[1]
|
M. R. AlZgool, U. Ahmed, S. A. Shah, Q. AlMaamary, N. AlMahmoud, Examining the interplay of HR initiatives, knowledge management, technological capabilities and product innovation, J. Secur. Sustain. Issues, 10 (2020), 735–748. http://doi.org/10.9770/jssi.2020.10.2(29) doi: 10.9770/jssi.2020.10.2(29)
|
[2]
|
M. Tayyab, M. S. Habib, M. S. Jajja, B. Sarkar, Economic assessment of a serial production system with random imperfection and shortages: A step towards sustainability, Comput. Ind. Eng., 171 (2022), 108398. https://doi.org/10.1016/j.cie.2022.108398 doi: 10.1016/j.cie.2022.108398
|
[3]
|
A. S. Mahapatra, M. S. Mahapatra, B. Sarkar, S. K. Majumder, Benefit of preservation technology with promotion and time-dependent deterioration under fuzzy learning, Expert Syst. Appl., 201 (2022), 117169. https://doi.org/10.1016/j.eswa.2022.117169 doi: 10.1016/j.eswa.2022.117169
|
[4]
|
S. Khalilpourazari, A. Mirzazadeh, G. W. Weber, S. H. R. Pasandideh, A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 63–90. https://doi.org/10.1080/02331934.2019.1630625 doi: 10.1080/02331934.2019.1630625
|
[5]
|
B. Sarkar, M. Ullah, M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing, J. Clean. Prod., 332 (2022), 129813. https://doi.org/10.1016/j.jclepro.2021.129813 doi: 10.1016/j.jclepro.2021.129813
|
[6]
|
S. Kumar, M. Sigroha, K. Kumar, B. Sarkar, Manufacturing/remanufacturing based supply chain management under advertisements and carbon emission process, RAIRO- Oper. Res., 56 (2022), 831–851. https://doi.org/10.1051/ro/2021189 doi: 10.1051/ro/2021189
|
[7]
|
R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh, G. W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numer. Algebra, Control. Optim., 11 (2021), 221–253. https://doi.org/10.3934/naco.2020023 doi: 10.3934/naco.2020023
|
[8]
|
T. Paksoy, T. Bektaş, E. Özceylan, Operational and environmental performance measures in a multi-product closed-loop supply chain, Transport Res E-Log, 47 (2011), 532–546. https://doi.org/10.1016/j.tre.2010.12.001 doi: 10.1016/j.tre.2010.12.001
|
[9]
|
A. Mondal, S. K. Roy, Multi-objective sustainable opened-and closed-loop supply chain under mixed uncertainty during COVID-19 pandemic situation, Comput. Ind. Eng., 159 (2021), 107453. https://doi.org/10.1016/j.cie.2021.107453 doi: 10.1016/j.cie.2021.107453
|
[10]
|
O. Theophilus, M. A. Dulebenets, J. Pasha, O. F. Abioye, M. Kavoosi, Truck scheduling at cross-docking terminals: A follow-up state-of-the-art review, Sustainability, 11 (2019), 5245. https://doi.org/10.3390/su11195245 doi: 10.3390/su11195245
|
[11]
|
J. Van Belle, P. Valckenaers, D. Cattrysse, Cross-docking: State of the art, Omega, 40 (2012), 827–846. https://doi.org/10.1016/j.omega.2012.01.005 doi: 10.1016/j.omega.2012.01.005
|
[12]
|
S. C. Corp, Cross-docking Trend Report, Whitepaper Series, Saddle Creek Corp: Lakeland, FL, USA, 2011. Available from: 070111DCMwe.pdf (distributiongroup.com)
|
[13]
|
G. Stalk, P. Evans, L. E. Shulman, Competing on capabilities: The new rules of corporate strategy, Harv. Bus. Rev., 70 (1992), 57–69.
|
[14]
|
N. S. Ankem, Models for performance analysis of a cross-dock, Master Thesis, University Park, Pennsylvania: Pennsylvania State University, USA, 2017.
|
[15]
|
Y. Kuo, Optimizing truck sequencing and truck dock assignment in a cross docking system, Expert Syst. Appl., 40 (2013), 5532–5541. https://doi.org/10.1016/j.eswa.2013.04.019 doi: 10.1016/j.eswa.2013.04.019
|
[16]
|
J. J. Bartholdi Ⅲ, S. T. Hackman, Warehouse and Distribution Science Release 0.94, Supply Chain and Logistics Institute, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 2011.
|
[17]
|
K. K. Yang, J. Balakrishnan, C. H. Cheng, An analysis of factors affecting cross docking operations, J. Bus. Logist., 31 (2011), 121–148. https://doi.org/10.1002/j.2158-1592.2010.tb00131.x doi: 10.1002/j.2158-1592.2010.tb00131.x
|
[18]
|
J. J. Bartholdi Ⅲ, K. R. Gue, Best shape of a cross-dock, Transp. Sci., 38 (2004), 235–244. https://doi.org/10.1287/trsc.1030.0077 doi: 10.1287/trsc.1030.0077
|
[19]
|
I. F. Vis, K. J. Roodbergen, Positioning of goods in a cross-docking environment, Comput. Ind. Eng., 54 (2008), 677–689. https://doi.org/10.1016/j.cie.2007.10.004 doi: 10.1016/j.cie.2007.10.004
|
[20]
|
J. J. Bartholdi Ⅲ, K. R. Gue, Reducing labor costs in an LTL crossdocking terminal, Oper. Res., 48 (2000), 823–832. https://doi.org/10.1287/opre.48.6.823.12397 doi: 10.1287/opre.48.6.823.12397
|
[21]
|
J. F. Wang, A. Regan, Real-time trailer scheduling for cross dock operations, Transp. J., 47 (2008), 5–20. https://doi.org/10.5325/transportationj.47.2.0005 doi: 10.5325/transportationj.47.2.0005
|
[22]
|
G. Tadumadze, N. Boysen, S. Emde, F. Weidinger, Integrated truck and workforce scheduling to accelerate the unloading of trucks, Eur. J. Oper. Res., 278 (2019), 343–362. https://doi.org/10.1016/j.ejor.2019.04.024 doi: 10.1016/j.ejor.2019.04.024
|
[23]
|
H. G. Resat, P. Berten, Z. Kilek, M. B. Kalay, Design and development of robust optimization model for sustainable cross-docking systems: A case study in electrical devices manufacturing company, In: Muthu, SS (eds) Sustainable Packaging. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore, (2021), 203–224. https://doi.org/10.1007/978-981-16-4609-6_8
|
[24]
|
E. E. Zachariadis, A. I. Nikolopoulou, E. G. Manousakis, P. P. Repoussis, C. D. Tarantilis, The vehicle routing problem with capacitated cross-docking, Expert Syst. Appl., 196 (2022), 116620. https://doi.org/10.1016/j.eswa.2022.116620 doi: 10.1016/j.eswa.2022.116620
|
[25]
|
M. Madani-Isfahani, R. Tavakkoli-Moghaddam, B. Naderi, Multiple cross-docks scheduling using two meta-heuristic algorithms, Comput. Ind. Eng., 74 (2014), 129–138. https://doi.org/10.1016/j.cie.2014.05.009 doi: 10.1016/j.cie.2014.05.009
|
[26]
|
S. B. Choi, B. K. Dey, S. J. Kim, B. Sarkar, Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand variability and controllable lead time, RAIRO- Oper. Res., 56 (2022), 1623–1653. https://doi.org/10.1051/ro/2022026 doi: 10.1051/ro/2022026
|
[27]
|
B. Pal, A. Sarkar, B. Sarkar, Optimal decisions in a dual-channel competitive green supply chain management under promotional effort, Expert Syst. Appl., (2023), 118315. https://doi.org/10.1016/j.eswa.2022.118315 doi: 10.1016/j.eswa.2022.118315
|
[28]
|
B. Sarkar, S. Bhuniya, A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand, Expert Syst. Appl., 202 (2022), 117154. https://doi.org/10.1016/j.eswa.2022.117154 doi: 10.1016/j.eswa.2022.117154
|
[29]
|
M. S. Habib, M. Omair, M. B. Ramzan, T. N. Chaudhary, M. Farooq, B. Sarkar, A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network, J. Clean. Prod., 366 (2022), 132752. https://doi.org/10.1016/j.jclepro.2022.132752 doi: 10.1016/j.jclepro.2022.132752
|
[30]
|
B. Sarkar, A. Debnath, A. S. Chiu, W. Ahmed, Circular economy-driven two-stage supply chain management for nullifying waste, J. Clean. Prod., 339 (2022), 130513. https://doi.org/10.1016/j.jclepro.2022.130513 doi: 10.1016/j.jclepro.2022.130513
|
[31]
|
A. Garai, B. Sarkar, Economically independent reverse logistics of customer-centric closed-loop supply chain for herbal medicines and biofuel, J. Clean. Prod., 334 (2022), 129977. https://doi.org/10.1016/j.jclepro.2021.129977 doi: 10.1016/j.jclepro.2021.129977
|
[32]
|
T. Wu, J. Blackhurst, Modelling supply chain information and material perturbations, in Supply Chain Management and Knowledge Management (A. Dwivedi and T. Butcher eds), Palgrave Macmillan, London, (2009), 107–123. https://doi.org/10.1057/9780230234956_6
|
[33]
|
B. Ponte, J. Costas, J. Puche, R. Pino, D. de la Fuente, The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains, Transport Res. E-Log., 111 (2018), 165–185. https://doi.org/10.1016/j.tre.2018.01.014 doi: 10.1016/j.tre.2018.01.014
|
[34]
|
E. B. Tirkolaee, A. Goli, A. Faridnia, M. Soltani, G. W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, J. Clean. Prod., 276 (2020), 122927. https://doi.org/10.1016/j.jclepro.2020.122927 doi: 10.1016/j.jclepro.2020.122927
|
[35]
|
J. J. Vogt, The Successful cross-dock based supply chain, J. Bus. Logist., 31 (2010), 99–119. https://doi.org/10.1002/j.2158-1592.2010.tb00130.x doi: 10.1002/j.2158-1592.2010.tb00130.x
|
[36]
|
O. Theophilus, M. A. Dulebenets, J. Pasha, Y. Y. Lau, A. M. Fathollahi-Fard, A. Mazaheri, Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations, Comput. Ind. Eng., 156 (2021), 107240. https://doi.org/10.1016/j.cie.2021.107240 doi: 10.1016/j.cie.2021.107240
|
[37]
|
M. R. Galbreth, J. A. Hill, S. Handley, An investigation of the value of cross-docking for supply chain management, J. Bus. Logist., 29 (2008), 225–239. https://doi.org/10.1002/j.2158-1592.2008.tb00076.x doi: 10.1002/j.2158-1592.2008.tb00076.x
|
[38]
|
M. Vanajakumari, H. Sun, A. Jones, C. Sriskandarajah, Supply chain planning: A case for Hybrid Cross-Docks, Omega, 108 (2022), 102585. https://doi.org/10.1016/j.omega.2021.102585 doi: 10.1016/j.omega.2021.102585
|
[39]
|
D. Mardanya, G. Maity, S. K. Roy, The multi-objective multi-item just-in-time transportation problem, Optimization, (2021), 1–32. https://doi.org/10.1080/02331934.2021.1963246 doi: 10.1080/02331934.2021.1963246
|
[40]
|
P. B. Castellucci, A. M. Costa, F. Toledo, Network scheduling problem with cross-docking and loading constraints, Comput Oper Res, 132 (2021), 105271. https://doi.org/10.1016/j.cor.2021.105271 doi: 10.1016/j.cor.2021.105271
|
[41]
|
B. K. Giri, S. K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem, Int. J. Mach. Learn. Cybern., (2022), 1–24. https://doi.org/10.1007/s13042-022-01582-y doi: 10.1007/s13042-022-01582-y
|
[42]
|
S. K. Das, M. Pervin, S. K. Roy, G. W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach, Ann. Oper. Res., (2021), 1–27. https://doi.org/10.1007/s10479-020-03809-z doi: 10.1007/s10479-020-03809-z
|
[43]
|
A. M. Fathollahi-Fard, M. Ranjbar-Bourani, N. Cheikhrouhou, M. Hajiaghaei-Keshteli, Novel modifications of social engineering optimizer to solve a truck scheduling problem in a cross-docking system, Comput. Ind. Eng., 137 (2019), 106103, https://doi.org/10.1016/j.cie.2019.106103 doi: 10.1016/j.cie.2019.106103
|
[44]
|
M. A. Dulebenets, A diploid evolutionary algorithm for sustainable truck scheduling at a cross-docking facility, Sustainability, 10 (2018), 1333. https://doi.org/10.3390/su10051333 doi: 10.3390/su10051333
|
[45]
|
M. A. Dulebenets, A comprehensive evaluation of weak and strong mutation mechanisms in evolutionary algorithms for truck scheduling at cross-docking terminals, IEEE Access, 6 (2018), 65635–65650. https://doi.org/10.1109/ACCESS.2018.2874439 doi: 10.1109/ACCESS.2018.2874439
|
[46]
|
M. A. Dulebenets, An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal, Inf. Sci., 565 (2021), 390–421. https://doi.org/10.1016/j.ins.2021.02.039 doi: 10.1016/j.ins.2021.02.039
|
[47]
|
G. C. Issi, R. Linfati, J. W. Escobar, Mathematical optimization model for truck scheduling in a distribution center with a mixed service-mode dock area, J. Adv. Transp., 2020 (2020). https://doi.org/10.1155/2020/8813372 doi: 10.1155/2020/8813372
|
[48]
|
A. H. Goodarzi, R. Tavakkoli-Moghaddam, A. Amini, A new bi-objective vehicle routing-scheduling problem with cross-docking: mathematical model and algorithms., Comput. Ind. Eng., 149 (2020), 106832. https://doi.org/10.1016/j.cie.2020.106832 doi: 10.1016/j.cie.2020.106832
|
[49]
|
F. Heidari, S. H. Zegordi, R. Tavakkoli-Moghaddam, Modeling truck scheduling problem at a cross-dock facility through a bi-objective bi-level optimization, J. Intell. Manuf., 29 (2018), 1155–1170. https://doi.org/10.1007/s10845-015-1160-3 doi: 10.1007/s10845-015-1160-3
|
[50]
|
W. Wisittipanich, T. Irohara, P. Hengmeechai, Truck scheduling problems in the cross docking network, Int. J. Logist. Syst. Manag., 33 (2019), 420–439. https://doi.org/10.1504/IJLSM.2019.101164 doi: 10.1504/IJLSM.2019.101164
|
[51]
|
A. Shahmardan, M. S. Sajadieh, Truck scheduling in a multi-door cross-docking center with partial unloading—Reinforcement learning-based simulated annealing approaches, Comput. Ind. Eng., 139 (2020), 106134. https://doi.org/10.1016/j.cie.2019.106134 doi: 10.1016/j.cie.2019.106134
|
[52]
|
S. I. Sayed, I. Contreras, J. A. Diaz, D. E. Luna, Integrated cross-dock door assignment and truck scheduling with handling times, TOP, 28 (2020), 705–727. https://doi.org/10.1007/s11750-020-00556-z doi: 10.1007/s11750-020-00556-z
|
[53]
|
H. Khorshidian, M. A. Shirazi, S. M. F. Ghomi, An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross dock, J. Intell. Manuf., 30 (2019), 163–184. https://doi.org/10.1007/s10845-016-1229-7 doi: 10.1007/s10845-016-1229-7
|
[54]
|
A. Motaghedi-Larijani, Solving the number of cross-dock open doors optimization problem by combination of NSGA-Ⅱ and multi-objective simulated annealing, Appl. Soft Comput., 128 (2022), 109448. https://doi.org/10.1016/j.asoc.2022.109448 doi: 10.1016/j.asoc.2022.109448
|
[55]
|
B. Werners, T. Wülfing, Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net, Eur. J. Oper. Res., 201 (2010), 419–426. https://doi.org/10.1016/j.ejor.2009.02.035 doi: 10.1016/j.ejor.2009.02.035
|
[56]
|
F. Essghaier, H. Allaoui, G. Goncalves, Truck to door assignment in a shared cross-dock under uncertainty, Expert Syst. Appl., 182 (2021), 114889. https://doi.org/10.1016/j.eswa.2021.114889 doi: 10.1016/j.eswa.2021.114889
|
[57]
|
S. Gelareh, F. Glover, O. Guemri, S. Hanafi, P. Nduwayo, R. Todosijević, A comparative study of formulations for a cross-dock door assignment problem, Omega, 91 (2020), 102015. https://doi.org/10.1016/j.omega.2018.12.004 doi: 10.1016/j.omega.2018.12.004
|
[58]
|
M. T. Kyi, S. S. Maw, L. L. Naing, Mathematical estimation for maximum flow in electricity distribution network by Ford-Fulkerson iteration algorithm, Int. J. Sci. Res. Publ., 9 (2019), https://doi.org/10.29322/IJSRP.9.08.2019.p9229 doi: 10.29322/IJSRP.9.08.2019.p9229
|
[59]
|
M. T. Kyi, L. L. Naing, Application of Ford-Fulkerson algorithm to maximum flow in water distribution pipeline network, Int. J Sci. Res. Publ., 8 (2018), https://doi.org/10.29322/IJSRP.8.12.2018.p8441 doi: 10.29322/IJSRP.8.12.2018.p8441
|
[60]
|
A. Özmen, E. Kropat, G. W. Weber, Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty, Optimization, 66 (2017), 2135–2155. https://doi.org/10.1080/02331934.2016.1209672 doi: 10.1080/02331934.2016.1209672
|
[61]
|
A. Bellanger, S. Hanafi, C. Wilbaut, Three-stage hybrid-flowshop model for cross-docking, Comput Oper Res, 40 (2013), 1109–1121. https://doi.org/10.1016/j.cor.2012.11.009 doi: 10.1016/j.cor.2012.11.009
|
[62]
|
C. Daquin, H. Allaoui, G. Goncalves, T. Hsu, Variable neighborhood search based algorithms for crossdock truck assignment, RAIRO Oper. Res., 55 (2021), S2291–S2323. https://doi.org/10.1051/ro/2020087 doi: 10.1051/ro/2020087
|
[63]
|
L. R. J. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ. 1962
|
[64]
|
J. Edmonds, R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM, 19 (1972), 248–264. https://doi.org/10.1145/321694.321699 doi: 10.1145/321694.321699
|
[65]
|
C. Jain, D. Garg, Improved Edmond Karp algorithm for network flow problem, Int. J. Comput. Appl., 37 (2012), 48–53. https://doi.org/10.5120/4576-6624 doi: 10.5120/4576-6624
|
[66]
|
K. K. Mallick, A. R. Khan, M. M. Ahmed, M. S. Arefin, M. S. Uddin, Modified Edmonds-Karp algorithm to solve maximum flow problem, Open J. App. Sci., 6 (2016), 131–140. https://doi.org/10.4236/ojapps.2016.62014 doi: 10.4236/ojapps.2016.62014
|
[67]
|
Y. Peretz, Y. Fischler, A fast parallel max-flow algorithm, J. Parallel Distrib. Comput., 169 (2022), 226–241. https://doi.org/10.1016/j.jpdc.2022.07.003 doi: 10.1016/j.jpdc.2022.07.003
|
[68]
|
M. Bulut, E. Özcan, Optimization of electricity transmission by Ford–Fulkerson algorithm, Sustain. Energy, Grids Netw., 28 (2021), 100544. https://doi.org/10.1016/j.segan.2021.100544 doi: 10.1016/j.segan.2021.100544
|
[69]
|
M. S. Sabbagh, H. Ghafari, S. R. Mousavi, A new hybrid algorithm for the balanced transportation problem, Comput. Ind. Eng., 82 (2015), 115–126. https://doi.org/10.1016/j.cie.2015.01.018 doi: 10.1016/j.cie.2015.01.018
|
[70]
|
D. Goldfarb, Z. Jin, A new scaling algorithm for the minimum cost network flow problem, Oper. Res. Lett., 25 (1999), 205–211. https://doi.org/10.1016/S0167-6377(99)00047-4 doi: 10.1016/S0167-6377(99)00047-4
|
[71]
|
H. Bui, E. S. Jung, V. Vishwanath, A. Johnson, J. Leigh, M. E. Papka, Improving sparse data movement performance using multiple paths on the Blue Gene/Q supercomputer, Parallel Comput., 51 (2016), 3–16. https://doi.org/10.1016/j.parco.2015.09.002 doi: 10.1016/j.parco.2015.09.002
|
[72]
|
R. M. Kaplan, An improved algorithm for multi-way trading for exchange and barter, Electron. Commer. Res. Appl., 10 (2011), 67–74. https://doi.org/10.1016/j.elerap.2010.08.001 doi: 10.1016/j.elerap.2010.08.001
|
[73]
|
G. R. Waissi, Worst case behavior of the Dinic algorithm, Appl. Math. Lett., 4 (1991), 57–60. https://doi.org/10.1016/0893-9659(91)90145-L doi: 10.1016/0893-9659(91)90145-L
|