This paper is concerned with the study of nonlocal fractional differential equation of sobolev type with impulsive conditions. An associated integral equation is obtained and then considered a sequence of approximate integral equations. By utilizing the techniques of Banach fixed point approach and analytic semigroup, we obtain the existence and uniqueness of mild solutions to every approximate solution. Then, Faedo-Galerkin approximation is used to establish certain convergence outcome for approximate solutions. In order to illustrate the abstract results, we present an application as a conclusion.
Citation: M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran. Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses[J]. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229
[1] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[2] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[3] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[4] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[5] | Xiaoming Wang, Mehboob Alam, Akbar Zada . On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2021, 6(2): 1561-1595. doi: 10.3934/math.2021094 |
[6] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[7] | Yong-Ki Ma, Kamalendra Kumar, Rohit Patel, Anurag Shukla, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . An investigation on boundary controllability for Sobolev-type neutral evolution equations of fractional order in Banach space. AIMS Mathematics, 2022, 7(7): 11687-11707. doi: 10.3934/math.2022651 |
[8] | Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, Panjaiyan Karthikeyan, Anoop Kumar, Thongchai Botmart, Wajaree Weera . A study on controllability for Hilfer fractional differential equations with impulsive delay conditions. AIMS Mathematics, 2023, 8(2): 4202-4219. doi: 10.3934/math.2023209 |
[9] | Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi . Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985 |
[10] | Yanfang Li, Yanmin Liu, Xianghu Liu, He Jun . On the approximate controllability for some impulsive fractional evolution hemivariational inequalities. AIMS Mathematics, 2017, 2(3): 422-436. doi: 10.3934/Math.2017.3.422 |
This paper is concerned with the study of nonlocal fractional differential equation of sobolev type with impulsive conditions. An associated integral equation is obtained and then considered a sequence of approximate integral equations. By utilizing the techniques of Banach fixed point approach and analytic semigroup, we obtain the existence and uniqueness of mild solutions to every approximate solution. Then, Faedo-Galerkin approximation is used to establish certain convergence outcome for approximate solutions. In order to illustrate the abstract results, we present an application as a conclusion.
Research work in the area of fractional differential equation is multidisciplinary such as control systems, elasticity, circuit systems, heat transfer, fluid mechanics, signal analysis, traffic flow, pollution control, etc. It is considered as an alternative model to nonlinear differential equation. Fractional differential equations are a useful tool in modelling several events. In [1], controllability of Hilfer fractional neutral differential systems with infinite delay is obtained. An article obtained on Neutral fractional stochastic partial differential equations with Clarke subdifferential is investigated using fractional calculus and fixed point theorems in [2]. Nisar et al. [3], in their publication, briefly discussed the analysis of controllability for nonlinear Hilfer neutral fractional derivatives via fractional calculus and Banach contraction principle. Numerous credible theoretical studies on fractional differential equation can be referred to books in [4,5,6,7,8] and the research articles are [9,10,11,12,13,14,15]. The fractional differential equation has many solutions with nonlocal conditions, impulsive type and sobolev type. In which, the nonlocal conditions is a generalization of the classical conditions, was motivated by the physical phenomena. The pioneering work on nonlocal condition is due to Byszewski [16]. Papers related on nonlocal conditions, we may refer [17,18,19,20].
Moreover, the theory of fractional impulsive differential equations has been entirely developed during the past decades. Since 1990's many mathematician have derived lots of results on differential equations undergoing impulsive effects. It focuses on the analysis of dynamic processes that experience abrupt changes. Impulses have a relatively shorter time difference between changes than the overall length of the process. The following may act as motivation to investigate such systems using impulsive differential equations. Consider the simplest scenario for a person's hemodynamic equilibrium. Some injectable medications, such as insulin, may be provided in the case of a de-compensation, such as high or low glucose levels. It is clear that the entrance of medications into the circulation and the body's subsequent absorption are slow and ongoing processes. This circumstance might be seen as an impulsive activity that begins suddenly and lasts for a set amount of time. For detailed information about the impulsive fractional differential equation and its applications, we refer to the readers [21,22,23,24,25].
On the other hand, the Sobolev type differential system is typically seen in the mathematical structure of numerous physical events, such as fluid flow through fractured rocks, thermodynamics. Additionally, Sobolev type differential equations are utilised to describe the attributes of systems and processes in mathematical modelling and simulations. For more literature on sobolev type differential equation, see [26,27,28,29,30] and references therein. In addition, one of the most effective methods for determining out approximations of solutions to a given differential equation in an abstract space is the Faedo-Galerkin approach. The Faedo-Galerkin method may be used within a vartional formulation in order to provide solutions of the equations under possibly weaker assumption on the data and may also prove a very useful tool for numerical approximation of equations. A detailed view on Faedo-Galerkin approximation we refer [31,32,33,34,35].
In accordance with the aforementioned literature survey, there are relatively few work outcomes that explore the existence and uniqueness of a mild solution to a Sobolev type fractional differential equation with Impulses applying a fixed point technique. This fact is the fundamental motivator behind our current progress. This article [36,37], outlines the nonlocal Sobolev type fractional differential impulsive system as follows:
cDβσ[Mx(σ)]=Lx(σ)+F(σ,x(σ),x(h(σ))),σ∈[0,T], | (1.1) |
Δx(σi)=Ii(x(σi)),i=1,2,...,q,q∈N, | (1.2) |
g(x)=ϕ∈H1. | (1.3) |
Where 0<β<1,T∈(0,∞) cDβσ is the Caputo fractional derivative, 0=σ0<σ1<...<σq<σq+1=T are pre-fixed numbers, Δx|σ=σi=x(σ+i)−x(σ−i) and x(σ+i)=limh→0+x(σi+h) and x(σ−i)=limh→0−x(σi+h) denote the right and left limits of x(σ) at σ=σi, respectively. From (1.1), assume L:D(L)⊂H1→H2 M:D(M)⊂H1→H2 are closed (unbounded), positive and self-adjoint operators, where H1 and H2 are Hilbert spaces and the appropriate functions are F:[0,T]×H1→H1 and g:C([0,T],H1)→H1, h:[0,T]→[0,T], Ii:H1→H1.
This articles is organized as:
Basic concepts and lemmas are covered in Section 2. In Section 3, the fixed point theorem is used to determine the existence and uniqueness of an approximate solution. In Section 4, the convergence of the approximate solutions is obtained. In Section 5, the convergence of approximate Faedo-Galerkin solutions is proved. Finally, we provide a theoretical application to assist in the effectiveness of our result.
The upcoming segment recalls the necessary things to obtain the primary facts of our discussion.
Let (H1,‖⋅‖,<⋅,⋅>), (H2,‖⋅‖,<⋅,⋅>) be Separable Hilbert spaces. Assume C([0,T],H1) from [0,T] into H1 with ‖x‖[0,T]:=sup{‖x(σ)‖:σ∈[0,T]} be a Banach space of continuous function and boundedness of linear operator L(H1) equipped with ‖f‖L(H1)=sup{‖f(x)‖:‖x‖=1}.
Definition 2.1. [37] The R-L integral of order β>0 is
JβσF(σ)=1Γ(β)σ∫0(σ−s)β−1F(s)ds, | (2.1) |
where F∈L1((0,T),H1).
Definition 2.2. [37] The R-L derivative is
RLDβσF(σ)=DδσJδ−βσF(σ),|β−δ|∈(0,1),δ∈N, | (2.2) |
where Dδσ=dδdσδ, F∈L1((0,T),H1), Jδ−βσF∈Wδ,1((0,T),H1).
Definition 2.3. [37] The Caputo derivative is
cDβσF(σ)=1Γ(δ−β)σ∫0(σ−s)δ−β−1Fδ(s)ds,δ−1<β<δ, | (2.3) |
where F∈Cδ−1((0,T),H1)⋂L1((0,T),H1),
Jβσ(cDβσF(σ))=F(σ)−δ−1∑k=0σkk!Fk(0)holds. |
Operators L, M impose the following conditions:
(a) L and M are closed linear operators;
(b) D(M)⊂D(L) and M is bijective;
(c) M−1:H2→D(M)⊂H1 is compact.
Conditions (a)-(c) and closed graph theorem imply LM−1:H2→H2 is the boundedness of the linear operator. Therefore, an infinitesimal generator E=LM−1 of semigroup S(σ):=eLM−1 and so maxσ∈I‖S(σ)‖ is finite. We have the following integral as per prior definition,
Mx(σ)=Mx(0)+q∑i=1Ii(x(σi))+σ∫0(σ−s)β−1Γ(β)[Lx(s)+F(s,x(s))]ds,σ∈[0,T]. | (2.4) |
The above (2.4) exists a.e. As a result, aforementioned equalization is equal to the impulsive differential equation of Sobolev type. Therefore, there exists N0≥1 a positive constant such that ‖S(σ)‖≤N0. Let the resolvent set of E is ρ(E). Hence, Eα, 0<α≤1 be the fractional power which is a closed linear operator and D(Eα) is a subspace, in such a way its simple to show that it is a Banach space with supremum norm and is represented as (H1)α with (‖⋅‖α). We have (H1)η↪(H1)α,0<α<η so the embedding is continuous. Then, we define (H1)−α=((H1)α)∗,α>0, dual space of (H1)α, is a Banach space equipped with ‖x‖−α=‖E−αx‖,x∈(H1)−α.
Proposition 2.1. [38] Assume E of S(σ), σ≥0, 0∈ρ(E) is an infinitesimal generator. We get
(ⅰ) For σ>0, α≥0, S(σ)mapsfromH1→D(Eα).
(ⅱ) For each x∈D(Eα), S(σ)Eαx=EαS(σ)x.
(ⅲ) Let ‖djdσjS(σ)‖≤Nj,j=1,2,σ>0, where Nj is a positive constant.
(ⅳ) A bounded operator EαS(σ), ‖EαS(σ)‖≤Nασ−αe−δσ, σ>0.
(ⅴ) If x∈D(Eα), α∈(0,1] implies ‖S(σ)x−x‖≤Cασα‖Eαx‖.
Remark 2.1. [38] The boundedness of the linear operator E−α in H1 such that D(Eα)=Im(E−α). Let's denote (H1)α(T)=C([0,T],(H1)α) be Banach space of all (H1)α-valued continuous function equipped with ‖x‖(H1)α(T)=supσ∈[0,T]‖x(σ)‖α, such that x(σ) is continuous on σ≠σi, left continuous at σ=σi and right limit x(σ+i) exists for i=1,2,...,q.
We inspect the existence of (1.1)–(1.3) as well as their uniqueness. The respective assumptions on E,F,h,Ii(i=1,2,...,q) is presented as:
(1)Let E be closed, positive definite and self adjoint linear operator :D(E)⊂H2→H2. A pure point spectrum E has
0<λ0≤λ1≤λ2≤...≤λm≤..., |
with λm→∞, m→∞ and complete orthonormal system {ϕj},
Eϕj=λjϕjand⟨ϕl,ϕj⟩=δlj, | (3.1) |
where
δlj={1,j=l0,otherwise. |
(2) The continuous mapping F:[0,∞)×(H1)α×(H1)α→H2 and mR:[0,∞)→(0,∞) an increasing function exists, on R>0 such that
‖F(σ,z,w)‖≤mR(σ), | (3.2) |
‖F(σ1,z1,w1)−F(σ2,z2,w2)‖≤mR(σ)[|σ1−σ2|θ1+‖z1−z2‖α], | (3.3) |
for all (σ,z,w),(σ1,z1,w1),(σ2,z2,w2)∈[0,∞)×BR((H1)α)×BR((H1)α) where BR(H1)={z∈H1:‖z‖H1≤R} and θ1∈(0,1).
(3) Let nonlinear function h:[0,T]→[0,T] such that h(σ)≤σ, 0≤σ≤T and ∃ constants Lh>0 such that
|h(σ1)−h(σ2)|≤Lh|σ1−σ2|,σ1,σ2∈[0,T]. | (3.4) |
(4) There exist χ∈C([0,T],(H1)α) such that g(χ)=ϕ and χ(σ) is locally Lipschitz continuous.
(5) All the function Ii:H1→H1 (i=1,2,...,q) are continuous function such that
‖Ii(x)‖α≤Oi,∀α∈(0,1),‖Ii(x1)−Ii(x2)‖α≤Ni‖x1−x2‖α,∀x1,x2∈H1, |
where Oi,Ni, i=1,2,...,q are positive constants.
Definition 3.1. [39] Let x:[0,T]→(H1)α be a continuous function, if x(0)=x0 and x(⋅) satisfies the following integral equation
x(σ)={Sβ(σ)[M]χ(0)+q∑i=1Sβ(σ−σi)Ii(x(σi))+σ∫0(σ−s)β−1Tβ(σ−s)F(s,x(s),x(h(s)))ds,σ∈[0,T], | (3.5) |
is known as mild solution of (1.1)–(1.3), where
Sβ(σ)=∞∫0M−1ζβ(ξ)S(σβξ)dξ,Tβ(σ)=∞∫0M−1βξζβ(ξ)S(σβξ)dξ,ζβ(ξ)=1βξ−1−1βψβ(ξ−1β)≥0,ψβ(ξ)=1π∞∑n=1(−1)n−1ξ−nβ−1Γ(nβ+1)n!sin(nπβ),0<ξ<∞, |
and PDF ζβ(ξ). i.e., ζβ(ξ)≥0, ∞∫0ζβ(ξ)dξ=1.
Remark 3.1. [38] Let 0≤v≤1,
∞∫0ξvζβ(ξ)dξ=∞∫0ξ−βvψβ(ξ)dξ=Γ(1+v)Γ(1+βv). |
Proposition 3.1. [26] Let S(σ) be a uniformly continuous semigroup and E be its infinitesimal generator. Then, Sβ(σ) and Tβ(σ) are boundedness of the linear operator such that
(ⅰ) ‖Sβ(σ)x‖≤W1N0‖x‖ and ‖Tβ(σ)x‖≤W1N0Γ(β)‖x‖, x∈H1.
(ⅱ) The strong continuity of {Tβ(σ),σ≥0} and {Sβ(σ),σ≥0} 0≤τ1<τ2≤T, for x∈H1, we have ‖Tβ(τ2)x−Tβ(τ1)x‖→0 and ‖Sβ(τ2)x−Sβ(τ1)x‖→0 as τ2→τ1.
(ⅲ) Suppose S(σ), σ≥0 is compact, then Sβ(σ) and Tβ(σ) are compact operators.
(ⅳ) For each x∈H1, we have ETβ(σ)x=E1−ηTβEηx, σ∈[0,T],η∈(0,1). We have ‖EαTβ(σ)‖≤βW1NαΓ(2−α)Γ(1+β(1−α))σ−αβ, σ∈[0,T],α∈(0,1).
(ⅴ) For any x∈Xα and fixed σ≥0, we have ‖Sβ(σ)x‖α≤W1N0‖x‖α and ‖Tβ(σ)x‖α≤W1N0Γ(β)‖x‖α.
Arbitrarily fixed point T0>0 such that 0<T<T0<∞,
ψ=W1NαΓ(2−α)Γ(1+β(1−α))mR(T0)Tβ(1−α)(1−α)<1. | (3.6) |
Let Hn be finite dimensional subspace, spanned by {ϕ0,ϕ1,...,ϕn} and a projection operator Pn:H1→Hn, n=0,1,.... Assume Fn:[0,T]×(H1)α→H1 and Ii,n:H1→H1, is defined by
Fn(σ,x(σ),x(h(σ)))=F(σ,Pnx(σ),Pnx(h(σ))), | (3.7) |
Ii,n(x)=Ii(Pnx),∀x∈H1,n=0,1,2,...,i=1,2,...q, | (3.8) |
and the operator Qn on B as follows
(Qnx)(σ)={Sβ(σ)Mχ(0)+q∑i=1Sβ(σ−σi)Ii,n(x(σi))+σ∫0(σ−s)β−1Tβ(σ−s)Fn(s,x(s),x(h(s)))ds,σ∈[0,T]. | (3.9) |
Theorem 3.1. Assume (1)–(5) holds, then xn∈BR((H1)α(T)) be a unique fixed point of Qn exists i.e., Qnxn=xn for each n=0,1,2,... and xn fulfills the approximate integral equation,
xn(σ)={Sβ(σ)Mχ(0)+q∑i=1Sβ(σ−σi)Ii,n(xn(σi))+σ∫0(σ−s)β−1Tβ(σ−s)Fn(s,xn(s),x(h(s)))ds,σ∈[0,T]. | (3.10) |
Proof. Let Qn:BR((H1)α(T))→BR((H1)α(T)) is defined by
(Qnx)(σ)={Sβ(σ)Mχ(0)+q∑i=1Sβ(σ−σi)Ii,n(x(σi))+σ∫0(σ−s)β−1Tβ(σ−s)Fn(s,x(s),x(h(s)))ds,σ∈[0,T]. |
We will demonstrate that Qn is well defined. This is sufficient to demonstrate that the map σ⟼(Qnx)(σ):[0,T] into (H1)α w.r.t. α norm is continuous.
Let σ1,σ2∈[0,T] with σ2>σ1, we get
‖[Qnx(σ2)−Qnx(σ1)]‖α=‖[Sβ(σ2)−Sβ(σ1)]Mχ(0)‖α+q∑i=1‖[Sβ(σ2−σi)−Sβ(σ1−σi)]Ii,n(x(σi))‖α−1+‖σ2∫σ1(σ2−s)β−1Tβ(σ2−s)Fn(s,x(s),x(h(s)))ds‖α+‖σ1∫0(σ2−s)β−1Tβ(σ2−s)Fn(s,x(s),x(h(s)))ds−σ1∫0(σ1−s)β−1Tβ(σ1−s)Fn(s,x(s),x(h(s)))ds‖α≤‖[Sβ(σ2)−Sβ(σ1)]Mχ(0)‖α+q∑i=1‖[Sβ(σ2−σi)−Sβ(σ1−σi)]Eα−1Ii,n(x(σi))‖α−1+σ2∫σ1(σ2−s)β−1‖EαTβ(σ2−s)‖‖Fn(s,x(s),x(h(s)))‖ds+σ1∫0(σ1−s)β−1‖Eα[Tβ(σ1−s)−Tβ(σ2−s)]‖‖Fn(s,x(s),x(h(s)))‖ds+σ1∫0[(σ1−s)β−1−(σ2−s)β−1]‖EαTβ(σ2−s)‖‖Fn(s,x(s),x(h(s)))‖ds≤‖[Sβ(σ2)−Sβ(σ1)]Mχ(0)‖α+W1Nαq∑i=1Oi‖Eα‖(σ2−σ1)+βW1NαΓ(2−α)Γ(1+β(1−α))mR(T0)(σ2−σ1)β(1−α)β(1−α)+βW1NαΓ(2−α)Γ(1+β(1−α))mR(T0)×σ1∫0(σ1−s)β−1[(σ1−s)−αβ−(σ2−s)−αβ]ds+βW1NαΓ(2−α)Γ(1+β(1−α))×mR(T0)σ1∫0[(σ1−s)β−1−(σ1−s)β−1](σ2−s)−αβds. | (3.11) |
For x∈H1, we have,
[S(σβ2ξ)−S(σβ1ξ)]x=σ2∫σ1ddσS(σβξ)xdσ=σ2∫σ1βξσβ−1ES(σβξ)dσ. |
Thus, we get
∞∫0M−1ζβ(ξ)‖S(σβ2ξ)−S(σβ1ξ)‖‖EαMχ(0)‖dξ≤∞∫0M−1ζβ(ξ)[σ2∫σ1‖ddsS(σβξ)‖dσ]M‖Eαχ(0)‖dξ≤∞∫0M−1ζβ(ξ)[N1(σ2−σ1)]‖M‖‖χ(0)‖αdξ≤R1(σ2−σ1), | (3.12) |
where R1=N1W1‖M‖‖χ(0)‖α.
From (3.11), we have
σ1∫0(σ1−s)β−1[(σ1−s)−αβ−(σ2−s)−αβ]ds≤vdv−11(1−h)−p1(1−v)−1(σ2−σ1)p1(1−v), | (3.13) |
where h=[1−(vp1)1vp1], p1=1−βα, v=(1−β)1−βα and 0<d1≤1.
σ1∫0[(σ1−s)β−1−(σ1−s)β−1](σ2−s)−αβds≤N1+ααbα−11(1−h1)−β(1−α)−1(σ2−σ1)β(1−α), | (3.14) |
where h1=(1−(αβ)1αβ),0<b1≤1 and N1+α is some positive constant with ‖Eα+1S(σ)‖≤N1+ασ−1−α, ∀ σ>0. Thus, from the inequalities (3.11)–(3.14), (2).
We conclude that σ⟼Fn(σ,x(σ)) map is uniformly H¨older′s continuous. We justify Qn(BR((H1)α(T)))⊆BR((H1)α(T)). Let x∈BR((H1)α(T)), 0≤σ≤T. We get
‖(Qnx)(σ)‖α≤‖Sβ(σ)Mχ(0)‖α+q∑i=1‖Sβ(σ−σi)Ii,n(x(σi))‖α+‖σ∫0(σ−s)β−1Tβ(σ−s)Fn(s,x(s),x(h(s)))ds‖α≤W1‖M‖N0‖χ(0)‖α+W1Nαq∑i=1Oi+βW1NαΓ(2−α)Γ(1+β(1−α))σ∫0(σ−s)β(1−α)−1mR(T0)ds≤W1‖M‖N0‖χ(0)‖α+W1Nαq∑i=1Oi+W1NαΓ(2−α)Γ(1+β(1−α))mR(T0)Tβ(1−α)(1−α). | (3.15) |
We may now take R as a positive integer such that,
R=W1‖M‖N0‖χ(0)‖α+W1Nαq∑i=1Oi+W1NαΓ(2−α)Γ(1+β(1−α))mR(T0)Tβ(1−α)(1−α). |
Therefore, we deduce that Qn(BR((H1)α(T)))⊆BR((H1)α(T)). Lastly, we demonstrate Qn is a strict contraction map. For x1,x2∈BR((H1)α(T)), 0≤σ≤T.
‖(Qnx1)(σ)−(Qnx2)(σ)‖α≤‖σ∫0(σ−s)β−1EαTβ(σ−s)ds‖×‖Fn(s,x1(s),x1(h(s)))−Fn(s,x2(s),x2(h(s)))‖α+q∑i=1‖Sβ(σ−σi)‖‖Ii,n(x1(σi))−Ii,n(x2(σi))‖α≤W1NαΓ(2−α)Γ(1+β(1−α))mR(T0)Tβ(1−α)(1−α)‖x1−x2‖(H1)α(T)+W1Nαq∑i=1Ni‖x1−x2‖T,α≤∧‖x1−x2‖(H1)α(T). | (3.16) |
In Eq (3.16), ∧=W1NαΓ(2−α)Γ(1+β(1−α))mR(T0)Tβ(1−α)(1−α)+W1Nα∑qi=1Ni<1.
As a result, Qn is determined to be a contraction mapping. Thus, a unique xn∈BR((H1)α(T)) exists such that Qnxn=xn.
Lemma 3.1. Assume (1)–(5) holds.
(ⅰ) Let χ(0)∈D(Eα),α∈(0,1) implies xn(σ)∈D(Eυ)∀0<σ≤T,υ∈[0,1).
(ⅱ) If χ(0)∈D(E), implies xn(σ)∈D(Eυ)∀0≤σ≤T,υ∈[0,1).
Proof. We get a unique xn∈BR((H1)α(T)) that satisfies (3.10) by using the previous theorem. In [38], for σ>0,0≤υ<1 we get S(σ):H1→D(Eυ), D(Mα)⊆D(Mυ). Also S(σ)x∈D(E). As a outcome, of all these facts, D(E)⊆D(Eυ), 0≤υ≤1.
Lemma 3.2. If (1)–(5) holds.
(ⅰ) Let χ(0)∈D(Eα), α∈(0,1), 0<σ0≤T, then a constant Sσ0 exist,
‖xn(σ)‖υ≤Sσ0,0≤υ<1,σ∈[σ0,T],independentofn. |
(ⅱ) Let χ(0)∈D(E), then a constant S0>0 exists,
‖xn(σ)‖υ≤S0,0≤υ<1,σ∈[0,T],independentofn. | (3.17) |
Proof. Let χ(0)∈D(Aα). In (3.10), we apply Eυ on both sides, we have
‖Eυxn(σ)‖≤‖EυMSβ(σ)χ(0)‖+q∑i=1‖Sβ(σ−σi)EυIi(x(σi))‖+σ∫0(σ−s)β−1‖EυTβ(σ−s)‖‖Fn(s,xn(s),x(h(s)))‖ds≤NυW1‖M‖σ−υ0‖χ(0)‖+NυW1q∑i=1Oi+βNυW1Γ(2−υ)Γ(1+β(1−υ))mR(T0)Tβ(1−υ)β(1−υ)≤Sσ0. | (3.18) |
Again, if χ(0)∈D(E)⇒χ(0)∈D(Eυ), 0≤υ≤1 and we get
‖xn(σ)‖υ≤N0W1‖M‖‖χ(0)‖υ+NυW1q∑i=1Oi+βNυW1Γ(2−υ)Γ(1+β(1−υ))mR(T0)Tβ(1−υ)β(1−υ)≤S0. | (3.19) |
Now, to investigate the convergence of solution xn(σ) of the approximate integral Eq (3.10) to a unique solution x(⋅) of the Eq (3.5).
Theorem 4.1. Suppose (1)–(5) holds, χ(0)∈D(Aα), α∈(0,1). Then,
limm→∞sup{n≥m,σ∈[σ0,T]}‖xn(σ)−xm(σ)‖α=0,foreach0<σ0≤T. | (4.1) |
Proof. Let n≥m, we have
‖Fn(σ,xn(σ),xn(h(s)))−Fm(σ,xm(σ),xm(h(s)))‖≤‖Fn(σ,xn(σ),xn(h(s)))−Fn(σ,xm(σ),xm(h(s)))‖+‖Fn(σ,xm(σ),xm(h(s)))−Fm(σ,xm(σ),xm(h(s)))‖≤2mR(T0)‖xn(σ)−xm(σ)‖α+mR(T0)‖(Pn−Pm)xm(σ)‖α+‖(Pn−Pm)xm(h(σ))‖α. | (4.2) |
For 0<α<υ<1, we get
‖Eα(Pn−Pm)xm(σ)‖≤‖Eα−υ(Pn−Pm)Eυxm(σ)‖≤1λυ−αm‖xm(σ)‖υ. | (4.3) |
Thus, from (4.2), (4.3) we obtain
‖Fn(σ,xn)−Fm(σ,xm)‖≤2mR(T0)[‖xn(σ)−xm(σ)‖α+1λυ−αm‖xm(σ)‖υ]. |
Similarly, we estimate
‖Ii,n(xn(σi))−Ii,m(xm(σi))‖≤Ni[‖xn(σi)−xm(σi)‖α+1λυ−αm‖Eυxm(σi)‖υ]. |
We choose σ′0 such that 0<σ′0<σ0<T,
‖xn(σ)−xm(σ)‖α≤(σ′0∫0+σ∫σ′0)(σ−s)β−1ds‖EαTβ(σ−s)‖×[‖Fn(s,xn(s),xn(h(s)))−Fm(s,xm(s),xm(h(s)))‖]+q∑i=0‖Sβ(σ−σi)‖‖Ii,n(xn(σi))−Ii,m(xm(σi))‖α. | (4.4) |
1st integral of inequality (4.4),
σ′0∫0(σ−s)β−1‖EαTβ(σ−s)‖×‖Fn(s,xn(s),xn(h(s)))−Fm(s,xm(s),xm(h(s)))‖ds≤2βW1NαΓ(2−α)Γ(1+β(1−α))2mR(T0)[(T−σ′0)β(1−α)−1σ′0]. | (4.5) |
2nd integral of (4.4) is evaluated as
σ∫σ′0(σ−s)β−1‖EαTβ(σ−s)‖‖Fn(s,xn(s),xn(h(s)))−Fm(s,xm(s),xm(h(s)))‖ds≤βW1NαΓ(2−α)Γ(1+β(1−α))2mR(T0)[Uσ′0Tβ(1−α)β(1−α)λυ−αm+σ∫σ′0(σ−s)β(1−α)−1‖xn−xm‖(H1)α(s)ds]. | (4.6) |
Thus, from (4.4)–(4.6) we conclude
‖xn(σ)−xm(σ)‖≤D1σ′0+D2λυ−αm+D3‖xn(σ)−xm(σ)‖α+D4σ∫σ′0(σ−s)β(1−α)−1‖xn−xm‖(H1)α(s)ds, |
where
D1=2βW1NαΓ(2−α)Γ(1+β(1−α))2mR(T0)(T−σ′0)β(1−α)−1,D2=βW1NαΓ(2−α)Γ(1+β(1−α))2mR(T0)Uσ′0Tβ(1−α)β(1−α)+W1Nαq∑i=1Ni,D3=W1Nαq∑i=1Ni,D4=βW1NαΓ(2−α)Γ(1+β(1−α))2mR(T0). |
Since 1−W1Nα∑qi=1Ni>0, we have
‖xn(σ)−xm(σ)‖α≤11−D3[D1σ′0+D2λυ−αm+D4σ∫σ′0(σ−s)β(1−α)−1‖xn−xm‖(H1)α(s)ds]. |
By lemma 5.6.7 in [38], we have that there exist a constant K such that
‖xn(σ)−xm(σ)‖α≤11−D3[D1σ′0+D2λυ−αm]K. |
Taking supremum over [σ0,T] and let m→∞, we obtain
limm→∞sup{n≥m,σ0≤σ≤T}‖xn(σ)−xm(σ)‖α≤D1(1−D3)σ′0K. |
Because σ′0 is arbitrary, the right side of the expression could be made as tiny as required simply reducing σ′0.
Proposition 4.1. Assume χ(0)∈D(E). Then
limm→∞,σ∈[0,T]sup‖xn(σ)−xm(σ)‖α=0. |
Theorem 4.2. Assume (1)–(5) holds, χ(0)∈D(Eα). Then, ∃ xn(σ)∈(H1)α(T) a unique function satisfying,
xn(σ)={Sβ(σ)Mχ(0)+σ∫0(σ−s)β−1Tβ(σ−s)Fn(s,xn(s),xn(h(s)))ds+q∑i=1Sβ(σ−σi)Ii,n(xn(σi)),σ∈[0,T], | (4.7) |
and x∈(H1)α(T) satisfying
x(σ)={Sβ(σ)Mχ(0)+σ∫0(σ−s)β−1Tβ(σ−s)F(s,x(s),x(h(s)))ds+q∑i=1Sβ(σ−σi)Ii(x(σi)),σ∈[0,T]. | (4.8) |
such that xn converges to x in (H1)α(T) i.e., xn→x as n→∞.
Proof. Suppose χ(0)∈D(E). From previous preposition, there is a x∈(H1)α(T) such that limn→∞xn(σ)=x(σ). Since xn∈BR((H1)α(T)) ∀ n, we get x∈BR((H1)α(T)) ∀ σ0∈(0,T],
‖Fn(σ,xn(σ),xn(h(s)))−F(σ,x(σ),x(h(s)))‖=‖F(σ,Pnxn(σ),xn(h(s)))−F(σ,x(σ),x(h(s)))‖≤2mR(T0)[‖xn(σ)−x(σ)‖α+‖(Pn−I)x(σ)‖α]. |
Taking supremum over [0,T], we have
supσ∈[0,T]‖Fn(σ,xn(σ))−F(σ,x(σ))‖≤2mR(T0)[‖xn−x‖(H1)α(T)+‖(Pn−I)x‖(H1)α(T)]→0,asn→∞. |
Thus, we get
x(σ)={Sβ(σ)Mx0+σ∫0(σ−s)β−1Tβ(σ−s)F(s,x(s),x(h(s)))ds+q∑i=1Sβ(σ−σi)Ii(x(σi)),σ∈[0,T]. |
Now, let χ(0)∈D(Eα). Since Eαxn(σ) converges to Eαx(σ) for each σ∈(0,T] and xn(0)=x(0)=χ(0). Then, Eαxn(σ) converges to Eαx(σ) in H1. Furthermore, we have that xn∈BR((H1)α(T)) for each n. Also x∈BR((H1)α(T)). From previous theorem, we get
limn→∞supσ∈[σ0,T]‖xn(σ)−x(σ)‖α=0. |
Also, we have
supσ∈[0,T]‖Fn(σ,xn(σ),xn(h(s)))−F(σ,x(σ),x(h(s)))‖≤2mR(T0)[‖xn−x‖(H1)α(T)+‖(Pn−I)x‖(H1)α(T)]→0asn→∞. |
Therefore, 0<σ0<σ, Eq (3.10) can be reframed as
xn(σ)={Sβ(σ)Mχ(0)+(σ0∫0+σ∫σ0)(σ−s)β−1Tβ(σ−s)Fn(s,xn(s),xn(h(s)))ds+q∑i=1Sβ(σ−σi)Ii,n(xn(σi)),σ∈[0,T]. | (4.9) |
we estimate the 1st integral of (4.9) as
‖σ0∫0(σ−s)β−1Tβ(σ−s)Fn(s,xn(s),xn(h(s)))ds‖≤N0W1Γ(β)2mR(T0)σβ0β. |
Thus, we deduce that
‖xn(σ)−Sβ(σ)Mχ(0)−q∑i=1Sβ(σ−σi)Ii,n(xn(σi))−σ∫σ0(σ−s)β−1Tβ(σ−s)Fn(s,xn(s),xn(h(s)))ds‖≤N0W1Γ(β)2mR(T0)σβ0β. |
Letting n→∞ and getting
‖x(σ)−Sβ(σ)Mχ(0)−q∑i=1Sβ(σ−σi)Ii(x(σi))−σ∫σ0(σ−s)β−1Tβ(σ−s)F(s,x(s),x(h(s)))ds‖≤N0W1Γ(β)2mR(T0)σβ0β. |
Since, σ0 is arbitrary, we deduce x(σ) satisfies the integral Eq (3.5). Now, we shall show the uniqueness. Let x1 and x2 be the two solutions of integral Eq (3.5). Thus, we have
‖x1(σ)−x2(σ)‖α≤σ∫0(σ−s)β−1‖EαTβ(σ−s)‖‖F(s,x1(s),x1(h(s)))−F(s,x2(s),x2(h(s)))‖ds+q∑i=1‖Sβ(σ−σi)‖‖Ii(x1(σi))−Ii(x2(σi))‖≤βNαW1Γ(2−α)Γ(1+β(1−α))σ∫0(σ−s)β(1−α)−12mR(T0)‖x1−x2‖(H1)α(s)ds+NαW1q∑i=1Ni‖x1−x2‖(H1)α(s). |
Taking supremum on [0,σ] and obtaining
‖x1−x2‖(H1)α(T)≤βNαW1Γ(2−α)Γ(1+β(1−α))σ∫0(σ−s)β(1−α)−12mR(T0)‖x1−x2‖(H1)α(s)ds+NαW1q∑i=1Ni‖x1−x2‖(H1)α(s). |
From Gronwall's inequality and the fact that
‖x1(σ)−x2(σ)‖≤1λα0‖x1−x2‖(H1)α(T). |
We deduce that x1=x2 on [0,T].
Additionally, the convergence findings were accomplished using the Faedo-Galerkin approximation technique.
There is a unique x∈(H1)α(T), T∈(0,T0), that fulfils the integral equation,
x(σ)={Sβ(σ)Mχ(0)+σ∫0(σ−s)β−1Tβ(σ−s)F(s,x(s),x(h(s)))ds+q∑i=1Sβ(σ−σi)Ii(x(σi)),σ∈[0,T]. | (5.1) |
An approximate integral equation has an unique solution xn∈(H1)α(T),
xn(σ)={Sβ(σ)Mχ(0)+σ∫0(σ−s)β−1Tβ(σ−s)Fn(s,xn(s),xn(h(s)))ds+q∑i=1Sβ(σ−σi)Ii,n(xn(σi)),σ∈[0,T]. | (5.2) |
The Faedo-Galerkin Approximation is produced by applying the projection on (5.2) as vn(σ)=Pnxn(σ),
Pnxn(σ)=vn(σ)={Sβ(σ)MPnχ(0)+σ∫0(σ−s)β−1Tβ(σ−s)PnF(s,Pnxn(s),Pnxn(h(s)))ds+q∑i=1Sβ(σ−σi)PnIi,n(xn(σi)) |
vn(σ)={Sβ(σ)MPnχ(0)+σ∫0(σ−s)β−1Tβ(σ−s)PnF(s,vn(s),vn(h(s)))ds+q∑i=1Sβ(σ−σi)PnIi,n(vn(σi)),σ∈[0,T]. | (5.3) |
Let solution x(⋅) of (5.1) and vn(⋅) of (5.3) have the following representation:
x(σ)=∞∑i=0αi(σ)ϕi,αi(σ)=(x(σ),ϕi),i=0,1,2,..., | (5.4) |
vn(σ)=n∑i=0αni(σ)ϕi,αni(σ)=(vn(σ),ϕi),i=0,1,2,.... | (5.5) |
Using (5.5) in (5.3) and taking inner product with ϕi, we obtain a system of fractional order integro-differential equation of the form.
dβdσβαni(σ)+λiαni(σ)=Fni(σ,αn0(σ),αn1(σ),...,αnn(σ)),Δαni(σk)=Ini(αni(σk)),k=1,2,...q,αni(0)=Zi,(∗) |
Where,
Fni(σ,αn0(σ),αn1(σ),...,αnn(σ))=(M−1F(σ,n∑i=0αni(σ)ϕi,n∑i=0αni(σ)ϕi),ϕi),Ini=(Ik(q∑k=1n∑i=1αni(σk)ϕi),ϕi),Zi=(χ(0),ϕi),i=1,2,...,n. |
We also have the following convergence theorem.
Theorem 5.1. If the hypothesis (1)–(5) holds. The results follows:
(ⅰ) If x0∈D(Eα), then for any σ0∈(0,T]
limm→∞sup{n≥m,σ∈[σ0,T]}‖Eα[vn(σ)−vm(σ)]‖=0. | (5.6) |
(ⅱ) If x0∈D(E), then
limm→∞sup{n≥m,σ∈[0,T]}‖Eα[vn(σ)−vm(σ)]‖=0. | (5.7) |
Proof. If n≥m,0≤α<υ. Then, we have
‖vn(σ)−vm(σ)‖α=‖Pnxn(σ)−Pmxm(σ)‖α≤‖Pn[xn(σ)−xm(σ)]‖α+‖(Pn−Pm)xm‖α≤‖xn(σ)−xm(σ)‖α+1λv−αm‖xm(σ)‖υ. |
By the Theorem 4.1 and Proposition 4.1, we have that xn→xm and λm→∞ as m→∞.
Theorem 5.2. Suppose (1)–(5) is fulfilled, x0∈D(Eα), unique function vn∈(H1)α(T) exists, satisfying the following equation:
vn(σ)={Sβ(σ)MPnx0+σ∫0(σ−s)β−1Tβ(σ−s)PnF(s,vn(s))ds+q∑i=1Sβ(σ−σi)PnIi,n(vn(σi)),σ∈[0,T]. | (5.8) |
Proof. For x0∈D(Eα) and σ∈[0,T]. We have
‖vn(σ)−x(σ)‖α=‖Pnxn(σ)−Pnx(σ)+Pnx(σ)−x(σ)‖α≤‖Pn(xn(σ)−x(σ))‖α+‖(Pn−I)x(σ)‖α. |
We have vn→x as n→∞ according to the Theorem 4.2. As a result, the Theorem 4.2 leads to the conclusion. The preceding theorem can be used to show αni to αi's convergence.
Theorem 5.3. Suppose (1)–(5) holds. Then,
(ⅰ) If x0∈D(Eα), then for any 0<σ0≤T
limn→∞supσ∈[σ0,T][n∑i=0λ2αi(αi(σ)−αni(σ))2]=0. | (5.9) |
(ⅱ) If x0∈D(E), then
limn→∞supσ∈[0,T][n∑i=0λ2αi(αi(σ)−αni(σ))2]=0. | (5.10) |
Proof. The system (*) determines the αni's. It can be easily investigated that
Eα[x(σ)−v(σ)]=Eα[∞∑i=0(αi(σ)−αni(σ))ϕi]=∞∑i=0λαi(αi(σ)−αni(σ))ϕi. |
Thus,
‖Eα[x(σ)−v(σ)]‖2≥n∑i=0λ2αi[αi(σ)−αni(σ)]2. |
As a result, the Theorems 5.1 and 5.2 lead to the conclusion.
Let the fractional impulsive differential system of sobolev type is of the form:
cDβσ[w(σ,x)−wxx(σ,x)]+∂2w(σ,x)∂x2=f(σ,w(σ,x)),x∈S,σ∈[0,T], | (6.1) |
Δw(σi,x)=2w(σi,x)2+w(σi,x),i=1,2,...,q,x∈(0,π), | (6.2) |
w(0,x)=w0(x), | (6.3) |
w(σ,0)=w(σ,π)=0,0≤σ≤T,0<T<∞. | (6.4) |
Where cDβσ is Caputo derivative, β∈(0,1). Suppose w(σ)(x)=w(σ,x) and f(σ,⋅)=F(σ,⋅). Let Δw(σi,x)=w(σ+i,x)−w(σ−i,x), where w(σ+i,x) and w(σ−i,x) are respectively the right and the left hand limit of w at (σ,x)=(σi,x).
Now, we take H1=H2=L2(0,π) and consider the operator L,M on domains and ranges contained in L2(0,π) defined by
My=y−y′′Ly=−y′′ |
An infinitesimal generator of an analytic semigroup is denoted by E=LM−1, such that
Ey=−y′′, |
with the domain
D(E)={y∈H1:y,y′areabsolutelycontinuousy′′∈H1,y(0)=y(π)=0} |
If we take β=12, then D(E12) which is denoted by β12 is the Banach space endowed with the norm,
‖x‖12=‖E12x‖,x∈D(E12). |
Also, for σ∈[0,T]. we define D12σ={y:y is a map from [0,T] into β12∋x(σ) is continuous at σ≠σi left continuous at σ=σi and right limit x(σ+i) exists for i=1,2,...,q}.
The spectrum of E is given by Ey=−y′′=αy. The general solution y of Ey=αy is
y(x)=Ccos(√αx)+Dsin(√αx). |
Using the boundary conditions y(0)=y(π)=0. we obtain C=0,α=αn=n2,n∈N. Thus for each n∈N, the solution is given by yn(x)=Dsinnx. If we take D=√2√π, then <yn,ym>=0,n≠m and <yn,ym>=1,n=m. Thus E has pure point spectrum and eigenvalues yn are orthonormal.
Suppose, Ii(w(σi,x))=2w(σi,x)2+w(σi,x). Let us define y(σ)(x)=w(σ,x) and Ii(w(σi,x))=Ii(x(σi))(y) then Ii(y(σi))=2y(σi)2+y(σi). For y1,y2∈D(A12), we have
‖Ii(y1)−Ii(y2)‖12≤‖y1−y2‖12,Ii(y1)‖12≤‖y1‖12. |
Now, we define
f(σ,x(σ))=F(σ,w(σ,x)),Ii(w(σi,x))=Ii(x(σi))(y),ϕ(σ)(x)=g(σ,x), |
then problem (6.1)–(6.4) reduces to
cDβσ[Mx(σ)]=Lx(σ)+F(σ,x(σ),x(h(σ))),σ∈[0,T],Δx(σi)=Ii(x(σi)),i=1,2,...,q,q∈N,g(x)=ϕ. |
It is easy to see that the operator E fulfils (1). Also, by H¨older continuity of h, fulfils (3). Then, from the definitions, it can be easily shown that χ and Ii are satisfies (4) and (5).
Now we prove that F satisfies the condition (2):
‖F(σ1,z1,w1)−F(σ2,z2,w2)‖L2≤L[π∫0|F(σ1(x,σ),z1(x,σ),w1(x,σ))−F(σ2(x,σ),z2(x,σ),w2(x,σ))|2dx]12≤L[π∫0{|(σ1(x,σ)−σ2(x,σ))|+‖(z1(x,σ)−z2(x,σ))‖2}dx]12≤2L[|σ1−σ2|+‖z1−z2‖L2]. |
Hence (2) holds.
Thus, all the assumptions of Theorem 5.2 are satisfied. So, Theorem 5.2 guarantees the existence of Faedo-Galerkin approximations and their convergence to the unique solution of (6.1)–(6.4).
The Faedo-Galerkin approximation outcomes for Caputo fractional impulsive derivative of Sobolev type with nonlocal condition are the main subject of this paper. The major ideas were developed by utilising the analytic semigroup and the Banach fixed point theorem. Finally, we give examples to back up our abstract conclusion. In future, it might be used to find the generalization in fractional differential equations.
This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant number B05F650018).
The authors declare no conflicts of interest.
[1] |
K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Solitons Fractals, 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
![]() |
[2] |
H. M. Ahmed, H. M. El-Owaidy, M. A. AL-Nahhas, Neutral fractional stochastic partial differential equations with Clarke subdifferential, Appl. Anal., 100 (2021), 3220–3232. https://doi.org/10.1080/00036811.2020.1714035 doi: 10.1080/00036811.2020.1714035
![]() |
[3] |
K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
![]() |
[4] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-holland mathematics studies, Amsterdam: Elsevier, 204 (2006), 1–523. |
[6] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, In: Mathematics in Science and Engineering, San Diego: Academic Press, 198 (1999), 1–340. |
[7] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[8] | V. Daftardar-Gejji, Fractional calculus: theory and applications, Narosa Publishing House, 2014. |
[9] | P. Agarwal, D. Baleanu, Y. Q. Chen, S. Momani, J. A. T. Machado, Fractional Calculus, In: Springer proceedings in mathematics and statistics, 2019. |
[10] |
V. Vijayaraj, C. Ravichandran, T. Botmart, K. S. Nisar, K. Jothimani, Existence and data dependence results for neutral fractional order integro-differential equations, AIMS Mathematics, 8 (2023), 1055–1071. https://doi.org/10.3934/math.2023052 doi: 10.3934/math.2023052
![]() |
[11] |
K. S. Nisar, C. Ravichandran, A. H. Abdel-Aty, I. S. Yahia, C. Park, Case study on total controllability and optimal control of Hilfer netural non-instantaneous fractional derivative, Fractals, 30 (2022), 2240187. https://doi.org/10.1142/S0218348X22401879 doi: 10.1142/S0218348X22401879
![]() |
[12] |
K. Kaliraj, K. S. Viswanath, K. Logeswari, C. Ravichandran, Analysis of fractional integro-differential equation with Robin boundary conditions using topological degree method, Int. J. Appl. Comput. Math., 8 (2022), 176. https://doi.org/10.1007/s40819-022-01379-1 doi: 10.1007/s40819-022-01379-1
![]() |
[13] |
K. S. Nisar, K. Logeswari, V. Vijayaraj, H. M. Baskonus, C. Ravichandran, Fractional order modeling the Gemini virus in capsicum annuum with optimal control, Fractal Fract., 6 (2022), 61. https://doi.org/10.3390/fractalfract6020061 doi: 10.3390/fractalfract6020061
![]() |
[14] |
K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numer. Methods Partial Differential Equations, 24 (2020). https://doi.org/10.1002/num.22652 doi: 10.1002/num.22652
![]() |
[15] |
S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
![]() |
[16] |
L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U
![]() |
[17] |
C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnosel'Skii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 75. https://doi.org/10.3390/fractalfract6020075 doi: 10.3390/fractalfract6020075
![]() |
[18] |
K. Kumar, R. Patel, V. Vijayakumar, A. Shukla, C. Ravichandran, A discussion on boundary controllability of nonlocal impulsive neutral integrodifferential evolution equations, Math. Methods Appl. Sci., 45 (2022), 8193–8215. https://doi.org/10.1002/mma.8117 doi: 10.1002/mma.8117
![]() |
[19] |
K. Kaliraj, M. Manjula, C. Ravichandran, New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions, Chaos Solitons Fractals, 161 (2022), 112284. https://doi.org/10.1016/j.chaos.2022.112284 doi: 10.1016/j.chaos.2022.112284
![]() |
[20] |
Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real. Appl., 11 (2010), 4465–4475. https://doi.org/10.1016/j.nonrwa.2010.05.029 doi: 10.1016/j.nonrwa.2010.05.029
![]() |
[21] |
P. K. L. Priya, K. Kaliraj, An application of fixed point technique of Rothe's-type to interpret the controllability criteria of neutral nonlinear fractional ordered impulsive system, Chaos Solitons Fractals, 164 (2022), 112647. https://doi.org/10.1016/j.chaos.2022.112647 doi: 10.1016/j.chaos.2022.112647
![]() |
[22] |
K. Kaliraj, E. Thilakraj, C. Ravichandran, K. S. Nisar, Controllability analysis for impulsive integro-differential equation via Atangana-Baleanu fractional derivative, Mathe. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7693 doi: 10.1002/mma.7693
![]() |
[23] |
X. P. Zhang, Y. X. Li, P. Y. Chen, Existence of extremal mild solutions for the initial value problem of evolution equations with non-instantaneous impulses, J. Fixed Point Theory Appl., 19 (2017), 3013–3027. https://doi.org/10.1007/s11784-017-0467-4 doi: 10.1007/s11784-017-0467-4
![]() |
[24] |
A. Shukla, V. Vijayakumar, K. S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2), Chaos Solitons Fractals, 154 (2022), 111615. https://doi.org/10.1016/j.chaos.2021.111615 doi: 10.1016/j.chaos.2021.111615
![]() |
[25] | K. D. Kucche, P. U. Shikhare, On impulsive delay integrodifferential equations with integral impulses, Mediterr. J. Math., 17 (2020), 103. |
[26] |
A. Debbouche, J. J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 245 (2014), 74–85. https://doi.org/10.1016/j.amc.2014.07.073 doi: 10.1016/j.amc.2014.07.073
![]() |
[27] |
K. Liu, M. Feckan, J. R. Wang, A class of (ω,T)-periodic solutions for impulsive evolution equations of Sobolev type, Bull. Iran. Math. Soc., 48 (2022), 2743–2763. https://doi.org/10.1007/s41980-021-00666-9 doi: 10.1007/s41980-021-00666-9
![]() |
[28] |
F. Li, J. Liang, H. K. Xu, Existence of mild solutions for fractional integro-differential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 391 (2012), 510–525. https://doi.org/10.1016/j.jmaa.2012.02.057 doi: 10.1016/j.jmaa.2012.02.057
![]() |
[29] |
H. M. Ahmed, M. A. Ragusa, Nonlocal controllability of Sobolev-type conformable fractional stochastic evolution inclusions with Clarke subdifferential, B. Malays. Math. Sci. Soc., 45 (2022), 3239–3253. https://doi.org/10.1007/s40840-022-01377-y doi: 10.1007/s40840-022-01377-y
![]() |
[30] | H. M. Ahmed, Sobolev-type fractional stochastic integrodifferential equations with nonlocal conditions in Hilbert space, J. Theoret. Probab., 30 (2017), 771–783. |
[31] |
R. Göthel, D. S. Jones, Faedo-Galerkin approximations in equations of evolution, Math. Methods Appl. Sci., 6 (1984), 41–54. https://doi.org/10.1002/mma.1670060104 doi: 10.1002/mma.1670060104
![]() |
[32] |
P. D. Miletta, Approximation of solutions to evolution equations, Math. Methods Appl. Sci., 17 (1994), 753–763. https://doi.org/10.1002/mma.1670171002 doi: 10.1002/mma.1670171002
![]() |
[33] |
M. Muslim, R. P. Agarwal, Approximation of solutions to impulsive functional differential equations, J. Appl. Math. Comput., 34 (2010), 101–112. http://doi.org/10.1007/s12190-009-0310-1 doi: 10.1007/s12190-009-0310-1
![]() |
[34] | A. Raheem, M. Kumar, Approximate solutions of nonlinear nonlocal fractional impulsive differential equations via Faedo-Galerkin method, J. Fract. Calc. Appl., 12 (2021), 172–187. |
[35] |
M. M. Raja, V. Vijayakumar, R. Udhayakumar, Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order 1<r<2 in Hilbert spaces, Chaos Solitons Fractals, 141 (2020), 110310. https://doi.org/10.1016/j.chaos.2020.110310 doi: 10.1016/j.chaos.2020.110310
![]() |
[36] |
A. Chaddha, D. N. Pandey, Approximations of solutions for an impulsive fractional differential equation with a deviated argument, Int. J. Appl. Comput. Math., 2 (2016), 269–289. http://doi.org/10.1007/s40819-015-0059-1 doi: 10.1007/s40819-015-0059-1
![]() |
[37] |
A. Chadha, D. Bahuguna, D. N. Pandey, Faedo-Galerkin approximate solutions for nonlocal fractional differential equation of Sobolev type, Fract. Differential Calc., 8 (2018), 205–222. https://doi.org/10.7153/fdc-2018-08-13 doi: 10.7153/fdc-2018-08-13
![]() |
[38] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. |
[39] |
K. Kaliraj, M. Manjula, C. Ravichandran, K. S. Nisar, Results on neutral differential equation of Sobolev type with nonlocal conditions, Chaos Solitons Fractals, 158 (2022), 112060. https://doi.org/10.1016/j.chaos.2022.112060 doi: 10.1016/j.chaos.2022.112060
![]() |
1. | Surendra Kumar, Paras Sharma, On the Faedo–Galerkin Method for Non-autonomous Nonlinear Differential Systems, 2023, 78, 1422-6383, 10.1007/s00025-023-01894-7 | |
2. | Sumbel Shahid, Shahid Saifullah, Usman Riaz, Akbar Zada, Sana Ben Moussa, Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations, 2023, 22, 1575-5460, 10.1007/s12346-023-00772-5 | |
3. | Fırat EVİRGEN, Esmehan UÇAR, Sümeyra UÇAR, Necati ÖZDEMİR, Modelling Influenza A disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates, 2023, 3, 2791-8564, 58, 10.53391/mmnsa.1274004 | |
4. | M. Manjula, E. Thilakraj, P. Sawangtong, K. Kaliraj, Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method, 2024, 22, 25900374, 100452, 10.1016/j.rinam.2024.100452 | |
5. | Kottakkaran Sooppy Nisar, Suliman Alsaeed, Kalimuthu Kaliraj, Chokkalingam Ravichandran, Wedad Albalawi, Abdel-Haleem Abdel-Aty, Existence criteria for fractional differential equations using the topological degree method, 2023, 8, 2473-6988, 21914, 10.3934/math.20231117 | |
6. | Saleh Fahad Aljurbua, Extended existence results of solutions for FDEs of order 1<γ≤2, 2024, 9, 2473-6988, 13077, 10.3934/math.2024638 | |
7. | Muhammad Shahzad, Nauman Ahmed, Muhammad Sajid Iqbal, Mustafa Inc, Muhammad Zafarullah Baber, Rukhshanda Anjum, Classical Regularity and Wave Structures of Fractional Order Selkov-Schnakenberg System, 2024, 63, 1572-9575, 10.1007/s10773-024-05601-2 | |
8. | Saleh Fahad Aljurbua, Extended existence results for FDEs with nonlocal conditions, 2024, 9, 2473-6988, 9049, 10.3934/math.2024440 | |
9. | Sadam Hussain, Muhammad Sarwar, Nabil Mlaiki, Fatima Azmi, Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation, 2023, 73, 11100168, 259, 10.1016/j.aej.2023.04.029 | |
10. | Muhammad Farman, Ali Akgül, Muhammad Sultan, Sidra Riaz, Hira Asif, Praveen Agarwal, Murad Khan Hassani, Numerical study and dynamics analysis of diabetes mellitus with co-infection of COVID-19 virus by using fractal fractional operator, 2024, 14, 2045-2322, 10.1038/s41598-024-60168-6 | |
11. | Saowaluck Chasreechai, Sadhasivam Poornima, Panjaiyan Karthikeyann, Kulandhaivel Karthikeyan, Anoop Kumar, Kirti Kaushik, Thanin Sitthiwirattham, A study on the existence results of boundary value problems of fractional relaxation integro-differential equations with impulsive and delay conditions in Banach spaces, 2024, 9, 2473-6988, 11468, 10.3934/math.2024563 | |
12. | Sadeq Taha Abdulazeez, Mahmut Modanli, Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method, 2023, 1, 2956-7068, 105, 10.2478/ijmce-2023-0008 | |
13. | Liping Yu, S. Berlin Shaheema, J. Sunil, Vediyappan Govindan, P. Mahimiraj, Yijie Li, Wasim Jamshed, Ahmed M. Hassan, Breast cancer segmentation using a hybrid AttendSeg architecture combined with a gravitational clustering optimization algorithm using mathematical modelling, 2023, 21, 2391-5471, 10.1515/phys-2023-0105 | |
14. | Doha A. Kattan, Hasanen A. Hammad, Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques, 2024, 2024, 1687-2770, 10.1186/s13661-024-01957-w | |
15. | K. Kaliraj, M. Manjula, E. Thilakraj, C. Ravichandran, Kottakkaran Sooppy Nisar, Yousef A. Baker El-Ebiary, Ahmad O. Hourani, Discussions on Sobolev type Neutral Nonlocal fractional differential equation, 2024, 26668181, 101018, 10.1016/j.padiff.2024.101018 |