Marine Predators Algorithm (MPA) is a newly nature-inspired meta-heuristic algorithm, which is proposed based on the Lévy flight and Brownian motion of ocean predators. Since the MPA was proposed, it has been successfully applied in many fields. However, it includes several shortcomings, such as falling into local optimum easily and precocious convergence. To balance the exploitation and exploration ability of MPA, a modified marine predators algorithm hybridized with teaching-learning mechanism is proposed in this paper, namely MTLMPA. Compared with MPA, the proposed MTLMPA has two highlights. Firstly, a kind of teaching mechanism is introduced in the first phase of MPA to improve the global searching ability. Secondly, a novel learning mechanism is introduced in the third phase of MPA to enhance the chance encounter rate between predator and prey and to avoid premature convergence. MTLMPA is verified by 23 benchmark numerical testing functions and 29 CEC-2017 testing functions. Experimental results reveal that the MTLMPA is more competitive compared with several state-of-the-art heuristic optimization algorithms.
Citation: Yunpeng Ma, Chang Chang, Zehua Lin, Xinxin Zhang, Jiancai Song, Lei Chen. Modified Marine Predators Algorithm hybridized with teaching-learning mechanism for solving optimization problems[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 93-127. doi: 10.3934/mbe.2023006
[1] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[2] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[3] | Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794 |
[4] | Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116 |
[5] | Yong Xian Ng, Chang Phang, Jian Rong Loh, Abdulnasir Isah . Analytical solutions of incommensurate fractional differential equation systems with fractional order 1<α,β<2 via bivariate Mittag-Leffler functions. AIMS Mathematics, 2022, 7(2): 2281-2317. doi: 10.3934/math.2022130 |
[6] | Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212 |
[7] | Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245 |
[8] | Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo . Explicit iteration and unique solution for ϕ-Hilfer type fractional Langevin equations. AIMS Mathematics, 2022, 7(3): 3456-3476. doi: 10.3934/math.2022192 |
[9] | Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736 |
[10] | Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764 |
Marine Predators Algorithm (MPA) is a newly nature-inspired meta-heuristic algorithm, which is proposed based on the Lévy flight and Brownian motion of ocean predators. Since the MPA was proposed, it has been successfully applied in many fields. However, it includes several shortcomings, such as falling into local optimum easily and precocious convergence. To balance the exploitation and exploration ability of MPA, a modified marine predators algorithm hybridized with teaching-learning mechanism is proposed in this paper, namely MTLMPA. Compared with MPA, the proposed MTLMPA has two highlights. Firstly, a kind of teaching mechanism is introduced in the first phase of MPA to improve the global searching ability. Secondly, a novel learning mechanism is introduced in the third phase of MPA to enhance the chance encounter rate between predator and prey and to avoid premature convergence. MTLMPA is verified by 23 benchmark numerical testing functions and 29 CEC-2017 testing functions. Experimental results reveal that the MTLMPA is more competitive compared with several state-of-the-art heuristic optimization algorithms.
Hermite [1] and Hadamard [2] derived the familiar inequality is known as Hermite-Hadamard inequality (HH-inequality) and this inequality states that
Q(u+ν2)≤1ν−u∫νuQ(z)dz≤Q(u)+Q(ν)2, | (1) |
where Q:I→R is a convex function defined on a closed bounded interval I⊆R and u,ν∈I with ν>u. If Q is a concave function, then both inequality symbols in (1) are reversed. Sine 𝐻𝐻-inequalities are a useful technique for developing the qualitative and quantitative properties of convexity and nonconvexity. Because of diverse applications of these inequalities in different fields, there has been continuous growth of interest in such an area of research. Therefore many inequalities have been introduced as applications of convex functions and generalized convex function, see [3,4,5,6]. It is very important to mention that, Fejér [7] considered the major generalization of HH-inequality which is known as 𝐻𝐻-Fejér inequality. It can be expressed as follows:
Let Q:T→R be a convex function on an interval T=[u,ν] and u,ν∈T with u≤ν. and let Ω:T=[u,ν]→R,Ω(z)≥0, be a integrable and symmetric with respect to u+ν2, and ∫νuΩ(z)dz>0. Then, we have the following inequality.
Q(u+ν2).∫νuΩ(z)dz≤∫νuQ(z)Ω(z)dz≤Q(u)+Q(ν)2.∫νuΩ(z)dz. | (2) |
If Q is a concave function, then inequality (2) is reversed. If Ω(z)=1, then we obtain (1) from (2).
It is also worthy to mention that Sarikaya et al. [8] provided the fractional version of inequality (1) and for convex function Q:T=[u,ν]→R, this inequality states that:
Q(u+ν2)≤Γ(α+1)2(ν−u)α[Iαu+Q(ν)˜+Iαν−Q(u)]≤Q(u)+Q(ν)2, | (3) |
where Qassumed to be a positive function on [u,ν], Q∈L1([u,ν]) with u≤ν, and Iαu+ and Iαν− are the left sided and right sided Riemann-Liouville fractional of order 0≤α, and respectively are defined as follows:
Iαu+Q(z)=1Γ(α)∫zu(z−τ)α−1Q(τ)d(τ)(z>u), | (4) |
Iαν−Q(z)=1Γ(α)∫νz(τ−z)α−1Q(τ)d(τ)(z<ν). | (5) |
If α=1, then from (3), we obtain (2). We can easily say that inequality (3) is generalization of inequality (2). Thereafter, many authors in the mathematical community have paid close attention in the view of inequality (3) and obtained several inequalities for different classes of convex and non-convex functions through various fractional integral; see [9,10,11,12,13,14,15].
On the other hand, it is well-known fact that interval-valued analysis was introduced as an attempt to overcome interval uncertainty that occurs in the computer or mathematical models of some deterministic real-word phenomena. A classic example of an interval closure is Archimedes' technique which is associated with the computation of the circumference of a circle. In 1966, Moore [16] given the concept of interval analysis in his book and discussed its applications in computational Mathematics. After that several authors have developed a strong relationship between inequalities and IVFs by means of inclusion relation via different integral operators, as one can see Costa [17], Costa and Roman-Flores [18], Roman-Flores et al. [19,20], and Chalco-Cano et al. [21,22], but also to more general set-valued maps by Nikodem et al. [23], and Matkowski and Nikodem [24]. In particular, Zhang et al. [25] derived the new version of Jensen's inequalities for set-valued and fuzzy set-valued functions by means of a pseudo order relation and proved that these Jensen's inequalities generalized form of Costa Jensen's inequalities [17]. After that, Budek [26] established fractional HH-inequality for convex-IVF through interval-valued fractional Riemann-Liouville fractional.
Our goal is to use the generalization of classical Riemann integral operator which is known as fuzzy Riemann-Liouville fractional integral operator. Recently, Allahviranloo et al. [27] introduced the following fuzzy-interval Riemann-Liouville fractional integral operator:
Let α>0 and L([u,ν],F0) be the collection of all Lebesgue measurable fuzzy-IVFs on[u,ν]. Then, the fuzzy-interval left and right Riemann-Liouville fractional integral of ˜Q∈ L([u,ν],F0) with order α>0 are defined by
Iαu+˜Q(z)=1Γ(α)∫zu(z−τ)α−1˜Q(τ)d(τ),(z>u), | (6) |
and
Iαν−˜Q(z)=1Γ(α)∫νz(τ−z)α−1˜Q(τ)d(τ),(z<ν), | (7) |
respectively, where Γ(z)=∫∞0τz−1u−τd(τ) is the Euler gamma function. The fuzzy-interval left and right Riemann-Liouville fractional integral z based on left and right endpoint functions can be defined, that is
[Iαu+˜Q(z)]γ=1Γ(α)∫zu(z−τ)α−1Qγ(τ)d(τ)=1Γ(α)∫zu(z−τ)α−1[Q∗(τ,γ),Q∗(τ,γ)]d(τ),(z>u), | (8) |
where
Iαu+Q∗(z,γ)=1Γ(α)∫zu(z−τ)α−1Q∗(τ,γ)d(τ),(z>u), | (9) |
and
Iαu+Q∗(z,γ)=1Γ(α)∫zu(z−τ)α−1Q∗(τ,γ)d(τ),(z>u). | (10) |
Similarly, we can define the right Riemann-Liouville fractional integral ˜Q of z based on left and right endpoint functions.
Moreover, recently, Khan et al. [28] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex fuzzy-IVFs by means fuzzy order relation and presented the following new version of 𝐻𝐻-type inequality for (h1,h2)-convex fuzzy-IVF involving fuzzy-interval Riemann integrals:
Theorem 1.1. Let ˜Q:[u,ν]→F0 be a (h1,h2)-convex fuzzy-IVF with h1,h2:[0,1]→R+ and h1(12)h2(12)≠0, whose γ-levels define the family of IVFs Qγ:[u,ν]⊂R→K+C are given by Qγ(z)=[Q∗(z,γ),Q∗(z,γ)] for all z∈[u,ν] and for all γ∈[0,1]. If ˜Q is fuzzy-interval Riemann integrable (in sort, FR-integrable), then
12h1(12)h2(12)˜Q(u+ν2)≼1ν−u(FR)∫νu˜Q(z)dz≼[˜Q(u)˜+˜Q(ν)]∫10h1(τ)h2(1−τ)dτ. | (11) |
If h1(τ)=τ and h2(τ)≡1, then from inequality (11), we obtain the following inequality:
˜Q(u+ν2)≼1ν−u(FR)∫νu˜Q(z)dz≼˜Q(u)˜+˜Q(ν)2. | (12) |
This inequality (12) is known as HH-inequality for convex fuzzy-IVF. We refer readers to [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] and the references therein for further review of literature on the applications and properties of fuzzy-interval, inequalities, and generalized convex fuzzy mappings.
Inspired by the ongoing research work, the new class of generalized convex fuzzy-IVFs is introduced which is known as h-convex fuzzy-IVF. With the help of h-convex fuzzy-IVF and fuzzy-interval Riemann fractional integral operator, we have introduced fuzzy fractional Hermite-Hadamard type inequalities by means of fuzzy order relation. Moreover, we have shown that our results include a wide class of new and known inequalities for h-convex fuzzy-IVFs and their variant forms as special cases. Some useful examples are also presented to verify the validity of our main results.
Let R be the set of real numbers and KC be the space of all closed and bounded intervals of R and η∈KC be defined by
η=[η∗,η∗]={z∈R|η∗≤z≤η∗}, (η∗,η∗∈R). | (13) |
If η∗=η∗, then η is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If η∗≥0, then [η∗,η∗] is called positive interval. The set of all positive interval is denoted by K+C and defined as K+C={[η∗,η∗]:[η∗,η∗]∈KCandη∗≥0}.
Let τ∈R and τη be defined by
τη={[τη∗,τη∗]ifτ>0,{0}ifτ=0[τη∗,τη∗]ifτ<0. | (14) |
Then the Minkowski difference −η, addition η+ζ and η×ζ for η,ζ∈KC are defined by
[ζ∗,ζ∗]−[η∗,η∗]=[ζ∗−η∗,ζ∗−η∗],[ζ∗,ζ∗]+[η∗,η∗]=[ζ∗+η∗,ζ∗+η∗], | (15) |
and
[ζ∗,ζ∗]×[η∗,η∗]=[min{ζ∗η∗,ζ∗η∗,ζ∗η∗,ζ∗η∗},max{ζ∗η∗,ζ∗η∗,ζ∗η∗,ζ∗η∗}]. |
The inclusion "⊆" means that
ζ⊆η if and only if, [ζ∗,ζ∗]⊆[η∗,η∗],if and only if η∗≤ζ∗,ζ∗≤η∗. | (16) |
Remark 2.1. [29] The relation "≤I" defined on KC by
[ζ∗,ζ∗]≤I[η∗,η∗] if and only if ζ∗≤η∗,ζ∗≤η∗,(17)
for all [ζ∗,ζ∗],[η∗,η∗]∈KC, it is an order relation. For given [ζ∗,ζ∗],[η∗,η∗]∈KC, we say that [ζ∗,ζ∗]≤I[η∗,η∗] if and only if ζ∗≤η∗,ζ∗≤η∗.
For [ζ∗,ζ∗],[η∗,η∗]∈KC, the Hausdorff-Pompeiu distance between intervals [ζ∗,ζ∗] and [η∗,η∗] is defined by
d([ζ∗,ζ∗],[η∗,η∗])=max{|ζ∗−η∗|,|ζ∗−η∗|}. |
It is familiar fact that (KC,d) is a complete metric space.
A fuzzy subset A of R is characterize by a mapping ˜ζ:R→[0,1] called the membership function, for each fuzzy set and if γ∈(0,1], then γ-level sets of ˜ζ is denoted and defined as follows ζγ={u∈R|˜ζ(u)≥γ}. If γ=0, then supp(˜ζ)={z∈R|˜ζ(z)>0} is called support of ˜ζ. By [˜ζ]0 we define the closure of supp(˜ζ).
Let F(R) be the family of all fuzzy sets and ˜ζ∈F(R) be a fuzzy set. Then, we define the following:
(1)˜ζ is said to be normal if there exists z∈R and ˜ζ(z)=1;
(2)˜ζ is said to be upper semi continuous on R if for given z∈R, there exist ϵ>0 there exist δ>0 such that ˜ζ(z)−˜ζ(x)<ϵ for all x∈R with |z−x|<δ;
(3)˜ζ is said to be fuzzy convex if ζγ is convex for every γ∈[0,1];
(4)˜ζ is compactly supported if supp(˜ζ) is compact.
A fuzzy set is called a fuzzy number or fuzzy-interval if it has properties (1)–(4). We denote by F0 the family of all interval.
From these definitions, we have
[˜ζ]γ=[ζ∗(γ),ζ∗(γ)], |
where
ζ∗(γ)=inf{z∈R|˜ζ(z)≥γ},ζ∗(γ)=sup{z∈R|˜ζ(z)≥γ}. |
Proposition 2.2. [18] If ˜ζ,˜η∈F0, then relation "≼" defined on F0 by
˜ζ≼ ˜η if and only if, [ ˜ζ]γ≤I[ ˜η ]γ,for all γ∈[0, 1], | (18) |
this relation is known as partial order relation.
For ˜ζ,˜η∈F0 and τ∈R, the sum ˜ζ˜+˜η, product ˜ζ˜×˜η, scalar product τ.˜ζ and sum with scalar are defined by:
[˜ζ˜+˜η]γ=[˜ζ]γ+[˜η]γ, | (19) |
[˜ζ˜×˜η]γ=[˜ζ]γ×[˜η]γ, | (20) |
[τ.˜ζ]γ=τ.[˜ζ]γ, | (21) |
[τ˜+˜ζ]γ=τ+[˜ζ]γ. | (22) |
for all γ∈[0,1]. For ˜ψ∈F0 such that ˜ζ=˜η˜+˜ψ, then by this result we have existence of Hukuhara difference of ˜ζ and ˜η, and we say that ˜ψ is the H-difference of ˜ζ and ˜η, and denoted by ˜ζ˜−˜η. If H-difference exists, then
(ψ)∗(γ)=(ζ−η)∗(γ)=ζ∗(γ)−η∗(γ),(ψ)∗(γ)=(ζ−η)∗(γ)=ζ∗(γ)−η∗(γ). | (23) |
A partition of [u,ν] is any finite ordered subset P having the form
P={u=z1<z2<z3<z4<z5…⋯<zk=ν}. |
The mesh of a partition P is the maximum length of the subintervals containing P that is,
mesh(P)=max{zj−zj−1:j=1,2,3,……k}. |
Let P(δ,[u,ν]) be the set of all partitions P of [u,ν] such that mesh(P)<δ. For each interval [zj−1,zj], where 1≤j≤k, choose an arbitrary point ξj and taking the sum
S(Q,P,δ)=∑kj=1Q(ξj)(zj−zj−1), |
where Q:[u,ν]→KC. We call S(Q,P,δ) a Riemann sum of Q corresponding to P∈P(δ,[u,ν]).
Definition 2.3. [30] A function Q:[u,ν]→KC is called interval Riemann integrable (IR-integrable) on [u,ν] if there exists B∈KC such that, for each ϵ>0 , there exists \delta >0 such that
d\left(S\left(\mathcal{Q}, P, \delta \right), B\right) < ϵ\text{, } |
for every Riemann sum of \mathcal{Q} corresponding to P\in \mathcal{P}\left(\delta, \left[u, \nu \right]\right) and for arbitrary choice of {\xi }_{j}\in \left[{\mathcal{z}}_{j-1}, {\mathcal{z}}_{j}\right] for 1\le j\le k. Then, we say that B is the IR -integral of \mathcal{Q} on [u, \nu] and is denote by B = \left(IR\right){\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}\right)d\mathcal{z} .
Moore [9] firstly proposed the concept of Riemann integral for IVF and it is defined as follow:
Theorem 2.4. [16] If \mathcal{Q}:[u, \nu]\subset \mathbb{R}\to {\mathcal{K}}_{C} is an IVF on such that \mathcal{Q}\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}, {\mathcal{Q}}^{*}\right] , then \mathcal{Q} is Riemann integrable over [u, \nu] if and only if, {\mathcal{Q}}_{*} and {\mathcal{Q}}^{*} both are Riemann integrable over \left[u, \nu \right] such that
\left(IR\right){\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}\right)d\mathcal{z} = \left[\left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}_{*}\left(\mathcal{z}\right)d\mathcal{z}, \left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}^{*}\left(\mathcal{z}\right)d\mathcal{z}\right]\text{.} | (24) |
Definition 2.5. [31] A fuzzy map \widetilde{\mathcal{Q}}:[u, \nu]\to {\mathbb{F}}_{0} is called fuzzy-IVF. For each \gamma \in \left[0, 1\right], whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:[u, \nu]\to {\mathcal{K}}_{C} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in [u, \nu]. Here, for each \gamma \in \left[0, 1\right], the left and right real valued functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right):[u, \nu]\to \mathbb{R} are also called lower and upper functions of \widetilde{\mathcal{Q}} .
Remark 2.6. If \widetilde{\mathcal{Q}}:[u, \nu]\subset \mathbb{R}\to {\mathbb{F}}_{0} is a fuzzy-IVF, then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is called continuous function at \mathcal{z}\in [u, \nu], if for each \gamma \in \left[0, 1\right], both left and right real valued functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are continuous at \mathcal{z}\in K.
The following conclusion can be drawn from the above literature review, see [17,31].
Definition 2.7. Let \widetilde{\mathcal{Q}}:[u, \nu]\subset \mathbb{R}\to {\mathbb{F}}_{0} is called fuzzy-IVF. The fuzzy Riemann integral of \widetilde{\mathcal{Q}} over \left[u, \nu \right], denoted by \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z} , it is defined level by level
{\left[\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\right]}^{\mathit{\gamma }} = \left(IR\right){\int }_{u}^{\nu }{\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right)d\mathcal{z} = \left\{{\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}, \gamma \right)d\mathcal{z}:\mathcal{Q}\left(\mathcal{z}, \gamma \right)\in {\mathcal{R}}_{[u, \nu ]}\right\}, | (25) |
for all \gamma \in \left[0, 1\right], where {\mathcal{R}}_{[u, \nu]} contains the family of left and right functions of IVFs. \widetilde{\mathcal{Q}} is \left(FR\right) -integrable over [u, \nu] if \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\in {\mathbb{F}}_{0}. Note that, if left and right real valued functions are Lebesgue-integrable, then \widetilde{\mathcal{Q}} is fuzzy Aumann-integrable over \left[u, \nu \right], denoted by \left(FA\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z} , see [31].
Theorem 2.8. Let \widetilde{\mathcal{Q}}:[u, \nu]\subset \mathbb{R}\to {\mathbb{F}}_{0} be a fuzzy-IVF, whose \gamma -levels obtain the collection of IVFs {\mathcal{Q}}_{\gamma }:[u, \nu]\subset \mathbb{R}\to {\mathcal{K}}_{C} are defined by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in [u, \nu] and for all \gamma \in \left[0, 1\right]. Then, \widetilde{\mathcal{Q}} is \left(FR\right) -integrable over [u, \nu] if and only if, {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) both are R -integrable over [u, \nu] . Moreover, if \widetilde{\mathcal{Q}} is \left(FR\right) -integrable over \left[u, \nu \right], then
{\left[\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\right]}^{\mathit{\gamma }} = \left[\left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right)d\mathcal{z}, \left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)d\mathcal{z}\right] = \left(IR\right){\int }_{u}^{\nu }{\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right)d\mathcal{z}\text{, } | (26) |
for all \gamma \in \left[0, 1\right].
Definition 2.9. A real valued function \mathcal{Q}:\left[u, \nu \right]\to {\mathbb{R}}^{+} is called convex function if
\mathcal{Q}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\le \tau \mathcal{Q}\left(\mathcal{x}\right)+\left(1-\tau \right)\mathcal{Q}\left(\mathcal{z}\right), | (27) |
for all \mathcal{x}, \mathcal{ }\mathcal{z}\in \left[u, \nu \right], \tau \in \left[0, 1\right]. If (27) is reversed, then \mathcal{Q} is called concave.
Definition 2.10. [32] The fuzzy-IVF \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} is called convex fuzzy-IVF on \left[u, \nu \right] if
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq \tau \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}(1-\tau )\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), | (28) |
for all \mathcal{x}, \mathcal{ }\mathcal{z}\in \left[u, \nu \right], \tau \in \left[0, 1\right], where \widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\succcurlyeq \widetilde{0} for all \mathcal{z}\in \left[u, \nu \right]. If (28) is reversed, then \widetilde{\mathcal{Q}} is called concave fuzzy-IVF on \left[u, \nu \right] . \widetilde{\mathcal{Q}} is affine if and only if it is both convex and concave fuzzy-IVF.
Remark 2.11. If {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) and \gamma = 1 , then we obtain the inequality (1).
Definition 2.12. [28] Let {h}_{1}, {h}_{2}:[0, 1]\subseteq [u, \nu]\to {\mathbb{R}}^{+} such that {h}_{1}, {h}_{2}\not\equiv 0 . Then, fuzzy-IVF \widetilde{\mathcal{Q}}:[u, \nu]\to {\mathbb{F}}_{0} is said to be \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF on [u, \nu] if
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq {h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), | (29) |
for all \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu], \tau \in \left[0, 1\right], where \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\succcurlyeq \widetilde{0}. If \widetilde{\mathcal{Q}} is \left({h}_{1}, {h}_{2}\right) -concave on [u, \nu] , then inequality (29) is reversed.
Remark 2.13. [28] If {h}_{2}\left(\tau \right)\equiv 1, then \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF becomes h -convex fuzzy-IVF, that is
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq {h}_{1}\left(\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}{h}_{1}\left(1-\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), \mathrm{ }\forall \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu ], \tau \in \left[0, 1\right]. | (30) |
If {h}_{1}\left(\tau \right) = \tau, {h}_{2}\left(\tau \right)\equiv 1, then \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF becomes convex fuzzy-IVF, that is
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq \tau \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}\left(1-\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), \mathrm{ }\forall \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu ], \tau \in \left[0, 1\right]. | (31) |
If {h}_{1}\left(\tau \right) = {h}_{2}\left(\tau \right)\equiv 1, then \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF becomes P -convex fuzzy-IVF, that is
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), \mathrm{ }\forall \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu ], \tau \in \left[0, 1\right]. | (32) |
Theorem 2.14. Let h:[0, 1]\subseteq [u, \nu]\to \mathbb{R} be anon-negative real valued function such that h\not\equiv 0 and let \widetilde{\mathcal{Q}}:[u, \nu]\to {\mathbb{F}}_{0} be a fuzzy-IVF, whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:[u, \nu]\to {{\mathcal{K}}_{C}}^{+}\subset {\mathcal{K}}_{C} are given by
{\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right], | (33) |
for all \mathcal{z}\in [u, \nu] and for all \gamma \in \left[0, 1\right] . Then, \widetilde{\mathcal{Q}} is h -convex fuzzy-IVF on [u, \nu], if and only if, for all \gamma \in \left[0, 1\right], {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex function.
Proof. The demonstration of proof of Theorem 2.14 is similar to the demonstration proof of Theorem 6 in [28].
Example 2.15. We consider h\left(\tau \right) = \tau, for \tau \in \left[0, 1\right] and the fuzzy-IVF \widetilde{\mathcal{Q}}:[0, 4]\to {\mathbb{F}}_{0} defined by
\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma }{2{e}^{{\mathcal{z}}^{2}}}\;\;\;\sigma \in \left[0, 2{e}^{{\mathcal{z}}^{2}}\right]\\ \frac{4{e}^{{\mathcal{z}}^{2}}-\sigma }{2{e}^{{\mathcal{z}}^{2}}}\;\;\;\sigma \in (2{e}^{{\mathcal{z}}^{2}}, 4{e}^{{\mathcal{z}}^{2}}]\\ 0\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}, \end{array}\right. |
then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[2\gamma {e}^{{\mathcal{z}}^{2}}, 2(2-\gamma){e}^{{\mathcal{z}}^{2}}\right] . Since end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex functions for each \gamma \in [0, 1] . Hence \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF.
In this section, we will prove some new Hermite-Hadamard type inequalities for h -convex fuzzy-IVFs by means of fuzzy order relation via Riemann Liouville fractional integral operator. In what follows, we denote by L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) the family of Lebesgue measureable fuzzy-IVFs.
Theorem 3.1. Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF on \left[u, \nu \right], whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . | (34) |
If \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is concave fuzzy-IVF, then
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\succcurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\succcurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau \text{.} | (35) |
Proof. Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF. Then, by hypothesis, we have
\frac{1}{h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \widetilde{\mathcal{Q}}\left(\tau u+\left(1-\tau \right)\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\left(1-\tau \right)u+\tau \nu \right). |
Therefore, for every \gamma \in [0, 1] , we have
\begin{array}{c}\frac{1}{h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right), \\ \frac{1}{h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right).\end{array} |
Multiplying both sides by {\tau }^{\alpha -1} and integrating the obtained result with respect to \tau over \left(\mathrm{0, 1}\right) , we have
\frac{1}{h\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)d\tau |
\le {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)d\tau +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \text{, } |
\frac{1}{h\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)d\tau |
\le {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)d\tau +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \text{.} |
Let \mathcal{x} = \tau u+(1-\tau)\nu and \mathcal{z} = \left(1-\tau \right)u+\tau \nu. Then, we have
\begin{array}{c}\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le \frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\nu -\mathcal{x})}^{\alpha -1}{\mathcal{Q}}_{*}(\mathcal{x}, \gamma )dx+\frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\mathcal{z}-u)}^{\alpha -1}{\mathcal{Q}}_{*}(\mathcal{z}, \gamma )dz\\ \frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le \frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\nu -\mathcal{x})}^{\alpha -1}{\mathcal{Q}}^{*}\left(\mathcal{x}, \gamma \right)dx+\frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\mathcal{z}-u)}^{\alpha -1}{\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)dz, \end{array} |
\begin{array}{c}\le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\right]\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\right].\end{array} |
That is
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\left[{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right), {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\right] |
{\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\right], \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\right]\right]\text{, } |
thus,
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right){\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\right]. | (36) |
In a similar way as above, we have
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\right]{\le }_{I}\left[{\mathcal{Q}}_{\gamma }\left(u\right)+{\mathcal{Q}}_{\gamma }\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . | (37) |
Combining (36) and (37), we have
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right){\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\right] |
{\le }_{I}\left[{\mathcal{Q}}_{\gamma }\left(u\right)+{\mathcal{Q}}_{\gamma }\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau \text{, } |
that is
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\preccurlyeq \left[\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . |
Hence, the required result.
Remark 3.2 From Theorem 3.1 we clearly see that:
If \alpha = 1 , then Theorem 3.1 reduces to the result for h-convex fuzzy-IVF:
\frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{\nu -u}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \left[\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\right]{\int }_{0}^{1}h\left(\tau \right)d\tau . | (38) |
If h\left(\tau \right) = \tau , then Theorem 3.1 reduces to the result for convex fuzzy-IVF:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha +1\right)}{{2\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (39) |
Let \alpha = 1 and h\left(\tau \right) = \tau . Then, Theorem 3.1 reduces to the result for convex-IVF given in [28]:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{\nu -u}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (40) |
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and \gamma = 1, then, from Theorem 3.1 we get following inequality given in [12]:
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\mathcal{Q}\left(\frac{u+\nu }{2}\right)\le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\mathcal{Q}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathcal{Q}\left(u\right)\right]\le \left[\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . | (41) |
Let \alpha = 1 = \gamma and {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) . Then, from Theorem 3.1 we obtain following inequality given in [2]:
\frac{1}{2h\left(\frac{1}{2}\right)}\mathcal{Q}\left(\frac{u+\nu }{2}\right)\le \frac{1}{\nu -u}\left(R\right){\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}\right)d\mathcal{z}\le \left[\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)\right]{\int }_{0}^{1}h\left(\tau \right)d\tau . | (42) |
Example 3.3. Let = \frac{1}{2} , h\left(\tau \right) = \tau , for all \tau \in \left[0, 1\right] and the fuzzy-IVF \widetilde{\mathcal{Q}}:\left[u, \nu \right] = \left[2, 3\right]\to {\mathbb{F}}_{0}, defined by
\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\theta \right) = \left\{\begin{array}{c}\frac{\theta }{2-{\mathcal{z}}^{\frac{1}{2}}}, \;\;\; \theta \in \left[0, 2-{\mathcal{z}}^{\frac{1}{2}}\right]\\ \frac{2\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)-\theta }{2-{\mathcal{z}}^{\frac{1}{2}}}, \;\;\; \theta \in (2-{\mathcal{z}}^{\frac{1}{2}}, 2\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)]\\ 0, \;\;\;\;\;\;\;\;\;{\rm{otherwise}}.\end{array}\right. |
Then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[\gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right), (2-\gamma)\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)\right] . Since left and right end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = \gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) = (2-\gamma)\left(2-{\mathcal{z}}^{\frac{1}{2}}\right) , are h -convex functions for each \gamma \in [0, 1] , then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF. We clearly see that \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right) = {\mathcal{Q}}_{*}\left(\frac{5}{2}, \gamma \right) = \gamma \frac{4-\sqrt{10}}{8} |
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right) = {\mathcal{Q}}^{*}\left(\frac{5}{2}, \gamma \right) = \left(2-\gamma \right)\frac{4-\sqrt{10}}{8}, |
\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau = \gamma \left(4-\sqrt{2}-\sqrt{3}\right) |
\frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau = (2-\gamma )\left(4-\sqrt{2}-\sqrt{3}\right). |
Note that
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\right] |
= \frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(3-\mathcal{z}\right)}^{\frac{-1}{2}}. \gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
+\frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(\mathcal{z}-2\right)}^{\frac{-1}{2}}. \gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
= \frac{1}{2}\gamma \left[\frac{7393}{\mathrm{10,000}}+\frac{9501}{\mathrm{10,000}}\right] |
= \gamma \frac{8447}{\mathrm{20,000}}. |
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\right] |
= \frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(3-\mathcal{z}\right)}^{\frac{-1}{2}}. (2-\gamma )\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
+\frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(\mathcal{z}-2\right)}^{\frac{-1}{2}}. (2-\gamma )\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
= \frac{1}{2}\left(2-\gamma \right)\left[\frac{7393}{\mathrm{10,000}}+\frac{9501}{\mathrm{10,000}}\right] |
= \left(2-\gamma \right)\frac{8447}{\mathrm{20,000}}. |
Therefore
\left[\gamma \frac{4-\sqrt{10}}{8}, (2-\gamma )\frac{4-\sqrt{10}}{8}\right]{\le }_{I}\left[\gamma \frac{8447}{\mathrm{20,000}}, (2-\gamma )\frac{8447}{\mathrm{20,000}}\right] |
{\le }_{I}\left[\gamma \left(4-\sqrt{2}-\sqrt{3}\right), (2-\gamma )\left(4-\sqrt{2}-\sqrt{3}\right)\right]\text{, } |
and Theorem 3.1 is verified.
From Theorem 3.4 and Theorem 3.5, we obtain some fuzzy-interval fractional integral inequalities related to fuzzy-interval fractional HH -inequalities
Theorem 3.4. Let \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs on \left[u, \nu \right] , respectively, whose \gamma -levels {\mathcal{Q}}_{\gamma }, {\mathcal{P}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are defined by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] and {\mathcal{P}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{P}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{P}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\widetilde{\times }\widetilde{\mathcal{P}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\preccurlyeq \widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau +\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . |
Where \widetilde{\Delta }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right), \widetilde{\nabla }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right), and {\Delta }_{\gamma }\left(u, \nu \right) = \left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right] and {\nabla }_{\gamma }\left(u, \nu \right) = \left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right].
Proof. Since \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}} both are {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs then, for each \gamma \in \left[0, 1\right] we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{1}\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right) \\ {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{1}\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right). \\ \end{array} |
and
\begin{array}{c} {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{2}\left(\tau \right){\mathcal{P}}_{*}\left(u, \gamma \right)+{h}_{2}\left(1-\tau \right){\mathcal{P}}_{*}\left(\nu , \gamma \right) \\ {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{2}\left(\tau \right){\mathcal{P}}^{*}\left(u, \gamma \right)+{h}_{2}\left(1-\tau \right){\mathcal{P}}^{*}\left(\nu , \gamma \right). \end{array} |
From the definition of h-convex fuzzy-IVFs it follows that \widetilde{0}\preccurlyeq \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) and \widetilde{0}\preccurlyeq \widetilde{\mathcal{P}}\left(\mathcal{z}\right) , so
\begin{array}{c} {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ \le {h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ \le {h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right).\end{array} | (43) |
Analogously, we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\\ \le {h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\\ \le {h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right). \end{array} | (44) |
Adding (43) and (44), we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right) \\ \le \left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]\left[{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right]\\ +\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]\left[{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right]\\ {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right) \\ \le \left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]\left[{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right]\\ +\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]\left[{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right].\end{array} | (45) |
Taking multiplication of (45) with {\tau }^{\alpha -1} and integrating the obtained result with respect to \tau over (0, 1), we have
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \\ \le {\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \\ \le {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .\end{array} |
It follows that,
\begin{array}{c} \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\right]\\ \le {\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .\\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)\right]\\ \le {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . \\ \end{array} |
It follows that
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right), \\{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)\right] |
{\le }_{I}\left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau |
+\left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau \text{, } |
that is
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)\times {\mathcal{P}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\times {\mathcal{P}}_{\gamma }\left(u\right)\right] |
{\le }_{I}{\Delta }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau |
+{\nabla }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . |
Thus,
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right] \\ \;\;\;\;\;\;\;\;\;\preccurlyeq \widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ \;\;\;\;\;\;\;\;\;+\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . |
and the theorem has been established.
Theorem 3.5. Let \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be two {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs, respectively, whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }, {\mathcal{P}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] and {\mathcal{P}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{P}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{P}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\widetilde{\times }\widetilde{\mathcal{P}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then
\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{u+\nu }{2}\right) |
\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\widetilde{+}\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \widetilde{+}\widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau . |
Where \widetilde{\Delta }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right), \widetilde{\nabla }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right), and {\Delta }_{\gamma }\left(u, \nu \right) = \left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right] and {\nabla }_{\gamma }\left(u, \nu \right) = \left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right].
Proof. Consider \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} are {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs. Then, by hypothesis, for each \gamma \in \left[0, 1\right], we have
\begin{array}{c}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\end{array} |
\begin{array}{c}\le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ \le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right], \end{array} |
\begin{array}{c}\le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left(\tau {\mathcal{Q}}_{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right)\\ \times \left(\left(1-\tau \right){\mathcal{P}}_{*}\left(u, \gamma \right)+\tau {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right)\\ +\left({\left(1-\tau \right)\mathcal{Q}}_{*}\left(u, \gamma \right)+\tau {\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right)\\ \times \left(\tau {\mathcal{P}}_{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{P}}_{*}\left(\nu , \gamma \right)\right)\end{array}\right] \\ \le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left(\tau {\mathcal{Q}}^{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right)\\ \times \left(\left(1-\tau \right){\mathcal{P}}^{*}\left(u, \gamma \right)+\tau {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right)\\ +\left(\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+\tau {\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right)\\ \times \left(\tau {\mathcal{P}}^{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{P}}^{*}\left(\nu , \gamma \right)\right)\end{array}\right], \end{array} |
\begin{array}{c} = {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right] \\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right\}{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right)\\ +\left\{{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right\}{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right)\end{array}\right] \\ = {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right] \\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right\}{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\\ +\left\{{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right\}{\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\end{array}\right].\end{array} | (46) |
Taking multiplication of (46) with {\tau }^{\alpha -1} and integrating over (0, 1), we get
\begin{array}{c}\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right){\times \mathcal{P}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu \right){\times \mathcal{P}}_{*}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u\right){\times \mathcal{P}}_{*}\left(u\right)\right] \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ +{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ \frac{1}{{\alpha h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu \right)\times {\mathcal{P}}^{*}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u\right)\times {\mathcal{P}}^{*}\left(u\right)\right] \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ +{\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau , \end{array} |
It follows that
\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right)\times {\mathcal{P}}_{\gamma }\left(\frac{u+\nu }{2}\right) |
{\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)\times {\mathcal{P}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\times {\mathcal{P}}_{\gamma }\left(u\right)\right] |
{+\nabla }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau |
+{\Delta }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \text{, } |
that is
\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\widetilde{+}\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \widetilde{+}\widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau . |
Hence, the required result.
The Theorem 3.6 and Theorem 3.7 are directly connected with right and left part of classical HH -Fejér inequality, respectively. Now firstly, we obtain the right part of classical HH -Fejér inequality through fuzzy Riemann Liouville fractional integral is known as second fuzzy fractional HH -Fejér inequality.
Theorem 3.6. (Second fuzzy fractional HH -Fejér inequality) Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h -convex fuzzy-IVF with u < \nu , whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and {\mathit{\Omega}} :\left[u, \nu \right]\to \mathbb{R}, {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0, symmetric with respect to \frac{u+\nu }{2}, then
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}. | (47) |
If \widetilde{\mathcal{Q}} is concave fuzzy-IVF, then inequality (47) is reversed.
Proof. Let \widetilde{\mathcal{Q}} be a h-convex fuzzy-IVF and {\tau }^{\alpha -1}{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\ge 0 . Then, for each \gamma \in \left[0, 1\right], we have
{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+h\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) |
{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+h\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right), | (48) |
And
{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+h\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) |
{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+h\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right). | (49) |
After adding (48) and (49), and integrating over \left[0, 1\right], we get
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(u, \gamma \right)\left\{h\left(\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(1-\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\\ +{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\left\{h\left(1-\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\end{array}\right]d\tau , \\ = {\mathcal{Q}}_{*}\left(u, \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\end{array}d\tau \\ +{\mathcal{Q}}_{*}\left(\nu , \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}d\tau , \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)d\tau \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(u, \gamma \right)\left\{h\left(\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(1-\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\\ +{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\left\{h\left(1-\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\end{array}\right]d\tau , \\ = {\mathcal{Q}}^{*}\left(u, \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\end{array}d\tau \\ +{\mathcal{Q}}^{*}\left(\nu , \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}d\tau . \end{array} | (50) |
Taking right hand side of inequality (50), we have
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(u-\nu -\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\nu -u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(u-\nu -\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right], \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]. \\ \end{array} | (51) |
From (51), we have
\begin{array}{c} \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right]\le \frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}\\ \\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] \le \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}, \end{array} |
that is
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right), {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] |
{\le }_{I}\left[\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}, \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}\right]{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\text{, } |
hence
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}. |
Now, we obtain the following result connected with left part of classical HH -Fejér inequality for h-convex fuzzy-IVF through fuzzy order relation which is known as first fuzzy fractional HH -Fejér inequality.
Theorem 3.7. (First fuzzy fractional HH -Fejér inequality) Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF with u < \nu , whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and {\mathit{\Omega}} :\left[u, \nu \right]\to \mathbb{R}, {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0, symmetric with respect to \frac{u+\nu }{2}, then
\frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\text{.} | (52) |
If \widetilde{\mathcal{Q}} is concave fuzzy-IVF, then inequality (52) is reversed.
Proof. Since \widetilde{\mathcal{Q}} is a h-convex fuzzy-IVF, then for \gamma \in \left[0, 1\right], we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le h\left(\frac{1}{2}\right)\left({\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\right)\\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le h\left(\frac{1}{2}\right)\left({\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\right).\end{array} | (53) |
Since {\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) = {\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) , then by multiplying (53) by {\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) and integrate it with respect to \tau over \left[0, 1\right], we obtain
\begin{array}{c} {\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\right), \\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\right).\end{array} | (54) |
Let \mathcal{z} = \left(1-\tau \right)u+\tau \nu . Then, right hand side of inequality (54), we have
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(u-\nu -\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\nu -u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(u-\nu -\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right], \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]. \end{array} | (55) |
Then from (55), we have
\begin{array}{c} \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right]\\ \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right], \end{array} |
from which, we have
\begin{array}{c} \frac{1}{2h\left(\frac{1}{2}\right)}\left[{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right), {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\right]\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\\ {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right), {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right], \\ \end{array} |
it follows that
\frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }{\mathit{\Omega}} \left(u\right)\right]\text{, } |
that is
\frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]. |
This completes the proof.
Remark 3.8. If {\mathit{\Omega}} \left(\mathcal{z}\right) = 1 , then from Theorem 3.6 and Theorem 3.7, we get Theorem 3.1.
If h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we get following factional HH -Fejér inequality:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\text{.} |
Let h\left(\tau \right) = \tau and \alpha = 1 . Then, from Theorem 3.6 and Theorem 3.7, we obtain following HH -Fejér inequality for convex fuzzy-IVF which is also new one.
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{{\int }_{u}^{\nu }{\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z}}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (57) |
Let h\left(\tau \right) = \tau and \alpha = 1 = {\mathit{\Omega}} \left(\mathcal{z}\right) . Then, from Theorem 3.6 and Theorem 3.7, we obtain following HH -inequality for convex fuzzy-IVF given in [28]:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (58) |
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, following HH -Fejér inequality for classical function following inequality given in [9]:
\mathcal{Q}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\mathcal{Q}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathcal{Q}{\mathit{\Omega}} \left(u\right)\right]\le \frac{\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)}{2}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\text{.} | (59) |
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and \alpha = 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we obtain the classical HH -Fejér inequality (2).
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and {\mathit{\Omega}} \left(\mathcal{z}\right) = \alpha = 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we get the classical HH -inequality (1).
Example 3.9. We consider the fuzzy-IVF \widetilde{\mathcal{Q}}:\left[0, 2\right]\to {\mathbb{F}}_{0} defined by,
\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma }{2-\sqrt{\mathcal{z}}}, \;\;\;\; \sigma \in \left[0, 2-\sqrt{\mathcal{z}}\right], \\ \frac{2\left(2-\sqrt{\mathcal{z}}\right)-\sigma }{2-\sqrt{\mathcal{z}}}, \;\;\;\; \sigma \in \left(2-\sqrt{\mathcal{z}}, 2\left(2-\sqrt{\mathcal{z}}\right)\right], \\ 0, \;\;\;\;\;\;\;\;\;\;\; {\rm{otherwise}}.\end{array}\right. |
Then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[\gamma \left(2-\sqrt{\mathcal{z}}\right), (2-\gamma)\left(2-\sqrt{\mathcal{z}}\right)\right] . Since end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex functions for each \gamma \in [0, 1] , then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF. If
{\mathit{\Omega}} \left(\mathcal{z}\right) = \left\{\begin{array}{c}\sqrt{\mathcal{z}}, \;\;\;\; \sigma \in \left[0, 1\right], \\ \sqrt{2-\mathcal{z}}, \;\;\;\; \sigma \in \left(1, 2\right], \end{array}\right. |
then {\mathit{\Omega}} \left(2-\mathcal{z}\right) = {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0 , for all \mathcal{z}\in \left[0, 2\right] . Since {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = \gamma \left(2-\sqrt{\mathcal{z}}\right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) = (2-\gamma)\left(2-\sqrt{\mathcal{z}}\right) . If h\left(\tau \right) = \tau and \alpha = \frac{1}{2} , then we compute the following:
\begin{array}{c}\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array} = \frac{\pi }{\sqrt{2}}\gamma \left(\frac{4-\sqrt{2}}{2}\right), \\ \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array} = \frac{\pi }{\sqrt{2}}(2-\gamma )\left(\frac{4-\sqrt{2}}{2}\right), \end{array} | (60) |
\begin{array}{c}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right] = \frac{1}{\sqrt{\pi }}\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), \\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] = \frac{1}{\sqrt{\pi }}(2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right). \end{array} | (61) |
From (61) and (62), we have
\frac{1}{\sqrt{\pi }}\left[\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), (2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{\pi }{\sqrt{2}}\left[\gamma \left(\frac{4-\sqrt{2}}{2}\right), (2-\gamma )\left(\frac{4-\sqrt{2}}{2}\right)\right], \; {\rm{for \;each}} \; \gamma \in \left[0, 1\right]. |
Hence, Theorem 10 is verified.
For Theorem 11, we have
\begin{array}{c}{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\\ = \frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(2-\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left(\gamma \left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}+\frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left(\gamma \left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}\\ = \frac{1}{\sqrt{\pi }}\gamma \left(\pi +\frac{8-8\sqrt{2}}{3}\right)+\frac{1}{\sqrt{\pi }}\gamma \left(\pi -\frac{4}{3}\right) = \frac{1}{\sqrt{\pi }}\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right) \\ {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\\ = \frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(2-\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left((2-\gamma )\left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}+\frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left((2-\gamma )\left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}\\ = \frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(\pi +\frac{8-8\sqrt{2}}{3}\right)+\frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(\pi -\frac{4}{3}\right) = \frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(2\pi +\frac{4-8\sqrt{2}}{3}\right). \end{array} | (62) |
\begin{array}{c}\frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right] = \gamma \sqrt{\pi }, \\ \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right] = \left(2-\gamma \right)\sqrt{\pi }. \end{array} | (63) |
From (63) and (63), we have
\sqrt{\pi }\left[\gamma , \left(2-\gamma \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{\sqrt{\pi }}\left[\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), (2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right)\right], \; {\rm{for \;each}} \; \gamma \in \left[0, 1\right]. |
In this study, we used fuzzy-interval Riemann-Liouville fractional integrals to prove some new Hermite-Hadamard inequalities for h-convex fuzzy IVFs. The results are consistent with those found in [1,2,7,16,26,28]. Furthermore, these results could be expanded in the future for different types of convexities and fractional integrals.
This work was supported by the Taif University Researchers Supporting Project Number (TURSP-2020/96), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] | J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 |
[2] |
A. H. Gandomi, A. H. Alavi, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010 doi: 10.1016/j.cnsns.2012.05.010
![]() |
[3] |
A. H. Gandomi, X. Yang, A. H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29 (2013), 17–35. https://doi.org/10.1007/s00366-011-0241-y doi: 10.1007/s00366-011-0241-y
![]() |
[4] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
![]() |
[5] |
R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
![]() |
[6] |
S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |
[7] |
A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. Gandomi, Marine predators algorithm: a nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
![]() |
[8] |
J. Sarvaiya, D. Singh, Selection of the optimal process parameters in friction stir welding/processing using particle swarm optimization algorithm, Mater. Today: Proc., 62 (2022), 896–901. https://doi.org/10.1016/j.matpr.2022.04.062 doi: 10.1016/j.matpr.2022.04.062
![]() |
[9] |
Z. Hu, H. Norouzi, M. Jiang, S. Dadfar, T. Kashiwagi, Novel hybrid modified krill herd algorithm and fuzzy controller based MPPT to optimally tune the member functions for PV system in the three-phase grid-connected mode, ISA trans., 2022 (2022). https://doi.org/10.1016/j.isatra.2022.02.009 doi: 10.1016/j.isatra.2022.02.009
![]() |
[10] |
Q. Bai, H. Li, The application of hybrid cuckoo search-grey wolf optimization algorithm in optimal parameters identification of solid oxide fuel cell, Int. J. Hydrogen Energy, 47 (2022), 6200–6216. https://doi.org/10.1016/j.ijhydene.2021.11.216 doi: 10.1016/j.ijhydene.2021.11.216
![]() |
[11] |
C. Song, X. Wang, Z. Liu, H. Chen, Evaluation of axis straightness error of shaft and hole parts based on improved grey wolf optimization algorithm, Measurement, 188 (2022), 110396. https://doi.org/10.1016/j.measurement.2021.110396 doi: 10.1016/j.measurement.2021.110396
![]() |
[12] |
H. Abaeifar, H. Barati, A. R. Tavakoli, Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources, Int. J. Electr. Power Energy Syst., 137 (2022), 107877. https://doi.org/10.1016/j.ijepes.2021.107877 doi: 10.1016/j.ijepes.2021.107877
![]() |
[13] |
V. K. Jadoun, G. R. Prashanth, S. S. Joshi, K. Narayanan, H. Malik, F. García Márquez, Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm, Appl. Energy, 315 (2022), 119033. https://doi.org/10.1016/j.apenergy.2022.119033 doi: 10.1016/j.apenergy.2022.119033
![]() |
[14] |
M. Al-qaness, A. Ewees, H. Fan, L. Abualigah, M. Elaziz, Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting, Appl. Energy, 314 (2022), 118851. https://doi.org/10.1016/j.apenergy.2022.118851 doi: 10.1016/j.apenergy.2022.118851
![]() |
[15] |
M. Al-qaness, A. Ewees, H. Fan, A. Airassas, M. Elaziz, Modified aquila optimizer for forecasting oil production, Geo-spatial Inf. Sci., 2022 (2022), 1–17. https://doi.org/10.1080/10095020.2022.2068385 doi: 10.1080/10095020.2022.2068385
![]() |
[16] |
A. Dahou, M. Al-qaness, M. Elaziz, A. Helmi, Human activity recognition in IoHT applications using Arithmetic Optimization Algorithm and deep learning, Measurement, 199 (2022), 111445. https://doi.org/10.1016/j.measurement.2022.111445 doi: 10.1016/j.measurement.2022.111445
![]() |
[17] |
M. Elaziz, A. Ewees, M. Al-qaness, L. Abualigah, R. Ibrahim, Sine–Cosine-Barnacles Algorithm Optimizer with disruption operator for global optimization and automatic data clustering, Expert Syst. Appl., 207 (2022), 117993. https://doi.org/10.1016/j.eswa.2022.117993 doi: 10.1016/j.eswa.2022.117993
![]() |
[18] |
X. Chen, X. Qi, Z. Wang, C. Cui, B. Wu, Y. Yang, Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding, Measurement, 176 (2021), 109116. https://doi.org/10.1016/j.measurement.2021.109116 doi: 10.1016/j.measurement.2021.109116
![]() |
[19] |
P. H. Dinh, A novel approach based on three-scale image decomposition and marine predators algorithm for multi-modal medical image fusion, Biomed. Signal Process. Control, 67 (2021), 102536. https://doi.org/10.1016/j.bspc.2021.102536 doi: 10.1016/j.bspc.2021.102536
![]() |
[20] |
M. A. Sobhy, A. Y. Abdelaziz, H. M. Hasanien, M. Ezzat, Marine predators algorithm for load frequency control of modern interconnected power systems including renewable energy sources and energy storage units, Ain Shams Eng. J., 12 (2021), 3843–3857. https://doi.org/10.1016/j.asej.2021.04.031 doi: 10.1016/j.asej.2021.04.031
![]() |
[21] |
A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. Gandomi, Marine predators algorithm: a nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
![]() |
[22] |
M. A. Elaziz, D. Mohammadi, D. Oliva, K. Salimifard, Quantum marine predators algorithm for addressing multilevel image segmentation, Appl. Soft Comput., 110 (2021), 107598. https://doi.org/10.1016/j.asoc.2021.107598 doi: 10.1016/j.asoc.2021.107598
![]() |
[23] |
M. Ramezani, D. Bahmanyar, N. Razmjooy, A new improved model of marine predator algorithm for optimization problems, Arabian J. Sci. Eng., 46 (2021), 8803–8826. https://doi.org/10.1007/s13369-021-05688-3 doi: 10.1007/s13369-021-05688-3
![]() |
[24] |
M. Abdel-Basset, D. El-Shahat, R. K. Chakrabortty, M. Ryan, Parameter estimation of photovoltaic models using an improved marine predators algorithm, Energy Convers. Manage., 227 (2021), 113491. https://doi.org/10.1016/j.enconman.2020.113491 doi: 10.1016/j.enconman.2020.113491
![]() |
[25] |
K. Zhong, G. Zhou, W. Deng, Y. Zhou, Q. Luo, MOMPA: multi-objective marine predator algorithm, Comput. Methods Appl. Mech. Eng., 385 (2021), 114029. https://doi.org/10.1016/j.cma.2021.114029 doi: 10.1016/j.cma.2021.114029
![]() |
[26] |
R. Sowmya, V. Sankaranarayanan, Optimal vehicle-to-grid and grid-to-vehicle scheduling strategy with uncertainty management using improved marine predator algorithm, Comput. Electr. Eng., 100 (2022), 107949. https://doi.org/10.1016/j.compeleceng.2022.107949 doi: 10.1016/j.compeleceng.2022.107949
![]() |
[27] |
E. H. Houssein, I. E. Ibrahim, M. Kharrich, S. Kamel, An improved marine predators algorithm for the optimal design of hybrid renewable energy systems, Eng. Appl. Artif. Intell., 110 (2022), 104722. https://doi.org/10.1016/j.engappai.2022.104722 doi: 10.1016/j.engappai.2022.104722
![]() |
[28] |
D. Yousri, A. Ousama, Y. Shaker, A. Fathy, T. Babu, H. Rezk, et al., Managing the exchange of energy between microgrid elements based on multi-objective enhanced marine predators algorithm, Alexandria Eng. J., 61 (2022), 8487–8505. https://doi.org/10.1016/j.aej.2022.02.008 doi: 10.1016/j.aej.2022.02.008
![]() |
[29] |
Y. Ma, X. Zhang, J. Song, L. Chen, A modified teaching–learning-based optimization algorithm for solving optimization problem, Knowledge-Based Syst., 212 (2020), 106599. https://doi.org/10.1016/j.knosys.2020.106599 doi: 10.1016/j.knosys.2020.106599
![]() |
[30] |
N. E. Humphries, N. Queiroz, J. Dyer, N. Pade, M. Musyl, K. Schaefer, et al., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066–1069. https://doi.org/10.1038/nature09116 doi: 10.1038/nature09116
![]() |
[31] |
D. W. Sims, E. J. Southall, N. E. Humphries, G. Hays, C. Bradshaw, J. Pitchford, et al., Scaling laws of marine predator search behaviour, Nature, 451 (2008), 1098–1102. https://doi.org/10.1038/nature06518 doi: 10.1038/nature06518
![]() |
[32] |
G. M. Viswanathan, E. P. Raposo, M. Luz, Lévy flights and superdiffusion in the context of biological encounters and random searches, Phys. Life Rev., 5 (2008), 133–150. https://doi.org/10.1016/j.plrev.2008.03.002 doi: 10.1016/j.plrev.2008.03.002
![]() |
[33] |
F. Bartumeus, J. Catalan, U. L. Fulco, M. Lyra, G. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies, Phys. Rev. Lett., 88 (2002), 097901. https://doi.org/10.1103/PhysRevLett.88.097901 doi: 10.1103/PhysRevLett.88.097901
![]() |
[34] |
A. Einstein, Investigations on the theory of the brownian movement, DOVER, 35 (1956), 318–320. https://doi.org/10.2307/2298685 doi: 10.2307/2298685
![]() |
[35] |
J. D. Filmalter, L. Dagorn, P. D. Cowley, M. Taquet, First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean, Bull. Mar. Sci., 87 (2011), 325–337. https://doi.org/10.5343/bms.2010.1057 doi: 10.5343/bms.2010.1057
![]() |
[36] |
D. Yousri, H. M. Hasanien, A. Fathy, Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm, Energy Convers. Manage., 228 (2021), 113692. https://doi.org/10.1016/j.enconman.2020.113692 doi: 10.1016/j.enconman.2020.113692
![]() |
[37] |
M. Abdel-Basset, R. Mohamed, S. Mirjalili, R. Chakrabortty, M. Ryan, An efficient marine predators algorithm for solving multi-objective optimization problems: analysis and validations, IEEE Access, 9 (2021), 42817–42844. https://doi.org/10.1109/ACCESS.2021.3066323 doi: 10.1109/ACCESS.2021.3066323
![]() |
[38] |
T. Niknam, R. Azizipanah-Abarghooee, M. R. Narimani, A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems, Eng. Appl. Artif. Intell., 25 (2012), 1577–1588. https://doi.org/10.1016/j.engappai.2012.07.004 doi: 10.1016/j.engappai.2012.07.004
![]() |
[39] |
T. Niknam, F. Golestaneh, M. S. Sadeghi, θ-Multiobjective teaching–learning-based optimization for dynamic economic emission dispatch, IEEE Syst. J., 6 (2012), 341–352. https://doi.org/10.1109/JSYST.2012.2183276 doi: 10.1109/JSYST.2012.2183276
![]() |
[40] |
R. V. Rao, V. Patel, An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems, Sci. Iran., 20 (2013), 710–720. https://doi.org/10.1016/j.scient.2012.12.005 doi: 10.1016/j.scient.2012.12.005
![]() |
[41] |
P. K. Roy, S. Bhui, Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem, Int. J. Electr.Power Energy Syst., 53 (2013), 937–948. https://doi.org/10.1016/j.ijepes.2013.06.015 doi: 10.1016/j.ijepes.2013.06.015
![]() |
[42] |
H. Bouchekara, M. A. Abido, M. Boucherma, Optimal power flow using teaching-learning-based optimization technique, Electr. Power Syst. Res., 114 (2014), 49–59. https://doi.org/10.1016/j.epsr.2014.03.032 doi: 10.1016/j.epsr.2014.03.032
![]() |
[43] |
M. Liu, X. Yao, Y. Li, Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems, Appl. Soft Comput., 87 (2020), 105954. https://doi.org/10.1016/j.asoc.2019.105954 doi: 10.1016/j.asoc.2019.105954
![]() |
[44] |
D. Tansui, A. Thammano, Hybrid nature-inspired optimization algorithm: hydrozoan and sea turtle foraging algorithms for solving continuous optimization problems, IEEE Access, 8 (2020), 65780–65800. https://doi.org/10.1109/ACCESS.2020.2984023 doi: 10.1109/ACCESS.2020.2984023
![]() |
[45] |
K. Zhong, Q. Luo, Y. Zhou, M. Jiang, TLMPA: teaching-learning-based marine predators algorithm, AIMS Math., 6 (2021), 1395–1442. https://doi.org/10.3934/math.2021087 doi: 10.3934/math.2021087
![]() |
1. | Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings, 2022, 10, 2227-7390, 611, 10.3390/math10040611 | |
2. | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, 2021, 18, 1551-0018, 6552, 10.3934/mbe.2021325 | |
3. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Fuzzy Mixed Variational-like and Integral Inequalities for Strongly Preinvex Fuzzy Mappings, 2021, 13, 2073-8994, 1816, 10.3390/sym13101816 | |
4. | Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639 | |
5. | Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities, 2023, 8, 2473-6988, 6777, 10.3934/math.2023345 | |
6. | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, 2021, 7, 2473-6988, 349, 10.3934/math.2022024 | |
7. | Muhammad Bilal Khan, Muhammad Aslam Noor, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Khalida Inayat Noor, Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals, 2021, 14, 1875-6883, 10.1007/s44196-021-00009-w | |
8. | Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083 | |
9. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Mohamed S. Soliman, Muhammad Aslam Noor, Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 622, 10.3390/axioms11110622 | |
10. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, 2021, 19, 1551-0018, 812, 10.3934/mbe.2022037 | |
11. | Muhammad Bilal Khan, Muhammad Aslam Noor, Mohammed M. Al‐Shomrani, Lazim Abdullah, Some novel inequalities for LR‐h‐convex interval‐valued functions by means of pseudo‐order relation, 2022, 45, 0170-4214, 1310, 10.1002/mma.7855 | |
12. | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman, Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings, 2022, 7, 2473-6988, 15659, 10.3934/math.2022857 | |
13. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions, 2022, 14, 2073-8994, 313, 10.3390/sym14020313 | |
14. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman, Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities, 2022, 14, 2073-8994, 341, 10.3390/sym14020341 | |
15. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Pshtiwan Othman Mohammed, Mohamed S. Soliman, Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions, 2022, 15, 1875-6883, 10.1007/s44196-022-00081-w | |
16. | Muhammad Bilal Khan, Muhammad Aslam Noor, Khalida Inayat Noor, Kottakkaran Sooppy Nisar, Khadiga Ahmed Ismail, Ashraf Elfasakhany, Some Inequalities for LR-\left({h}_{1}, {h}_{2}\right)-Convex Interval-Valued Functions by Means of Pseudo Order Relation, 2021, 14, 1875-6883, 10.1007/s44196-021-00032-x | |
17. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, 2021, 7, 2473-6988, 1507, 10.3934/math.2022089 | |
18. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Jorge E. Macías-Díaz, Y.S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, 2022, 61, 11100168, 7089, 10.1016/j.aej.2021.12.052 | |
19. | Hüseyin Irmak, An extensive note on various fractional-order type operators and some of their effects to certain holomorphic functions, 2022, 21, 2300-133X, 7, 10.2478/aupcsm-2022-0001 | |
20. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, 2022, 7, 2473-6988, 4338, 10.3934/math.2022241 | |
21. | Muhammad Bilal Khan, Muhammad Aslam Noor, Hatim Ghazi Zaini, Gustavo Santos-García, Mohamed S. Soliman, The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals, 2022, 15, 1875-6883, 10.1007/s44196-022-00127-z | |
22. | Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322 | |
23. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation, 2022, 10, 2227-7390, 204, 10.3390/math10020204 | |
24. | Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, Mohamed S. Soliman, Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus, 2022, 10, 2227-7390, 534, 10.3390/math10040534 | |
25. | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, José António Tenreiro Machado, Juan L. G. Guirao, Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings, 2021, 13, 2073-8994, 2352, 10.3390/sym13122352 | |
26. | Conghui Xiong, Dan Fang, Xuebing Zou, Wei Yu, Fuzzy Mathematics-Based Evaluation Method for Comprehensive River Improvement Project Benefits, 2024, 12, 2169-3536, 126344, 10.1109/ACCESS.2024.3455320 | |
27. | José Ramón Rabuñal, María Soto, Juan Ignacio Morales, Diego Lombao, Miguel Ángel Soares-Remiseiro, Juan Luis Fernández-Marchena, Josep Vallverdú, Las ocupaciones tardiglaciares de la Cova de Les Borres (La Febró, Tarragona), 2024, 81, 1988-3218, 992, 10.3989/tp.2024.992 |