx+ωt+θ0}. (4.8)

    Case 3.

    κ=κ,λ=2α1b21κθa226β1κb21+2ωβ2b21+2α2vb21+4β2vκb21κa22,
    ω=α2ωκ+β2ωκ2α1κ2β1κ32α16β1κ+2ωβ2+2α2v+4β2vκ,
    a0=12a2,a1=a2,a2=a2,b0=12b1,b1=b1.

    Above these values correspond to the following solution for Biswas-Arshed equation

    q(x,t)=a2b1[1+A2e2(xvt)1A2e2(xvt)]×ei{κx+ωt+θ0}. (4.9)

    Case 4.

    κ=0,λ=λ,ω=α1ωβ2α2v,
    a0=a1,a1=a1,a2=0,b0=0,b1=b1.

    Above these values correspond to the following solution for Biswas-Arshed equation

    q(x,t)=a1b1[Ae(xvt)]×ei{ωt+θ0}. (4.10)

    Case 5.

    κ=α1+ωβ2+α2v3β1+2β2v,λ=θ,

    ω=1(3β1+2β2v)3×[4α21α2v2β2+2α1α22v3β29α2ωα1β21+9α2ω2β2β21+9α22ωvβ21+2α22ωv3β22+6ωβ2α21β16ωβ22α21v6ω2β22α1β1+6ω2β32α1v+3β1α21α2v+2ω3β32β12ω3β42vβ1α32v3+2α31β2v+4α2ωα1β22v29α2ω2β22β1v12α22ωv2β1β22β1α31+6α2α1β1β2v],

    a0=0,a1=a1,a2=a2,b0=b0,b1=b1.

    Above these values correspond to the following solution for Biswas-Arshed equation

    q(x,t)=[a1Ae(xvt)+(a1+a2)A2e2(xvt)+(2b0+b1)Ae(xvt)+(b0+b1)]×ei{κx+ωt+θ0}. (4.11)

    In this study, we effectively construct novel exact solutions in form of optical solitons for Kaup-Newell equation and Biswas-Arshed equation using the generalized Kudryashov method. This method is considered as most recent scheme in this arena and that is not utilized to this equation earlier. For physical analysis, 3-dim, 2-dim and contour plots of some of these solutions are included with appropriate parameters. These acquired solutions discover their application in communication to convey information because solitons have the capability to spread over long distances without reduction and without changing their forms. Acquired results are novel and distinct from that reported results. In this paper, we only added particular figures to avoid overfilling the document. For graphical representation for KNE and BAE, the physical behavior of (3.8) using the proper values of parameters α=0.3, a1=0.65, b1=0.85, p=0.98, q=0.95, k=2, A=3, b=2, c=4. and t=1 are shown in Figure 1, the physical behavior of (3.9) using the appropriate values of parameters α=0.75, a0=1.5, b0=1.7, b1=0.98, A=3, b=1.6, a0=2, c=2.5. and t=1 are shown in Figure 2, the physical behavior of (3.11) using the proper values of parameters α=0.75, a0=1.5, b0=1.7, b1=0.98, A=3, b=1.6, a0=2, c=2.5. and t=1 are shown in Figure 3, the absolute behavior of (4.9) using the proper values of parameters α=0.75, a0=1.5, b0=1.7, A=2.3, b=1.6, c=2.5, v=2.5, θ0=4. and t=1 are shown in Figure 4.

    Figure 1.  (A): 3D graph of (3.8) with α=0.3, a1=0.65, b1=0.85, p=0.98, q=0.95, k=2, A=3, b=2, c=4. (A-1): 2D plot of (3.8) with t=1. (A-2): Contour graph of (3.8).
    Figure 2.  (B): 3D graph of (3.9) with α=0.75, a0=1.5, b0=1.7, b1=0.98, A=3, b=1.6, a0=2, c=2.5. (B-1): 2D plot of (3.9) with t=1. (B-2): Contour graph of (3.9).
    Figure 3.  (C): 3D graph of (3.11) with α=0.75, a0=1.5, b0=1.7, b1=0.98, A=3, b=1.6, a0=2, c=2.5. (C-1): 2D plot of (3.11) with t=1. (C-2): Contour graph of (3.11).
    Figure 4.  (D): 3D graph of (4.9) with α=0.75, a0=1.5, b0=1.7, A=2.3, b=1.6, c=2.5, v=2.5, θ0=4. (D-1): 2D plot of (4.9) with t=1. (D-2): Contour graph of (4.9).

    The study of the exact solutions of nonlinear models plays an indispensable role in the analysis of nonlinear phenomena. In this work, we have constructed and analyzed the optical solitons solutions of the Kaup-Newell equation and Biswas-Arshad equation by using Kudryashove method. The transmission of ultrashort optical solitons in optical fiber is modeled by these equations. We have achieved more general and novel exact solutions in the form of dark, singular and bright solitons. The obtained solutions of this article are very helpful in governing solitons dynamics. The constructed solitons solutions approve the effectiveness, easiness and influence of the under study techniques. we plotted some selected solutions by giving appropriate values to the involved parameters. The motivation and purpose of this study is to offer analytical techniques to discover solitons solutions which helps mathematicians, physicians and engineers to recognize the physical phenomena of these models. This powerful technique can be employed for several other nonlinear complex PDEs that are arising in mathematical physics. Next, the DNLSE classes II and III will be scrutinized via the similar methods to more evaluate them, this definitely will offer a huge understanding of the methods along with the classes of DNLSE. These solutions may be suitable for understanding the procedure of the nonlinear physical phenomena in wave propagation.

    The authors would like to express their sincere thanks to the Department of Mathematics, University of Management and Technology Lahore, Pakistan.

    The authors declare that they have no conflict of interest.



    [1] Z. Zhang, X. Jia, T. Yang, Y. Gu, W. Wang, L. Chen, Multi-objective optimization of lubricant volume in an ELSD considering thermal effects, Int. J. Therm. Sci., 164 (2021), 106884. https://doi.org/10.1016/j.ijthermalsci.2021.106884 doi: 10.1016/j.ijthermalsci.2021.106884
    [2] C. Yu, J. Liu, J. Zhang, K. Xue, S. Zhang, J. Liao, et al., Design and optimization and experimental verification of a segmented double-helix blade roller for straw returning cultivators, J. Chin. Inst. Eng., 44 (2021), 379–387. https://doi.org/10.1080/02533839.2021.1903342 doi: 10.1080/02533839.2021.1903342
    [3] Y. Cao, J. Yao, J. Li, X. Chen, J. Wu, Optimization of microbial oils production from kitchen garbage by response surface methodology, J. Renew. Sustain. Ener., 5 (2013), 053105. https://doi.org/10.1063/1.4821218 doi: 10.1063/1.4821218
    [4] K. Cao, Z. Li, Y. Gu, L. Zhang, L. Chen, The control design of transverse interconnected electronic control air suspension based on seeker optimization algorithm, P. I. Mech. Eng. D-J. Aut., 235 (2021), 2200–2211. https://doi.org/10.1177/0954407020984667 doi: 10.1177/0954407020984667
    [5] G. Wang, H. Yuan, Stability and critical spinning speed of a flexible liquid-filled rotor in thermal environment with nonlinear variable-temperature, Appl. Math. Model., 95 (2021), 143–158. https://doi.org/10.1016/j.apm.2021.01.056 doi: 10.1016/j.apm.2021.01.056
    [6] G. Wang, H. Yuan, Dynamics and stability analysis of an axially functionally graded hollow rotor partially filled with liquid, Compos. Struct., 266 (2021), 113821. https://doi.org/10.1016/j.compstruct.2021.113821 doi: 10.1016/j.compstruct.2021.113821
    [7] G. Wang, W. Yang, H. Yuan, Dynamics and stability analysis of a flexible liquid-filled rotor in a constant thermal environment, J. Vib. Control, 28 (2021), 2913–2924. https://doi.org/10.1177/10775463211022489 doi: 10.1177/10775463211022489
    [8] D. Zhang, N. Zhang, N. Ye, J. Fang, X. Han, Hybrid learning algorithm of radial basis function networks for reliability analysis, IEEE Trans. Reliab., 70 (2021), 887–900. https://doi.org/10.1109/TR.2020.3001232 doi: 10.1109/TR.2020.3001232
    [9] X. Du, H. Xu, F. Zhu, A data mining method for structure design with uncertainty in design variables, Comput. Struct., 244 (2021), 106457. https://doi.org/10.1016/j.compstruc.2020.106457 doi: 10.1016/j.compstruc.2020.106457
    [10] E. Acar, G. Bayrak, Y. Jung, I. Lee, P. Ramu, S. S. Ravichandran, Modeling, analysis and optimization under uncertainties: A review, Struct. Multidiscip. Optimiz., 64 (2021), 2909–2945. https://doi.org/10.1007/s00158-021-03026-7 doi: 10.1007/s00158-021-03026-7
    [11] M. Zimmermann, S. Königs, C. Niemeyer, J. Fender, C. Zeherbauer, R. Vitale, et al., On the design of large systems subject to uncertainty, J. Eng. Design, 28 (2017), 233–254. https://doi.org/10.1080/09544828.2017.1303664 doi: 10.1080/09544828.2017.1303664
    [12] Y. Noh, K. K. Choi, I. Lee, Reduction of ordering effect in reliability-based design optimizatioin using dimension reduction method, AIAA J. 47 (2009), 994–1004. https://doi.org/10.2514/1.40224
    [13] U. Lee, N. Kang, I. Lee, Selection of optimal target reliability in RBDO through reliability-based design for market systems (RBDMS) and application to electric vehicle design, Struct. Multidiscip. Optimiz., 60 (2019), 949–963. https://doi.org/10.1007/s00158-019-02245-3 doi: 10.1007/s00158-019-02245-3
    [14] K. Wang, P. Wang, X. Chen, L. T. Zhao, Multiobjective optimization design of toll plaza, Math. Probl. Eng., 2020 (2020), 2324894. https://doi.org/10.1155/2020/2324894 doi: 10.1155/2020/2324894
    [15] C. Yu, D. Zhu, Y. Gao, K. Xue, S. Zhang, J. Liao, et al., Optimization and experiment of counter-rotating straw returning cultivator based on discrete element method, J. Adv. Mech. Des. Syst., 14 (2020). https://doi.org/10.1299/jamdsm.2020jamdsm0097
    [16] S. Liu, J. Sun, H. Zhou, F. Wei, M. Lu, M. Lei, Experimental and numerical study on fatigue performance for TIG welding and EB welding of RAFM steel plate, Fusion Eng. Des., 146 (2019), 2663–2666. https://doi.org/10.1016/j.fusengdes.2019.04.076 doi: 10.1016/j.fusengdes.2019.04.076
    [17] J. Mendoza, E. Bismut, D. Straub, J. Köhler, Optimal life-cycle mitigation of fatigue failure risk for structural systems, Reliab. Eng. Syst. Safe., 222 (2022), 108390. https://doi.org/10.1016/j.ress.2022.108390 doi: 10.1016/j.ress.2022.108390
    [18] C. A. Castiglioni, R. Pucinotti, Failure criteria and cumulative damage models for steel components under cyclic loading, J. Constr. Steel Res., 65 (2009), 751–765. https://doi.org/10.1016/j.jcsr.2008.12.007 doi: 10.1016/j.jcsr.2008.12.007
    [19] D. M. Harland, R. D. Lorenz, Space systems failures: Disasters and rescues of satellites, rockets and space probes, in Springer Praxis Books, Springer Praxis, 2005. https://doi.org/10.1007/978-0-387-27961-9
    [20] A. D. Kiureghian, O. Ditlevsen, Aleatory or epistemic? Does it matter?, Struct. Safe., 31 (2009), 105–112. https://doi.org/10.1016/j.strusafe.2008.06.020 doi: 10.1016/j.strusafe.2008.06.020
    [21] M. A. Hariri-Ardebili, F. Pourkamali-Anaraki, Structural uncertainty quantification with partial information, Expert Syst. Appl., 198 (2022), 116736. https://doi.org/10.1016/j.eswa.2022.116736 doi: 10.1016/j.eswa.2022.116736
    [22] K. Bowcutt. A perspective on the future of aerospace vehicle design, in 12th AIAA International Space Planes and Hypersonic Systems and Technologies: American Institute of Aeronautics and Astronautics, 2003.
    [23] J. Fang, Y. Gao, G. Sun, Y. Zhang, Q. Li, Crashworthiness design of foam-filled bitubal structures with uncertainty, Int. J. Non-Lin. Mech., 67 (2014), 120–132. https://doi.org/10.1016/j.ijnonlinmec.2014.08.005 doi: 10.1016/j.ijnonlinmec.2014.08.005
    [24] S. A. Latifi Rostami, A. Kolahdooz, J. Zhang, Robust topology optimization under material and loading uncertainties using an evolutionary structural extended finite element method, Eng. Anal. Bound. Elem., 133 (2021), 61–70. https://doi.org/10.1016/j.enganabound.2021.08.023 doi: 10.1016/j.enganabound.2021.08.023
    [25] X. Wang, Z. Meng, B. Yang, C. Cheng, K. Long, J. Li, Reliability-based design optimization of material orientation and structural topology of fiber-reinforced composite structures under load uncertainty, Compos. Struct., 2022 (2022), 115537. https://doi.org/10.1016/j.compstruct.2022.115537 doi: 10.1016/j.compstruct.2022.115537
    [26] M. E. Riley, R. V. Grandhi, Quantification of model-form and predictive uncertainty for multi-physics simulation, Comput. Struct., 89 (2011), 1206–1213. https://doi.org/10.1016/j.compstruc.2010.10.004 doi: 10.1016/j.compstruc.2010.10.004
    [27] B. Do, M. Ohsaki, M. Yamakawa, Bayesian optimization for robust design of steel frames with joint and individual probabilistic constraints, Eng. Struct., 245 (2021), 112859. https://doi.org/10.1016/j.engstruct.2021.112859 doi: 10.1016/j.engstruct.2021.112859
    [28] Z. Meng, Y. Pang, Y. Pu, X. Wang, New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties, Comput. Method. Appl. Mech., 363 (2020), 112886. https://doi.org/10.1016/j.cma.2020.112886 doi: 10.1016/j.cma.2020.112886
    [29] C. Yang, H. Ouyang, A novel load-dependent sensor placement method for model updating based on time-dependent reliability optimization considering multi-source uncertainties, Mech. Syst. Signal Proces., 165 (2022), 108386. https://doi.org/10.1016/j.ymssp.2021.108386 doi: 10.1016/j.ymssp.2021.108386
    [30] G. A. da Silva, E. L. Cardoso, A. T. Beck, Comparison of robust, reliability-based and non-probabilistic topology optimization under uncertain loads and stress constraints, Probabilist. Eng. Mech., 59 (2020), 103039. https://doi.org/10.1016/j.probengmech.2020.103039 doi: 10.1016/j.probengmech.2020.103039
    [31] J. M. King, R. V. Grandhi, T. W. Benanzer, Quantification of epistemic uncertainty in re-usable launch vehicle aero-elastic design, Eng. Optimiz., 44 (2012), 489–504. https://doi.org/10.1080/0305215X.2011.588224 doi: 10.1080/0305215X.2011.588224
    [32] Y. C. Tsao, V. V. Thanh, A multi-objective fuzzy robust optimization approach for designing sustainable and reliable power systems under uncertainty, Appl. Soft Comput., 92 (2020), 106317. https://doi.org/10.1016/j.asoc.2020.106317 doi: 10.1016/j.asoc.2020.106317
    [33] L. Wang, B. Ni, X. Wang, Z. Li, Reliability-based topology optimization for heterogeneous composite structures under interval and convex mixed uncertainties, Appl. Math. Model., 99 (2021), 628–652. https://doi.org/10.1016/j.apm.2021.06.014 doi: 10.1016/j.apm.2021.06.014
    [34] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst., 1 (1978), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5 doi: 10.1016/0165-0114(78)90029-5
    [35] H. Lü, K. Yang, X. Huang, H. Yin, W. B. Shangguan, D. Yu, An efficient approach for the design optimization of dual uncertain structures involving fuzzy random variables, Comput. Method. Appl. Mech., 371 (2020), 113331. https://doi.org/10.1016/j.cma.2020.113331 doi: 10.1016/j.cma.2020.113331
    [36] R. E. Moore, Methods and Application of Interval Analysis, SIAM: Philadelphia, USA, 1979. https://doi.org/10.1137/1.9781611970906
    [37] S. P. Gurav, J. F. L. Goosen, F. vanKeulen, Bounded-But-Unknown uncertainty optimization using design sensitivities and parallel computing: Application to MEMS, Comput. Struct., 83 (2005), 1134–1149. https://doi.org/10.1016/j.compstruc.2004.11.021 doi: 10.1016/j.compstruc.2004.11.021
    [38] R. Yuan, D. Ma, H. Zhang, Flow characteristics and grain size distribution of granular gangue mineral by compaction treatment, Adv. Mater. Sci. Eng., 2017 (2017), 2509286. https://doi.org/10.1155/2017/2509286 doi: 10.1155/2017/2509286
    [39] G. Sun, T. Pang, J. Fang, G. Li, Q. Li, Parameterization of criss-cross configurations for multiobjective crashworthiness optimization, Int. J. Mech. Sci., 124125 (2017), 145–157. https://doi.org/10.1016/j.ijmecsci.2017.02.027
    [40] J. Fang, G. Sun, N. Qiu, T. Pang, S. Li, Q. Li, On hierarchical honeycombs under out-of-plane crushing, Int. J. Solids Struct., 135 (2018), 1–13. https://doi.org/10.1016/j.ijsolstr.2017.08.013. doi: 10.1016/j.ijsolstr.2017.08.013
    [41] J. Fu, Q. Liu, K. Liufu, Y. Deng, J. Fang, Q. Li, Design of bionic-bamboo thin-walled structures for energy absorption, Thin-Wall. Struct., 135 (2019), 400–413. https://doi.org/10.1016/j.tws.2018.10.003 doi: 10.1016/j.tws.2018.10.003
    [42] J. Fang, Y. Gao, G. Sun, G. Zheng, Q. Li, Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness, Int. J. Mech. Sci., 103 (2015), 63–73. https://doi.org/10.1016/j.ijmecsci.2015.08.029 doi: 10.1016/j.ijmecsci.2015.08.029
    [43] J. Fang, Y. Gao, G. Sun, N. Qiu, Q. Li, On design of multi-cell tubes under axial and oblique impact loads, Thin-Wall. Struct., 95 (2015), 115–126. https://doi.org/10.1016/j.tws.2015.07.002 doi: 10.1016/j.tws.2015.07.002
    [44] J. Fang, G. Sun, N. Qiu, N. H. Kim, Q. Li, On design optimization for structural crashworthiness and its state of the art, Struct. Multidiscip. Optimiz., 55 (2017), 1091–1119. https://doi.org/10.1007/s00158-016-1579-y doi: 10.1007/s00158-016-1579-y
    [45] N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, Q. Li, Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases, Finite Elem. Anal. Des., 104 (2015), 89–101. https://doi.org/10.1016/j.finel.2015.06.004 doi: 10.1016/j.finel.2015.06.004
    [46] S. Kodiyalam, High performance computing for multidisciplinary design optimization and robustness of vehicle structures, in Computational Fluid and Solid Mechanics 2003, Elsevier Science Ltd, (2003), 2305–2307. https://doi.org/10.1016/B978-008044046-0.50566-2
    [47] K. Hamza, K. Saitou, Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations, J. Mech. Des., 127 (2004), 485–492. https://doi.org/10.1115/1.1862680 doi: 10.1115/1.1862680
    [48] X. Gu, G. Sun, G. Li, X. Huang, Y. Li, Q. Li, Multiobjective optimization design for vehicle occupant restraint system under frontal impact, Struct. Multidiscip. Optimiz., 47 (2013), 465–477. https://doi.org/10.1007/s00158-012-0811-7 doi: 10.1007/s00158-012-0811-7
    [49] L. Chen, W. Li, Y. Yang, W. Miao, Evaluation and optimization of vehicle pedal comfort based on biomechanics, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 234 (2019), 1402–1412. https://doi.org/10.1177/0954407019878355 doi: 10.1177/0954407019878355
    [50] X. L. Zhang, T. Wu, Y. Shao, J. Song, Structure optimization of wheel force transducer based on natural frequency and comprehensive sensitivity, Chin. J. Mech. Eng., 30 (2017), 973–981. https://doi.org/10.1007/s10033-017-0149-6 doi: 10.1007/s10033-017-0149-6
    [51] X. Xu, X. Chen, Z. Liu, Y. Zhang, Y. Xu, J. Fang, et al., A feasible identification method of uncertainty responses for vehicle structures, Struct. Multidiscip. Optimiz., 64 (2021), 3861–3876. https://doi.org/10.1007/s00158-021-03065-0 doi: 10.1007/s00158-021-03065-0
    [52] X. Liu, X. Liu, Z. Zhou, L. Hu, An efficient multi-objective optimization method based on the adaptive approximation model of the radial basis function, Struct. Multidiscip. Optimiz., 63 (2021), 1385–1403. https://doi.org/10.1007/s00158-020-02766-2 doi: 10.1007/s00158-020-02766-2
    [53] J. Fang, Y. Gao, G. Sun, C. Xu, Q. Li, Multiobjective robust design optimization of fatigue life for a truck cab, Reliab. Eng. Syst. Safe., 135 (2015), 1–8. https://doi.org/10.1016/j.ress.2014.10.007 doi: 10.1016/j.ress.2014.10.007
    [54] X. Gu, G. Sun, G. Li, L. Mao, Q. Li, A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure, Struct. Multidiscip. Optimiz., 48 (2013), 669–684. https://doi.org/10.1007/s00158-013-0921-x doi: 10.1007/s00158-013-0921-x
    [55] J. Zhou, F. Lan, J. Chen, F. Lai, Uncertainty optimization design of a vehicle body structure considering random deviations, Automot. Innov., 1 (2018), 342–351. https://doi.org/10.1007/s42154-018-0041-9 doi: 10.1007/s42154-018-0041-9
    [56] J. Zhu, X. Wang, H. Zhang, Y. Li, R. Wang, Z. Qiu, Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method, Chinese J. Aeronaut., 32 (2019), 2095–2108. https://doi.org/10.1016/j.cja.2019.04.009 doi: 10.1016/j.cja.2019.04.009
    [57] X. Wang, L. Shi, A new metamodel method using Gaussian process based bias function for vehicle crashworthiness design, Int. J. Crashworthines., 19 (2014), 311–321. https://doi.org/10.1080/13588265.2014.898932 doi: 10.1080/13588265.2014.898932
    [58] N. Qiu, J. Zhang, F. Yuan, Z. Jin, Y. Zhang, J. Fang, Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting, Eng. Struct., 263 (2022), 114377. https://doi.org/10.1016/j.engstruct.2022.114377 doi: 10.1016/j.engstruct.2022.114377
    [59] L. Chen, P. Ma, J. Tian, X. Liang, Prediction and optimization of lubrication performance for a transfer case based on computational fluid dynamics, Eng. Appl. Comp. Fluid, 13 (2019), 1013–1023. https://doi.org/10.1080/19942060.2019.1663765 doi: 10.1080/19942060.2019.1663765
    [60] X. Xu, Y. Zhang, X. Wang, J. Fang, J. Chen, J. Li, Searching superior crashworthiness performance by constructing variable thickness honeycombs with biomimetic cells, Int. J. Mech. Sci., 235 (2022), 107718. https://doi.org/10.1016/j.ijmecsci.2022.107718 doi: 10.1016/j.ijmecsci.2022.107718
    [61] X. Xu, Y. Zhang, J. Wang, F. Jiang, C. H. Wang, Crashworthiness design of novel hierarchical hexagonal columns, Compos. Struct., 194 (2018), 36–48. https://doi.org/10.1016/j.compstruct.2018.03.099 doi: 10.1016/j.compstruct.2018.03.099
    [62] X. Song, L. Lai, S. Xiao, Y. Tang, M. Song, J. Zhang, et al., Bionic design and multi-objective optimization of thin-walled structures inspired by conchs, Electron. Res. Arch., 31 (2023), 575–598. https://doi.org/10.3934/era.2023028 doi: 10.3934/era.2023028
    [63] J. Fang, Y. Gao, G. Sun, Q. Li, Multiobjective reliability-based optimization for design of a vehicledoor, Finite Elem. Anal. Des., 67 (2013), 13–21. https://doi.org/10.1016/j.finel.2012.11.007 doi: 10.1016/j.finel.2012.11.007
    [64] N. Qiu, Z. Jin, J. Liu, L. Fu, Z. Chen, N. H. Kim, Hybrid multi-objective robust design optimization of a truck cab considering fatigue life, Thin-Wall. Struct., 162 (2021), 107545. https://doi.org/10.1016/j.tws.2021.107545 doi: 10.1016/j.tws.2021.107545
    [65] G. Sun, H. Zhang, J. Fang, G. Li, Q. Li, A new multi-objective discrete robust optimization algorithm for engineering design, Appl. Math. Model., 53 (2018), 602–621. https://doi.org/10.1016/j.apm.2017.08.016 doi: 10.1016/j.apm.2017.08.016
    [66] F. Lei, X. Lv, J. Fang, T. Pang, Q. Li, G. Sun, Injury biomechanics-based nondeterministic optimization of front-end structures for safety in pedestrian-vehicle impact, Thin-Wall. Struct., 167 (2021). https://doi.org/10.1016/j.tws.2021.108087
    [67] H. Lu, D. Yu, Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization, J. Sound Vib., 333 (2014), 7313–7325. https://doi.org/10.1016/j.jsv.2014.08.027 doi: 10.1016/j.jsv.2014.08.027
    [68] J. Wu, Z. Luo, Y. Zhang, N. Zhang, An interval uncertain optimization method for vehicle suspensions using Chebyshev metamodels, Appl. Math. Model., 38 (2014), 3706–3723. https://doi.org/10.1016/j.apm.2014.02.012 doi: 10.1016/j.apm.2014.02.012
    [69] A. Jamali, M. Salehpour, N. Nariman-zadeh, Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters, Multibody Syst. Dyn., 30 (2013), 265–285. https://doi.org/10.1007/s11044-012-9337-4 doi: 10.1007/s11044-012-9337-4
    [70] X. Gu, W. Wang, L. Xia, P. Jiang, A system optimisation design approach to vehicle structure under frontal impact based on SVR of optimised hybrid kernel function, Int. J. Crashworthines., 26 (2021), 1–15. https://doi.org/10.1080/13588265.2019.1634335 doi: 10.1080/13588265.2019.1634335
    [71] Z. Liu, C. Jiang, Y. Li, Y. Bai, Fatigue life optimization for spot-welded Structures of vehicle body considering uncertainty of welding spots, China Mech. Eng., 26 (2015), 2544–2549. https://doi.org/10.3969/j.issn.1004-132X.2015.18.024 doi: 10.3969/j.issn.1004-132X.2015.18.024
    [72] L. Farkas, D. Moens, S. Donders, D. Vandepitte, Optimisation study of a vehicle bumper subsystem with fuzzy parameters, Mech. Syst. Signal Pr., 32 (2012), 59–68. https://doi.org/10.1016/j.ymssp.2011.11.014 doi: 10.1016/j.ymssp.2011.11.014
    [73] E. Acar, K. Solanki, System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures, Struct. Multidiscip. Optimiz., 39 (2009), 311–325. https://doi.org/10.1007/s00158-008-0327-3 doi: 10.1007/s00158-008-0327-3
    [74] Q. Zhao, H. Zhang, Z. Zhu, R. Jiang, L. Yuan, Reliability-based topology optimization for vehicle suspension control arm, Aut. Eng., 40(2018), 313–319. https://doi.org/10.19562/j.chinasae.qcgc.2018.03.011 doi: 10.19562/j.chinasae.qcgc.2018.03.011
    [75] M. Grujicic, G. Arakere, W. C. Bell, H. Marvi, H. V. Yalavarthy, B. Pandurangan, et al., Reliability-based design optimization for durability of ground vehicle suspension system components, J. Mater. Eng. Perform., 19 (2010), 301–313. https://doi.org/10.1007/s11665-009-9482-y doi: 10.1007/s11665-009-9482-y
    [76] M. Rais-Rohani, K. N. Solanki, E. Acar, C. D. Eamon, Shape and sizing optimisation of automotive structures with deterministic and probabilistic design constraints, Int. J. Vehicle Des., 54 (2010), 309–338. https://doi.org/10.1504/IJVD.2010.036839 doi: 10.1504/IJVD.2010.036839
    [77] X. Xu, J. Chen, Z. Lin, Y. Qiao, X. Chen, Y. Zhang, et al., Optimization design for the planetary gear train of an electric vehicle under uncertainties, Actuators, 11 (2022). https://doi.org/10.3390/act11020049
    [78] G. Sun, H. Zhang, R. Wang, X. Lv, Q. Li, Multiobjective reliability-based optimization for crashworthy structures coupled with metal forming process, Struct. Multidiscip. Optimiz., 56 (2017), 1571–1587. https://doi.org/10.1007/s00158-017-1825-y doi: 10.1007/s00158-017-1825-y
    [79] Y. Xu, Y. Gao, C. Wu, J. Fang, Q. Li, Robust topology optimization for multiple fiber-reinforced plastic (FRP) composites under loading uncertainties, Struct. Multidiscip. Optimiz., 59 (2019), 695–711. https://doi.org/10.1007/s00158-018-2175-0 doi: 10.1007/s00158-018-2175-0
    [80] C. van Mierlo, L. Burmberger, M. Daub, F. Duddeck, M. G. R. Faes, D. Moens, Interval methods for lack-of-knowledge uncertainty in crash analysis, Mech. Syst. Signal Proces., 168 (2022). https://doi.org/10.1016/j.ymssp.2021.108574
    [81] C. Lin, F. Gao, Y. Bai, Multiobjective reliability-based design optimisation for front structure of an electric vehicle using hybrid metamodel accuracy improvement strategy-based probabilistic sufficiency factor method, Int. J. Crashworthines., 23 (2018), 290–301. https://doi.org/10.1080/13588265.2017.1317466 doi: 10.1080/13588265.2017.1317466
    [82] F. Y. Li, G. Y. Li, Interval-based uncertain multi-objective optimization design of vehicle crashworthiness, CMC-Comput. Mater. Con., 15 (2010), 199–219. https://doi.org/10.2478/s11533-009-0061-0 doi: 10.2478/s11533-009-0061-0
    [83] J. Li, Y. Fang, Z. Zhan, Y. Jiang, An enhanced surrogate model based vehicle robust design method under materials and manufacturing uncertainties, in ASME International Mechanical Engineering Congress and Exposition, 2016. https://doi.org/10.1115/IMECE2016-67714
    [84] R. J. Yang, L. Gu, C. H. Tho, K. K. Choi, B. Youn, Reliability-based multidisciplinary design optimization of vehicle structures. in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002. https://doi.org/10.2514/6.2002-1758
    [85] L. Cao, J. Liu, L. Xie, C. Jiang, R. Bi, Non-probabilistic polygonal convex set model for structural uncertainty quantification, Appl. Math. Model., 89 (2021), 504–518. https://doi.org/10.1016/j.apm.2020.07.025 doi: 10.1016/j.apm.2020.07.025
    [86] X. Meng, J. Liu, L. Cao, Z. Yu, D. Yang, A general frame for uncertainty propagation under multimodally distributed random variables, Comput. Method. Appl. Mech. Eng., 367 (2020). https://doi.org/10.1016/j.cma.2020.113109
    [87] G. Chen, D. Yang, A unified analysis framework of static and dynamic structural reliabilities based on direct probability integral method, Mech. Syst. Signal Proces., 158 (2021). https://doi.org/10.1016/j.ymssp.2021.107783
    [88] X. Y. Long, D. L. Mao, C. Jiang, F. Y. Wei, G. J. Li, Unified uncertainty analysis under probabilistic, evidence, fuzzy and interval uncertainties, Comput. Method. Appl. Mech. Eng., 355 (2019), 1–26. https://doi.org/10.1016/j.cma.2019.05.041
    [89] X. Xu, X. Chen, Z. Liu, J. Yang, Y. Xu, Y. Zhang, et al., Multi-objective reliability-based design optimization for the reducer housing of electric vehicles, Eng. Optimiz., 54 (2022), 1324–1340. https://doi.org/10.1080/0305215X.2021.1923704 doi: 10.1080/0305215X.2021.1923704
    [90] N. Qiu, C. Park, Y. Gao, J. Fang, G. Sun, N. H. Kim, Sensitivity-based parameter calibration and model validation under model error, J. Mech. Des., 140 (2017). https://doi.org/10.1115/1.4038298
    [91] Z. L. Huang, C. Jiang, Y. S. Zhou, Z. Luo, Z. Zhang, An incremental shifting vector approach for reliability-based design optimization, Struct. Multidiscip. Optimiz., 53 (2016), 523–543. https://doi.org/10.1007/s00158-015-1352-7 doi: 10.1007/s00158-015-1352-7
    [92] W. Gao, D. Wu, K. Gao, X. Chen, F. Tin-Loi, Structural reliability analysis with imprecise random and interval fields, Appl. Math. Model., 55 (2018), 49–67. https://doi.org/10.1016/j.apm.2017.10.029 doi: 10.1016/j.apm.2017.10.029
    [93] N. Qiu, Y. Gao, J. Fang, G. Sun, Q. Li, N. H. Kim, Crashworthiness optimization with uncertainty from surrogate model and numerical error, Thin-Wall. Struct., 129 (2018), 457–472. https://doi.org/10.1016/j.tws.2018.05.002 doi: 10.1016/j.tws.2018.05.002
    [94] G. S. Song, M. C. Kim, Theoretical approach for uncertainty quantification in probabilistic safety assessment using sum of lognormal random variables, Nucl. Eng. Technol., 54 (2022), 2084–2093. https://doi.org/10.1016/j.net.2021.12.033 doi: 10.1016/j.net.2021.12.033
    [95] N. A. W. Walton, R. Crowder, N. Satvat, N. R. Brown, V. Sobes, Demonstration of a random sampling approach to uncertainty propagation for generic pebble-bed fluoride-salt-cooled high temperature reactor (gFHR), Nucl. Eng. Des., 395 (2022), 111843. https://doi.org/10.1016/j.nucengdes.2022.111843 doi: 10.1016/j.nucengdes.2022.111843
    [96] X. P. Du, W. Chen, Sequential optimization and reliability assessment method for efficient probabilistic design, J. Mech. Des., 126 (2004), 225–233. https://doi.org/10.1115/1.1649968 doi: 10.1115/1.1649968
    [97] Y. Lei, N. Yang, D. Xia, Probabilistic structural damage detection approaches based on structural dynamic response moments, Smart Struct. Syst., 20 (2017), 207–217. https://doi.org/10.12989/sss.2017.20.2.207 doi: 10.12989/sss.2017.20.2.207
    [98] P. Hoang-Anh, T. Viet-Hung, V. Tien-Chuong, Fuzzy finite element analysis for free vibration response of functionally graded semi-rigid frame structures, Appl. Math. Model., 88 (2020), 852–869. https://doi.org/10.1016/j.apm.2020.07.014 doi: 10.1016/j.apm.2020.07.014
    [99] Z. Chen, Z. Lu, C. Ling, K. Feng, Reliability analysis model of time-dependent multi-mode system under fuzzy uncertainty: Applied to undercarriage structures, Aerosp. Sci. Technol., 120 (2022), 107278. https://doi.org/10.1016/j.ast.2021.107278 doi: 10.1016/j.ast.2021.107278
    [100] P. Wang, H. Zhu, H. Tian, G. Cai, Analytic target cascading with fuzzy uncertainties based on global sensitivity analysis for overall design of launch vehicle powered by hybrid rocket motor, Aerosp. Sci. Technol., 114 (2021), 106680. https://doi.org/10.1016/j.ast.2021.106680 doi: 10.1016/j.ast.2021.106680
    [101] S. Yin, D. Yu, H. Yin, B. Xia, A new evidence-theory-based method for response analysis of acoustic system with epistemic uncertainty by using Jacobi expansion, Comput. Method. Appl. Mech. Eng., 322 (2017), 419–440. https://doi.org/10.1016/j.cma.2017.04.020 doi: 10.1016/j.cma.2017.04.020
    [102] H. Tang, D. Li, J. Li, S. Xue, Epistemic uncertainty quantification in metal fatigue crack growth analysis using evidence theory, Int. J. Fatigue, 99 (2017), 163–174. https://doi.org/10.1016/j.ijfatigue.2017.03.004 doi: 10.1016/j.ijfatigue.2017.03.004
    [103] Z. Zhang, X. X. Ruan, M. F. Duan, C. Jiang, An efficient epistemic uncertainty analysis method using evidence theory, Comput. Method. Appl. Mech. Eng., 339 (2018), 443–466. https://doi.org/10.1016/j.cma.2018.04.033 doi: 10.1016/j.cma.2018.04.033
    [104] X. Tang, K. Yuan, N. Gu, P. Li, R. Peng, An interval quantification-based optimization approach for wind turbine airfoil under uncertainties, Energy, 244 (2022), 122623. https://doi.org/10.1016/j.energy.2021.122623 doi: 10.1016/j.energy.2021.122623
    [105] Z. Niu, H. Zhu, X. Huang, A. Che, S. Fu, S. Meng, et al., Uncertainty quantification method for elastic wave tomography of concrete structure using interval analysis, Measurement, 205 (2022), 112160. https://doi.org/10.1016/j.measurement.2022.112160 doi: 10.1016/j.measurement.2022.112160
    [106] B. Y. Ni, C. Jiang, P. G. Wu, Z. H. Wang, W. Y. Tian, A sequential simulation strategy for response bounds analysis of structures with interval uncertainties, Comput. Struct., 266 (2022), 106785. https://doi.org/10.1016/j.compstruc.2022.106785 doi: 10.1016/j.compstruc.2022.106785
    [107] T. Tang, H. Luo, Y. Song, H. Fang, J. Zhang, Chebyshev inclusion function based interval kinetostatic modeling and parameter sensitivity analysis for Exechon-like parallel kinematic machines with parameter uncertainties, Mech. Mach. Theory, 157 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104209
    [108] C. Viegas, D. Daney, M. Tavakoli, A. T. de Almeida, Performance analysis and design of parallel kinematic machines using interval analysis, Mech. Mach. Theory, 115 (2017), 218–236. https://doi.org/10.1016/j.mechmachtheory.2017.05.003 doi: 10.1016/j.mechmachtheory.2017.05.003
    [109] M. Ma, L. Wang, Reliability-based topology optimization framework of two-dimensional phononic crystal band-gap structures based on interval series expansion and mapping conversion method, Int. J. Mech. Sci., 196 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106265
    [110] Z. Qiu, X. Li, A new model for the eigenvalue buckling analysis with unknown-but-bounded parameters, Aerosp. Sci. Technol., 113 (2021). https://doi.org/10.1016/j.ast.2021.106634
    [111] B. Xia, H. Lu, D. Yu, C. Jiang, Reliability-based design optimization of structural systems under hybrid probabilistic and interval model, Comput. Struct., 160 (2015), 126–134. https://doi.org/10.1016/j.compstruc.2015.08.009 doi: 10.1016/j.compstruc.2015.08.009
    [112] L. Wang, Z. Chen, G. Yang, Q. Sun, J. Ge, An interval uncertain optimization method using back-propagation neural network differentiation, Comput. Method. Appl. Mech. Eng., 366 (2020). https://doi.org/10.1016/j.cma.2020.113065
    [113] S. H. Chen, L. Ma, G. W. Meng, R. Guo, An efficient method for evaluating the natural frequencies of structures with uncertain-but-bounded parameters, Comput. Struct., 87 (2009), 582–590. https://doi.org/10.1016/j.compstruc.2009.02.009 doi: 10.1016/j.compstruc.2009.02.009
    [114] N. Impollonia, G. Muscolino, Interval analysis of structures with uncertain-but-bounded axial stiffness, Comput. Method. Appl. Mech. Eng., 200 (2011), 1945–1962. https://doi.org/10.1016/j.cma.2010.07.019 doi: 10.1016/j.cma.2010.07.019
    [115] G. Zhao, G. Wen, J. Liu, A novel analysis method for vibration systems under time-varying uncertainties based on interval process model, Probabilistic Eng. Mech., 70 (2022), 103363. https://doi.org/10.1016/j.probengmech.2022.103363 doi: 10.1016/j.probengmech.2022.103363
    [116] L. Wang, J. Liu, C. Yang, D. Wu, A novel interval dynamic reliability computation approach for the risk evaluation of vibration active control systems based on PID controllers, Appl. Math. Model., 92 (2021), 422–446. https://doi.org/10.1016/j.apm.2020.11.007 doi: 10.1016/j.apm.2020.11.007
    [117] W. Gao, D. Wu, C. Song, F. Tin-Loi, X. Li, Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method, Finite Elem. Anal. Des., 47 (2011), 643–652. https://doi.org/10.1016/j.finel.2011.01.007 doi: 10.1016/j.finel.2011.01.007
    [118] Z. P. Qiu, X. J. Wang, Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters, J. Sound Vib., 282 (2005), 381–399. https://doi.org/10.1016/j.jsv.2004.02.024 doi: 10.1016/j.jsv.2004.02.024
    [119] F. Li, Z. Luo, J. Rong, N. Zhang, Interval multi-objective optimisation of structures using adaptive Kriging approximations, Comput. Struct., 119 (2013), 68–84. https://doi.org/10.1016/j.compstruc.2012.12.028 doi: 10.1016/j.compstruc.2012.12.028
    [120] J. A. Fernandez-Prieto, J. Canada-Bago, M. A. Gadeo-Martos, J. R. Velasco, Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads, Appl. Soft Comput., 12 (2012), 1875–1883. https://doi.org/10.1016/j.asoc.2012.04.018 doi: 10.1016/j.asoc.2012.04.018
    [121] Y. G. Xu, G. R. Li, Z. P. Wu, A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move, Appl. Artif. Intell., 15 (2001), 601–631. https://doi.org/10.1080/088395101750363966 doi: 10.1080/088395101750363966
    [122] C. Jiang, X. Han, G. P. Liu, A sequential nonlinear interval number programming method for uncertain structures, Comput. Meth. Appl. Mech. Eng., 197 (2008), 4250–4265. https://doi.org/10.1016/j.cma.2008.04.027 doi: 10.1016/j.cma.2008.04.027
    [123] J. Cheng, M. Y. Tang, Z. Y. Liu, J. R. Tan, Direct reliability-based design optimization of uncertain structures with interval parameters, J. Zhejiang Univ-Sci. A, 17 (2016), 841–854. https://doi.org/10.1631/jzus.A1600143 doi: 10.1631/jzus.A1600143
    [124] Y. P. Li, G. H. Huang, P. Guo, Z. F. Yang, S. L. Nie, A dual-interval vertex analysis method and its application to environmental decision making under uncertainty, Eur. J. Oper. Res., 200 (2010), 536–550. https://doi.org/10.1016/j.ejor.2009.01.013 doi: 10.1016/j.ejor.2009.01.013
    [125] C. Wang, H. G. Matthies, Non-probabilistic interval process model and method for uncertainty analysis of transient heat transfer problem, Int. J. Therm. Sci., 144 (2019), 147–157. https://doi.org/10.1016/j.ijthermalsci.2019.06.002 doi: 10.1016/j.ijthermalsci.2019.06.002
    [126] S. Nayak, S. Chakraverty, Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate, Int. J. Heat Mass Tran., 67 (2013), 445–454. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.036 doi: 10.1016/j.ijheatmasstransfer.2013.08.036
    [127] Z. Qiu, X. Wang, J. Chen, Exact bounds for the static response set of structures with uncertain-but-bounded parameters, Int. J. Solids Struct., 43 (2006), 6574–6593. https://doi.org/10.1016/j.ijsolstr.2006.01.012 doi: 10.1016/j.ijsolstr.2006.01.012
    [128] Z. Qiu, Y. Xia, H. Yang, The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem, Comput. Method. Appl. Mech. Eng., 196 (2007), 4965–4984. https://doi.org/10.1016/j.cma.2007.06.022 doi: 10.1016/j.cma.2007.06.022
    [129] Z. P. Qiu, S. H. Chen, I. Elishakoff, Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters, Chaos Solition. Fract., 7 (1996), 425–434. https://doi.org/10.1016/0960-0779(95)00065-8 doi: 10.1016/0960-0779(95)00065-8
    [130] Z. P. Qiu, X. J. Wang, Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis, Int. J. Solids Struct., 42 (2005), 4958–4970. https://doi.org/10.1016/j.ijsolstr.2005.02.023 doi: 10.1016/j.ijsolstr.2005.02.023
    [131] Z. Qiu, L. Ma, X. Wang, Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty, J. Sound Vib., 319 (2009), 531–540. https://doi.org/10.1016/j.jsv.2008.06.006 doi: 10.1016/j.jsv.2008.06.006
    [132] D. Meng, T. Xie, P. Wu, C. He, Z. Hu, Z. Lv, An uncertainty-based design optimization strategy with random and interval variables for multidisciplinary engineering systems, Structures, 32 (2021), 997–1004. https://doi.org/10.1016/j.istruc.2021.03.020 doi: 10.1016/j.istruc.2021.03.020
    [133] X. Liu, X. Yu, J. Tong, X. Wang, X. Wang, Mixed uncertainty analysis for dynamic reliability of mechanical structures considering residual strength, Reliab. Eng. Syst. Safe., 209 (2021), 107472. https://doi.org/10.1016/j.ress.2021.107472 doi: 10.1016/j.ress.2021.107472
    [134] J. Wang, Z. Lu, Probabilistic safety model and its efficient solution for structure with random and interval mixed uncertainties, Mech. Mach. Theory, 147 (2020), 103782. https://doi.org/10.1016/j.mechmachtheory.2020.103782 doi: 10.1016/j.mechmachtheory.2020.103782
    [135] D. M. Do, K. Gao, W. Yang, C. Q. Li, Hybrid uncertainty analysis of functionally graded plates via multiple-imprecise-random-field modelling of uncertain material properties, Comput. Method. Appl. Mech. Eng., 368 (2020), 113116. https://doi.org/10.1016/j.cma.2020.113116 doi: 10.1016/j.cma.2020.113116
    [136] J. Wang, Z. Lu, M. Zhong, T. Wang, C. Sun, H. Li, Coupled thermal–structural analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles, Thin-Wall. Struct., 141 (2019), 360-373. https://doi.org/10.1016/j.tws.2019.04.026 doi: 10.1016/j.tws.2019.04.026
    [137] M. Luo, Y. Chen, D. Gao, L. Wang, Inversion study of vehicle frontal collision and front bumper collision, Electron. Res. Arch. 31 (2023), 776–792. https://doi.org/10.3934/era.2023039
    [138] W. Li, J. Wang, Z. Du, H. Ma, L. Zhang, L. Duan, Lightweight design method and application of MEWP bracket based on multi-level optimization, Electron. Res. Arch., 30 (2022), 4416–4435. https://doi.org/10.3934/era.2022224 doi: 10.3934/era.2022224
    [139] X. Xu, G. Xu, J. Chen, Z. Liu, X. Chen, Y. Zhang, et al., Multi-objective design optimization using hybrid search algorithms with interval uncertainty for thin-walled structures, Thin-Wall. Struct., 175 (2022), 109218. https://doi.org/10.1016/j.tws.2022.109218 doi: 10.1016/j.tws.2022.109218
    [140] Y. Wu, W. Li, J. Fang, Q. Lan, Multi-objective robust design optimization of fatigue life for a welded box girder, Eng. Optimiz., 50 (2018), 1252–1269. https://doi.org/10.1080/0305215X.2017.1395023 doi: 10.1080/0305215X.2017.1395023
    [141] Y. Wu, L. Sun, P. Yang, J. Fang, W. Li, Energy absorption of additively manufactured functionally bi-graded thickness honeycombs subjected to axial loads, Thin-Wall. Struct., 164 (2021), 107810. https://doi.org/10.1016/j.tws.2021.107810 doi: 10.1016/j.tws.2021.107810
    [142] Y. Su, H. Tang, S. Xue, D. Li, Multi-objective differential evolution for truss design optimization with epistemic uncertainty, Adv. Struct. Eng., 19 (2016), 1403–1419. https://doi.org/10.1177/1369433216643250 doi: 10.1177/1369433216643250
    [143] X. Liu, Q. Fu, N. Ye, L. Yin, The multi-objective reliability-based design optimization for structure based on probability and ellipsoidal convex hybrid model, Struct. Safe., 77 (2019), 48–56. https://doi.org/10.1016/j.strusafe.2018.11.004 doi: 10.1016/j.strusafe.2018.11.004
    [144] T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, T. Nguyen-Thoi, An effective couple method for reliability-based multi-objective optimization of truss structures with static and dynamic constraints, Int. J. Comput. Method., 17 (2020). https://doi.org/10.1142/S0219876219500166
    [145] F. S. Lobato, M. A. da Silva, A. A. Cavalini, V. Steffen, Reliability-based robust multi-objective optimization applied to engineering system design, Eng. Optimiz., 52 (2020), 1–21. https://doi.org/10.1080/0305215X.2019.1577413 doi: 10.1080/0305215X.2019.1577413
    [146] P. Wang, S. Zheng, G. Wu, Multidisciplinary design optimization of vehicle body structure based on collaborative optimization and multi-objective genetic algorithm, Chinese J. Mech. Eng., 47 (2011), 102–108. https://doi.org/10.3901/JME.2011.02.102 doi: 10.3901/JME.2011.02.102
    [147] H. Yin, H. Fang, Y. Xiao, G. Wen, Q. Qing, Multi-objective robust optimization of foam-filled tapered multi-cell thin-walled structures, Struct. Multidiscip. Optimiz., 52 (2015), 1051–1067. https://doi.org/10.1007/s00158-015-1299-8 doi: 10.1007/s00158-015-1299-8
    [148] A. Khakhali, N. Nariman-zadeh, A. Darvizeh, A. Masoumi, B. Notghi, Reliability-based robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties, Int. J. Crashworthines., 15 (2010), 443–456. https://doi.org/10.1080/13588261003696458 doi: 10.1080/13588261003696458
    [149] A. U. Ebenuwa, K. F. Tee, Y. Zhang, Fuzzy-based multi-objective design optimization of buried pipelines, Int. J. Uncertain. Fuzz., 29 (2021), 209–229. https://doi.org/10.1142/S0218488521500104 doi: 10.1142/S0218488521500104
    [150] E. Untiedt. A Parametrized Model for Optimization with Mixed Fuzzy and Possibilistic Uncertainty, Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-13935-2_9
    [151] X. Liu, Z. Zhang, L. Yin, A multi-objective optimization method for uncertain structures based on nonlinear interval number programming method, Mech. Based Des. Struct. Mach., 45 (2017), 25–42. https://doi.org/10.1080/15397734.2016.1141365 doi: 10.1080/15397734.2016.1141365
    [152] T. Xie, Q. Zhou, J. Hu, L. Shu, P. Jiang, A sequential multi-objective robust optimization approach under interval uncertainty based on support vector machines, in 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017, 2088–2092. https://doi.org/10.1109/IEEM.2017.8290260
    [153] H. Chagraoui, M. Soula, M. Guedri, Robust multi-objective collaborative optimization of complex structures. Adv. Acous. Vib., 5 (2017), 247–258. https://doi.org/10.1007/978-3-319-41459-1_24 doi: 10.1007/978-3-319-41459-1_24
    [154] F. Li, G. Li, G. Sun, Z. Luo, Z. Zhang, Multi-disciplinary optimization for multi-objective uncertainty design of thin walled beams, CMC-Comput. Mater. Con., 19 (2010), 37–56. http://hdl.handle.net/10453/22026
    [155] X. Zhang, W. Sun, J. Huo, X. Ding, Interval multi-objective optimization design based on physical programming, Przeglad Elektrotechiczhy, 88 (2012), 379–381.
    [156] J. Cheng, G. Duan, Z. Liu, X. Li, Y. Feng, X. Chen, Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-Ⅱ, J. Zhejiang Univ-Sci. A, 15 (2014), 774–788. https://doi.org/10.1631/jzus.A1300311
    [157] X. Feng, J. Wu, Y. Zhang, M. Jiang, Suspension kinematic/compliance uncertain optimization using a chebyshev polynomial approach, SAE Int. J. Mater. Manu., 8 (2015), 257–262. https://doi.org/10.4271/2015-01-0432 doi: 10.4271/2015-01-0432
    [158] X. Li, C. Jiang, X. Han, An uncertainty multi-objective optimization based on interval analysis and its application, China Mech. Eng., 22 (2011), 1100–1106. http://www.cmemo.org.cn/EN/Y2011/V22/I9/1100
    [159] C. Jiang, H. C. Xie, Z. G. Zhang, X. Han, A new interval optimization method considering tolerance design, Eng. Optimiz., 47 (2015), 1637–1650. https://doi.org/10.1080/0305215X.2014.982632 doi: 10.1080/0305215X.2014.982632
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2845) PDF downloads(258) Cited by(3)

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog