In this work, we consider a Cauchy problem for the generalized Schrö dinger equation which has important applications in quantum kinetic theory, water wave problems and ferromagnetism. Due to its multidimensionality, it is important from the point of view of modern physics theories such as quantum field theory and string theory. We prove the uniqueness of the solution of the problem in an unbounded domain by using semigeodesic coordinates. The main tool is a pointwise Carleman estimate. To the authors' best knowledge, this is the first study which deals with the solvability of this problem.
Citation: İsmet Gölgeleyen, Özlem Kaytmaz. Uniqueness for a Cauchy problem for the generalized Schrödinger equation[J]. AIMS Mathematics, 2023, 8(3): 5703-5724. doi: 10.3934/math.2023287
[1] | Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106 |
[2] | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174 |
[3] | Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670 |
[4] | Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan . Some new dynamic Steffensen-type inequalities on a general time scale measure space. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240 |
[5] | Tingting Guan, Guotao Wang, Haiyong Xu . Initial boundary value problems for space-time fractional conformable differential equation. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312 |
[6] | Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250 |
[7] | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777 |
[8] | Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575 |
[9] | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534 |
[10] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
In this work, we consider a Cauchy problem for the generalized Schrö dinger equation which has important applications in quantum kinetic theory, water wave problems and ferromagnetism. Due to its multidimensionality, it is important from the point of view of modern physics theories such as quantum field theory and string theory. We prove the uniqueness of the solution of the problem in an unbounded domain by using semigeodesic coordinates. The main tool is a pointwise Carleman estimate. To the authors' best knowledge, this is the first study which deals with the solvability of this problem.
Riemann-Liouville fractional integral given by
Iαa+ξ(℘)=1Γ(α)∫χa(χ−℘)α−1ξ(℘)dt. |
Many different concepts of fractional derivative maybe found in [9,10,11]. In [12] studied a conformable derivative:
℘αf(℘)=limϵ→0f(℘+ϵ℘1−α)−f(℘)ϵ. |
The time scale conformable derivatives was introduced by Benkhettou et al. [17].
Further, in recent years, numerous mathematicians claimed that non-integer order derivatives and integrals are well suited to describing the properties of many actual materials, such as polymers. Fractional derivatives are a wonderful tool for describing memory and learning. a variety of materials and procedures inherited properties is one of the most significant benefits of fractional ownership. For more concepts and definition on time scales see [13,14,15,16,17,18,19,33,34,35].
Continuous version of Steffensen's inequality [7] is written as: For 0≤g(℘)≤1 on ∈[a,b]. Then
∫bb−λf(℘)dt≤∫baf(℘)g(℘)dt≤∫a+λaf(℘)dt, | (1.1) |
where λ=∫bag(℘)dt.
Supposing f is nondecreasing gets the reverse of (1.1).
Also, the discrete inequality of Steffensen [6] is: For λ2≤∑nℓ=1g(ℓ)≤λ1. Then
n∑ℓ=n−λ2+1f(ℓ)≤n∑ℓ=1f(ℓ)g(ℓ)≤λ1∑ℓ=1f(ℓ). | (1.2) |
Recently, a large number of dynamic inequalities on time scales have been studied by a small number of writers who were inspired by a few applications (see [1,2,3,4,8,28,29,30,31,32,36,37,40,41,42,44,48,49,50,51,52,53]).
In [5] Jakšetić et al. proved that, if ˆμ([c,d])=∫[a,b]g(℘)dˆμ(℘), where [c,d]⊆[a,b]. Then
∫[a,b]f(℘)g(℘)dˆμ(℘)≤∫[c,d]f(℘)g(℘)dˆμ(℘)+∫[a,c](f(℘)−f(d))g(℘)dˆμ(℘), |
and
∫[c,d]f(℘)dˆμ(℘)−∫[d,b](f(c)−f(℘))g(℘)dˆμ(℘)≤∫[a,b]f(℘)g(℘)dˆμ(℘). |
Anderson, in [3], studied the inequality:
∫bb−λϕ(℘)∇℘≤∫baϕ(℘)ψ(℘)∇℘≤∫a+λaϕ(℘)∇℘, | (1.3) |
In [47] the authors have proved, for
∫m+λ1mζ(℘)d℘=∫kmζ(℘)g(℘)d℘, |
and
∫nn−λ2ζ(℘)d℘=∫nkζ(℘)g(℘)d℘. |
If there exists a constant A such that r(℘)/ζ(℘)−At is monotonic on the intervals [m,k], [k,n], and
∫nmtq(℘)g(℘)d℘=∫m+λ1mtq(℘)d℘+∫nn−λ2tq(℘)d℘, |
then
∫nmr(℘)g(℘)d℘≤∫m+λ1mr(℘)d℘+∫nn−λ2r(℘)d℘. |
In particularly, Anderson [3] proved
∫nn−λr(℘)∇℘≤∫nmr(℘)g(℘)∇℘≤∫m+λmr(℘)∇℘. |
where m,n∈Tκ with m<n, r, g:[m,n]T→R are ∇-integrable functions such that r is of one sign and nonincreasing and 0≤g(℘)≤1 on [m,n]T and λ=∫nmg(℘)∇℘, n−λ,m+λ∈T.
We prove the next two needed results:
Theorem 1.1. Assume q>0 with 0≤g(℘)≤ζ(℘) ∀℘∈[m,n]T and λ is given from ∫nmg(℘)Δα℘=∫m+λmζ(℘)Δα℘, then
∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘. | (1.4) |
Also, provided with 0≤g(℘)≤ζ(℘) and ∫nn−λζ(℘)Δα℘=∫nmg(℘)Δα℘, we have
∫nn−λr(℘)ζ(℘)Δα℘≤∫nmr(℘)g(℘)Δα℘. | (1.5) |
We get the reverse inequalities of (1.4) and (1.5) when assuming r/ζ is nondecreasing.
Theorem 1.2. Assume ψ is integrable on time scales interval [m,n], with ζ(℘)−ψ(℘)≥g(℘)≥ψ(℘)≥0∀℘∈[m,n]T and ∫m+λmζ(℘)Δα℘=∫nmg(℘)Δα℘=∫nn−λζ(℘)Δα℘ and g, r and ζ are Δα-integrable functions, ζ(℘)≥g(℘)≥0, we have
∫nn−λr(℘)ζ(℘)Δα℘+∫nm|(r(℘)−r(n−λ))ψ(℘)|Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘−∫nm|(r(℘)−r(m+λ))ψ(℘)|Δα℘, | (1.6) |
and
∫nn−λr(℘)ζ(℘)Δα℘≤∫nn−λ[r(℘)ζ(℘)−(r(℘)−r(n−λ))][ζ(℘)−g(℘)]Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λm[r(℘)ζ(℘)−(r(℘)−r(m+λ))][ζ(℘)−g(℘)]Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘. | (1.7) |
Proof. The proof techniques of Theorems 1.6 and 1.7 are like to that in [4] and is removed.
Several authors proved conformable Hardy's inequality [20,21], conformable Hermite-Hadamard's inequality [22,23,24], conformable inequality of Opial's [26,27] and conformable inequality of Steffensen's [25]. In [45] Anderson proved the followong results:
Theorem 1.3. [45] Suppose α∈(0,1] and r1, r2∈R such that 0≤r1≤r2. Suppose ∏:[r1,r2]→[0,∞) and Γ:[r1,r2]→[0,1] are α-fractional integrable functions on [r1,r2] with Π is decreasing, we get
∫r2r2−ℵΠ(ζ)dαζ≤∫r2r1Π(ζ)Γ(ζ)dαζ≤∫r1+ℵr1Π(ζ)dαζ, |
where ℵ=α(r2−r1)rα2−rα1∫r2r1Γ(ζ)dαζ∈[0,r2−r1].
In [46] the authors gave an extension for Theorem 1.8:
Theorem 1.4. Assume α∈(0,1] and r1, r2∈R such that 0≤r1≤r2. Suppose ∏,Γ,Σ:[r1,r2]→[0,∞) are integrable on [r1,r2] with the decreasing function Π and 0≤Γ≤Σ, we get
∫r2r2−ℵΣ(ζ)Π(ζ)dαζ≤∫r2r1Π(ζ)Γ(ζ)dαζ≤∫r1+ℵr1Σ(ζ)Π(ζ)dαζ, |
where ℵ=(r2−r1)∫r2r1Σ(ζ)dαζ∫r2r1Γ(ζ)dαζ∈[0,r2−r1].
In this paper, we prove and explore several novel speculations of the Steffensen inequality obtained in [47] through the conformable integral containing time scale concept. We furthermore recover certain known results as special cases of our results.
Lemma 2.1. Assume ζ>0 is rd-continuous function on [m,n]∩T, g, r be rd-continuous on [m,n]∩T such that r/ζ nonincreasing function and 0≤g(℘)≤1 ∀℘∈[m,n]∩T. Then
(Λ1)
∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)Δα℘, | (2.1) |
where λ is given by
∫nmζ(℘)g(℘)Δα℘=∫m+λmζ(℘)Δα℘. |
(Λ2)
∫nn−λr(℘)Δα℘≤∫nmr(℘)g(℘)Δα℘, | (2.2) |
such that
∫nn−λζ(℘)Δα℘=∫nmζ(℘)g(℘)Δα℘. |
(2.1) and (2.2) are reversed when r/ζ is nondecreasing.
Proof. Putting g(℘)↦ζ(℘)g(℘) and r(℘)↦r(℘)/ζ(℘) in (1.4), (1.5) to get (Λ1) and (Λ2) simultaneously.
Lemma 2.2. Under the same hypotheses of Lemma 2.1. with ψ be integrable functions on [m,n]∩T and 0≤ψ(℘)≤g(℘)≤1−ψ(℘) for all ℘∈[m,n]T. Then
∫nn−λr(℘)Δα℘+∫nm|(r(℘)ζ(℘)−r(n−λ)ζ(n−λ))ζ(℘)ψ(℘)|Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)Δα℘−∫nm|(r(℘)ζ(℘)−r(m+λ)ζ(m+λ))ζ(℘)ψ(℘)|Δα℘, |
where λ is obtained from
∫m+λmh(℘)Δα℘=∫nmζ(℘)g(℘)Δα℘=∫nn−λζ(℘)Δα℘. |
Proof. Putting g(℘)↦ζ(℘)g(℘), r(℘)↦r(℘)/h(℘) and ψ(℘)↦ζ(℘)ψ(℘) in (1.6).
Lemma 2.3. Under the same conditions of Lemma 2.1. Then
∫nn−λr(℘)Δα℘≤∫nn−λ(r(℘)−[r(℘)ζ(℘)−r(n−λ)ζ(n−λ)]ζ(℘)[1−g(℘)])Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λm(r(℘)−[r(℘)ζ(℘)−r(a+λ)ζ(m+λ)]ζ(℘)[1−g(℘)])Δα℘≤∫m+λmr(℘)Δα℘, |
where λ is obtained from
∫m+λmζ(℘)Δα℘=∫nmg(℘)Δα℘=∫nn−λζ(℘)Δα℘. |
Proof. Taking g(℘)↦ζ(℘)g(℘) and r(℘)↦r(℘)/ζ(℘) in (1.7).
Theorem 2.1. Under the same conditions of Lemma 2.3 such that k∈(m,n) and λ1, λ2 are given from
(Λ3)
∫m+λ1mζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫nn−λ2ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘, | (2.3) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘. | (2.4) |
(2.4) is reversed if rσ/ζ∈AHk2[m,n] and (2.3).
(Λ4)
∫kk−λ1ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫k+λ2kζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘, | (2.5) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)Δα℘. | (2.6) |
If rσ/ζ∈AHk2[m,n] and (2.5) satisfied, then we reverse (2.6).
(Λ5) If λ1, λ2 be the same as in (Λ3) and rσ/ζ∈AHk1[m,n] so that
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1m(ϕ(℘)ζ(℘)−[ϕ(℘)−m−λ1]ζ(℘)[1−g(℘)])Δα℘+∫nn−λ2(ϕ(℘)ζ(℘)−[ϕ(℘)−n+λ2]ζ(℘)[1−g(℘)])Δα℘, | (2.7) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1m(rσ(℘)−|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)[1−g(℘)])Δα℘+∫nn−λ2(rσ(℘)−|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)[1−g(℘)])Δα℘. | (2.8) |
If rσ/ζ∈AHk2[m,n] and (2.7) satisfied, the inequality in (2.8) is reversed.
(Λ6) If λ1, λ2 be defined as in (Λ4) and rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫kk−λ1(ϕ(℘)ζ(℘)−[ϕ(℘)−k+λ1]ζ(℘)[1−g(℘)])Δα℘=∫m+λ1m(ϕ(℘)ζ(℘)−[ϕ(℘)−k+λ2]ζ(℘)[1−g(℘)])Δα℘, | (2.9) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫kk−λ1(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)]ζ(℘)[1−g(℘)])Δα℘+∫k+λ2k(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)]ζ(℘)[1−g(℘)])Δα℘. | (2.10) |
If rσ/ζ∈AHk2[m,n] and (2.9) satisfied, we reverse (2.10).
Proof. (Λ3) Consider rσ/ζ∈AHk1[m,n], and R1(ℓ)=rσ(ℓ)−Aϕ(ℓ)ζ(ℓ), since A is given in Definition 2.1. Since R1/ζ:[m,k]∩T→R, using Lemma 2.1(Λ1), we deduce
0≤∫m+λ1mR1(℘)Δα℘−∫kmR1(℘)g(℘)Δα℘=∫m+λ1mrσ(℘)Δα℘−∫kmrσ(℘)g(℘)Δα℘−A(∫m+λ1mϕ(℘)ζ(℘)Δα℘−∫kmϕ(℘)ζ(℘)g(℘)Δα℘). | (2.11) |
As R1/ζ:[k,n]∩T→R is nondecreasing, using Lemma 2.1(Λ2), we obtain
0≥∫nkR1(℘)g(℘)Δα℘−∫nn−λ2R1(℘)Δα℘=∫nkrσ(℘)g(℘)Δα℘−∫nn−λ2rσ(℘)Δα℘−A(∫nkϕ(℘)ζ(℘)g(℘)Δα℘−∫nn−λ2ϕ(℘)ζ(℘)Δα℘). | (2.12) |
(2.11) and (2.12) imply that
∫m+λ1mrσ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘−∫nmrσ(℘)g(℘)Δα℘≥A(∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘−∫nmϕ(℘)ζ(℘)g(℘)Δα℘) |
Hence, if (2.3) is hold, then (2.4) holds. For rσ/ζ∈AHk2[m,n], we get the some steps.
(Λ4) Let rσ/ζ∈AHk1[m,n], also R1(x)=rσ(x)−Aϕ(x)ζ(x), where A as in Definition 2.1. R1/ζ:[m,k]∩T→R is nonincreasing, so from Lemma 2.1(Λ1) we obtain
0≤∫kmrσ(℘)g(℘)Δα℘−∫kk−λ1rσ(℘)Δα℘−A(∫kmϕ(℘)h(℘)g(℘)Δα℘−∫kc−λ1ϕ(℘)ζ(℘)Δα℘). | (2.13) |
Using Lemma 2.1(Λ1) we have
0≥∫k+λ2krσ(℘)Δα℘−∫nkrσ(℘)g(℘)Δα℘−A(∫k+λ2kϕ(℘)ζ(℘)Δα℘−∫nkϕ(℘)ζ(℘)g(℘)Δα℘). | (2.14) |
Thus, from (2.13), (2.14), we get
∫nmrσ(℘)g(℘)Δα℘−∫k+λ2k−λ1rσ(℘)Δα℘≥A(∫nmϕ(℘)ζ(℘)g(℘)Δα℘−∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘) |
Therefore, if ∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘ is satisfied, then (2.8) holds. Follow the same steps for rσ/ζ∈AHk2[m,n].
Using Lemma 2.3 and repeat the steps of Theorem 2.1(Λ3) and Theorem 2.1(Λ4) in the proof of (Λ5) and (Λ6) respectively.
Corollary 2.1. The inequalities (2.4), (2.6), (2.8) and (2.10) of Theorem 2.1 letting T=R takes
(i)∫nmfσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)dα℘+∫nn−λ2rσ(℘)dα℘. | (2.15) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)dα℘. | (2.16) |
(iii)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1m(rσ(℘)−[rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)]ζ(℘)[1−g(℘)])dα℘+∫nn−λ2(rσ(℘)−[rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)]ζ(℘)[1−g(℘)])dα℘. | (2.17) |
(iv)∫nmrσ(℘)g(℘)dα℘≥∫kk−λ1(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)]ζ(℘)[1−g(℘)])dα℘+∫k+λ2k(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)]ζ(℘)[1−g(℘)])dα℘. | (2.18) |
Corollary 2.2. We get [47,Theorems 8,10,21 and 22], if we put α=1 and ϕ(℘)=℘ in Corollary 2.1 [(i),(ii),(iii),(iv)] simultaneously.
Corollary 2.3. In Corollary 2.1 taking T=Z, the results (2.15)–(2.18) will be equivalent to
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)+n−1∑℘=n−λ2r(℘+1)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)℘α−1. |
(iii)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=m(r(℘+1)−[r(℘+1)ζ(℘)−r(a+λ1+1)ζ(m+λ1)]ζ(℘)[1−g(℘)])℘α−1+n−1∑℘=n−λ2(r(℘+1)−[r(℘+1)ζ(℘)−r(n−λ2+1)ζ(n−λ2)]ζ(℘)[1−g(℘)])℘α−1. |
(iv)n−1∑℘=mr(℘+1)g(℘))℘α−1≥k−1∑℘=k−λ1(r(℘+1)−[r(℘+1)ζ(℘)−r(k−λ1+1)ζ(k−λ1)]ζ(℘)[1−g(℘)]))℘α−1+k+λ2−1∑℘=k(r(℘+1)−[r(℘+1)ζ(℘)−r(k+λ2+1)ζ(k+λ2)]ζ(℘)[1−g(℘)]))℘α−1. |
Theorem 2.2. Under the assumptions in Lemma 2.1 with 0≤g(℘)≤ζ(℘) and λ1, λ2 be defined as
(Λ7)
∫m+λ1mζ(℘)Δα℘=∫kmg(℘)Δα℘, |
∫nn−λ2ζ(℘)Δα℘=∫nkg(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘, | (2.19) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)ζ(℘)Δα℘+∫nn−λ2rσ(℘)ζ(℘)Δα℘. | (2.20) |
(Λ8)
∫kk−λ1ζ(℘)Δα℘=∫kmg(℘)Δα℘, |
∫k+λ2kζ(℘)Δα℘=∫nkg(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘, | (2.21) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)ζ(℘)Δα℘. | (2.22) |
If rσ/ζ∈AHk2[m,n] and (2.19), (2.21) satisfied, we get the reverse of (2.20) and (2.22).
Proof. By using Theorem 2.1 [(Λ3),(Λ4)] and by putting g↦g/h and f↦fh, we get the proof of (Λ7) and (Λ8).
Corollary 2.4. In Theorem 2.2 [(Λ7),(Λ8)], assuming T=R, the following results obtains:
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)ζ(℘)dα℘+∫nn−λ2rσ(℘)ζ(℘)dα℘. | (2.23) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)ζ(℘)dα℘. | (2.24) |
Corollary 2.5. In Corollary 2.4 [(i),(ii)], when we put α=1 and ϕ(℘)=℘ then [47,Theorems 16 and 17] gotten.
Corollary 2.6. In (2.23) and (2.24) letting T=Z, gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)h(℘)+n−1∑℘=n−λ2r(℘+1)h(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)ζ(℘)℘α−1. |
Theorem 2.3. Using the same conditions in Lemma 2.3. Letting w:[m,n]∩T→R be integrable with 0≤g(℘)≤w(℘) ∀℘∈[m,n]∩T and
(Λ9)∫m+λ1mw(℘)ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫nn−λ2w(℘)ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)w(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)w(℘)ζ(℘)Δα℘, | (2.25) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)w(℘)Δα℘+∫nn−λ2rσ(℘)w(℘)Δα℘. | (2.26) |
(Λ10)∫kk−λ1w(℘)ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫k+λ2kw(℘)ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)w(℘)ζ(℘)Δα℘, | (2.27) |
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)w(℘)Δα℘. | (2.28) |
The inequalities in (2.26) and (2.28) are reversible if rσ/ζ∈AHc2[a,b] and (2.25), (2.27) hold.
Proof. In Theorem 2.1 [(Λ3),(Λ4)], ζ changes wq, g changes g/w and r changes rw.
Corollary 2.7. In (2.26) and (2.28). Letting T=R, we have
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)w(℘)dα℘+∫nn−λ2rσ(℘)w(℘)dα℘. | (2.29) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)w(℘)dα℘. | (2.30) |
Corollary 2.8. In Corollary 2.7 [(i),(ii)], letting α=1 and ϕ(℘)=℘ we get [47,Theorems 18 and 19].
Corollary 2.9. In (2.29) and (2.30), crossing T=Z, gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)w(℘)+n−1∑℘=n−λ2r(℘+1)w(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)w(℘)℘α−1. |
Theorem 2.4. Using the same conditions in Lemma 2.1, and Theorem 2.1 [(Λ3),(Λ4)] with ψ:[m,n]∩T→R be a integrable: 0≤ψ(℘)≤g(℘)≤1−ψ(℘).
(Λ11) If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘−∫km|ϕ(℘)−m−λ1|ζ(℘)ψ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘+∫nk|ϕ(℘)−n+λ2|ζ(℘)ψ(℘)Δα℘, | (2.31) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)Δα℘−∫km|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)ψ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘+∫nk|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)ψ(℘)Δα℘. | (2.32) |
(Λ12) If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫kk−λ1ϕ(℘)ζ(℘)Δα℘−∫km|ϕ(℘)−k+λ1|ζ(℘)ψ(℘)Δα℘+∫nk|ϕ(℘)−k−λ1|ζ(℘)ψ(℘)Δα℘, | (2.33) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)Δα℘+∫km|rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)|ζ(℘)ψ(℘)Δα℘−∫nk|rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)|ζ(℘)ψ(℘)Δα℘. | (2.34) |
If rσ/ζ∈AHk2[m,n] and (2.31) and (2.33) satisfied, we get the reverse of (2.32) and (2.34).
Proof. The same steps of Theorem 2.1 [(Λ3),(Λ4)] with Lemma 2.1, R1/ζ:[m,k]∩T→R nonincreasing, R1/ζ:[k,n]∩T→R nondecreasing.
Corollary 2.10. In Theorem 2.4 [(Λ11),(Λ12)], letting T=R we get:
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)dα℘−∫km|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)ψ(℘)dα℘+∫nn−λ2rσ(℘)dα℘+∫nk|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)ψ(℘)dα℘. | (2.35) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)dα℘+∫km|rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)|ζ(℘)ψ(℘)dα℘−∫nk|rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)|ζ(℘)ψ(℘)dα℘. | (2.36) |
Corollary 2.11. In (2.35) and (2.36), we put α=1, with ϕ(℘)=℘ we get [47,Theorems 23 and 24].
Corollary 2.12. Our results (2.35) and (2.36), by using T=Z gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)℘α−1−k−1∑℘=m|r(℘+1)ζ(℘)−r(m+λ1+1)ζ(m+λ1)|ζ(℘)ψ(℘)ˆ∇℘+n−1∑℘=n−λ2r(℘+1)℘α−1+n−1∑℘=k|r(℘+1)ζ(℘)−r(n−λ2+1)ζ(n−λ2)|ζ(℘)ψ(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)℘α−1+k−1∑℘=m|r(℘+1)ζ(℘)−r(k−λ1+1)ζ(k−λ1)|ζ(℘)ψ(℘)℘α−1−n−1∑℘=k|r(℘+1)ζ(℘)−r(k+λ2+1)ζ(k+λ2)|h(℘)ψ(℘)℘α−1. |
In this work, we explore new generalizations of the integral Steffensen inequality given in [38,39,43] by the utilization of the α-conformable derivatives and integrals, A few of these results are generalised to time scales. We also obtained the discrete and continuous case of our main results, in order to gain some fresh inequalities as specific cases.
The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167), King Saud University, Riyadh, Saudi Arabia.
The authors declare no conflict of interest.
[1] | A. K. Amirov, Integral geometry and inverse problems for Kinetic equations, The Netherlands: De Gruyter, 2001. https://doi.org/10.1515/9783110940947 |
[2] |
A. Davey, K. Stewartson, On three-dimensional packets of surface waves, P. R. Soc. A-Math. Phy., 338 (1974), 101-110. https://doi.org/10.1098/rspa.1974.0076 doi: 10.1098/rspa.1974.0076
![]() |
[3] |
V. E. Zakharov, E. I. Schulman, Degenerative dispersion laws, motion invariants and kinetic equations, Physica D., 1 (1980), 192-202. https://doi.org/10.1016/0167-2789(80)90011-1 doi: 10.1016/0167-2789(80)90011-1
![]() |
[4] | Y. Ishimori, A note on the Cauchy problem for Schrö dinger type equations on the Riemannian manifold, Math. Japonica, 72 (1984), 33-37. |
[5] | C. Sulem, P. L.Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse, New York: Springer, 1999. https://doi.org/10.1515/9783110915549 |
[6] |
X. Zhang, L. Liu, Y. Wu, Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 464 (2018), 1089-1106. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[7] | X. Zhang, L. Liu, Y. Wu, Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differ. Equ., 147 (2018), 1-15. |
[8] |
X. Zhang, J. Jiang, Y. Wu, Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schr ödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 90 (2019), 229-237. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[9] |
X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Multiple solutions for a modified quasilinear Schrö dinger elliptic equation with a nonsquare diffusion term, Nonlinear Anal. Model., 26 (2021), 702-717. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[10] |
X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Y. Cui, Solvability and asymptotic properties for an elliptic geophysical fluid flows model in a planar exterior domain, Nonlinear Anal. Model., 26 (2021), 315-333. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[11] |
H. Wang, Y. Zhang, A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems, Commun. Nonlinear Sci., 99 (2021), 105822. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[12] |
H. Wang, Y. Zhang, A kind of generalized integrable couplings and their Bi-Hamiltonian structure, Int. J. Theor. Phys., 60 (2021), 1797-1812. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[13] |
H. Wang, Y. Zhang, A new multi-component integrable coupling and its application to isospectral and nonisospectral problems, Commun. Nonlinear Sci., 105 (2022), 106075. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[14] |
H. Wang, Y. Zhang, Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations, J. Comput. Appl. Math., 420 (2023), 114812. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[15] |
C. E. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. math., 134 (1998), 489-545. https://doi.org/10.1007/s002220050272 doi: 10.1007/s002220050272
![]() |
[16] |
C. E. Kenig, G. Ponce, C. Rolvung, L. Vega, The general quasilinear ultrahyperbolic Schrödinger equation, Adv. Math., 206 (2006), 402-433. https://doi.org/10.1016/j.aim.2005.09.005 doi: 10.1016/j.aim.2005.09.005
![]() |
[17] |
A. K. Amirov, M. Yamamoto, Inverse problem for a Schrödinger-type equation, Dokl. Math., 77 (2008), 212-214. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[18] |
İ. Gölgeleyen, Ö. Kaytmaz, Conditional stability for a Cauchy problem for the ultrahyperbolic Schrödinger equation, Appl. Anal., 101 (2022), 1505-1516. https://doi.org/10.1080/00036811.2020.1781829 doi: 10.1080/00036811.2020.1781829
![]() |
[19] |
F. Gölgeleyen, Ö. Kaytmaz, A Hölder stability estimate for inverse problems for the ultrahyperbolic Schrödinger equation, Anal. Math. Phys., 9 (2019), 2171-2199. https://doi.org/10.1007/s13324-019-00326-6 doi: 10.1007/s13324-019-00326-6
![]() |
[20] | T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 2 (1939), 1-9. |
[21] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. https://doi.org/10.1134/S1064562408020142 doi: 10.1134/S1064562408020142
![]() |
[22] | M. V. Klibanov, A. Timonov, Carleman estimates for coefficient inverse problem and numerical applications, The Netherlands: VSP, 2004. https://doi.org/10.1515/9783110915549 |
[23] | C. E. Kenig, Carleman estimates, uniform Sobolev inequalities for second-order differential operators, and unique continuation theorems, P. Int. Congr. Math., 1 (1986), 948-960. |
[24] |
A. P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Am. J. Math., 80 (1958), 16-36. https://doi.org/https://doi.org/10.2307/2372819 doi: 10.2307/2372819
![]() |
[25] | L. Hörmander, Linear partial differential operators, Berlin: Springer, 1963. |
[26] |
L. Baudouin, J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Probl., 18 (2002), 1537. https://doi.org/10.1088/0266-5611/18/6/307 doi: 10.1088/0266-5611/18/6/307
![]() |
[27] |
A. Mercado, A. Osses, L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Probl., 24 (2008), 015017. https://doi.org/10.1088/0266-5611/24/1/015017 doi: 10.1088/0266-5611/24/1/015017
![]() |
[28] |
G. Yuan, M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chin. Ann. Math. B, 31 (2010), 555-578. https://doi.org/10.1007/s11401-010-0585-4 doi: 10.1007/s11401-010-0585-4
![]() |
[29] | M. M. Lavrentiev, V. G. Romanov, S. P. Shishatskii, Ill-Posed problems of mathematical physics and analysis, Providence: American Mathematical Society, 1986. |
[30] |
F. Gölgeleyen, M. Yamamoto, Uniqueness of solution of an inverse source problem for ultrahyperbolic equations, Inverse Probl., 36 (2020), 035008. https://doi.org/10.1088/1361-6420/ab63a2 doi: 10.1088/1361-6420/ab63a2
![]() |
1. | Ahmed A. El-Deeb, Clemente Cesarano, On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales, 2022, 11, 2075-1680, 336, 10.3390/axioms11070336 | |
2. | Ahmed A. El-Deeb, Dumitru Baleanu, Jan Awrejcewicz, (Δ∇)∇-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications, 2022, 14, 2073-8994, 1867, 10.3390/sym14091867 | |
3. | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim, On some dynamic inequalities of Hilbert's-type on time scales, 2023, 8, 2473-6988, 3378, 10.3934/math.2023174 | |
4. | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu, Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales, 2022, 7, 2473-6988, 14099, 10.3934/math.2022777 | |
5. | Ahmed A. El-Deeb, Dumitru Baleanu, Clemente Cesarano, Ahmed Abdeldaim, On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales, 2022, 14, 2073-8994, 1421, 10.3390/sym14071421 | |
6. | Hassan M. El-Owaidy, Ahmed A. El-Deeb, Samer D. Makharesh, Dumitru Baleanu, Clemente Cesarano, On Some Important Class of Dynamic Hilbert’s-Type Inequalities on Time Scales, 2022, 14, 2073-8994, 1395, 10.3390/sym14071395 | |
7. | Ahmed A. El-Deeb, Alaa A. El-Bary, Jan Awrejcewicz, On Some Dynamic (ΔΔ)∇- Gronwall–Bellman–Pachpatte-Type Inequalities on Time Scales and Its Applications, 2022, 14, 2073-8994, 1902, 10.3390/sym14091902 | |
8. | Asfand Fahad, Saad Ihsaan Butt, Josip Pečarić, Marjan Praljak, Generalized Taylor’s Formula and Steffensen’s Inequality, 2023, 11, 2227-7390, 3570, 10.3390/math11163570 |