
Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) are two newly developed meta-heuristic algorithms that simulate several intelligent hunting behaviors of Aquila and African vulture in nature, respectively. AO has powerful global exploration capability, whereas its local exploitation phase is not stable enough. On the other hand, AVOA possesses promising exploitation capability but insufficient exploration mechanisms. Based on the characteristics of both algorithms, in this paper, we propose an improved hybrid AO and AVOA optimizer called IHAOAVOA to overcome the deficiencies in the single algorithm and provide higher-quality solutions for solving global optimization problems. First, the exploration phase of AO and the exploitation phase of AVOA are combined to retain the valuable search competence of each. Then, a new composite opposition-based learning (COBL) is designed to increase the population diversity and help the hybrid algorithm escape from the local optima. In addition, to more effectively guide the search process and balance the exploration and exploitation, the fitness-distance balance (FDB) selection strategy is introduced to modify the core position update formula. The performance of the proposed IHAOAVOA is comprehensively investigated and analyzed by comparing against the basic AO, AVOA, and six state-of-the-art algorithms on 23 classical benchmark functions and the IEEE CEC2019 test suite. Experimental results demonstrate that IHAOAVOA achieves superior solution accuracy, convergence speed, and local optima avoidance than other comparison methods on most test functions. Furthermore, the practicality of IHAOAVOA is highlighted by solving five engineering design problems. Our findings reveal that the proposed technique is also highly competitive and promising when addressing real-world optimization tasks. The source code of the IHAOAVOA is publicly available at https://doi.org/10.24433/CO.2373662.v1.
Citation: Yaning Xiao, Yanling Guo, Hao Cui, Yangwei Wang, Jian Li, Yapeng Zhang. IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10963-11017. doi: 10.3934/mbe.2022512
[1] | Guohui Zhang, Jinghe Sun, Xing Liu, Guodong Wang, Yangyang Yang . Solving flexible job shop scheduling problems with transportation time based on improved genetic algorithm. Mathematical Biosciences and Engineering, 2019, 16(3): 1334-1347. doi: 10.3934/mbe.2019065 |
[2] | Ruiping Yuan, Jiangtao Dou, Juntao Li, Wei Wang, Yingfan Jiang . Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning. Mathematical Biosciences and Engineering, 2023, 20(2): 1903-1918. doi: 10.3934/mbe.2023087 |
[3] | Shixuan Yao, Xiaochen Liu, Yinghui Zhang, Ze Cui . An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning. Mathematical Biosciences and Engineering, 2022, 19(9): 9258-9290. doi: 10.3934/mbe.2022430 |
[4] | Kongfu Hu, Lei Wang, Jingcao Cai, Long Cheng . An improved genetic algorithm with dynamic neighborhood search for job shop scheduling problem. Mathematical Biosciences and Engineering, 2023, 20(9): 17407-17427. doi: 10.3934/mbe.2023774 |
[5] | Jianguo Duan, Mengting Wang, Qinglei Zhang, Jiyun Qin . Distributed shop scheduling: A comprehensive review on classifications, models and algorithms. Mathematical Biosciences and Engineering, 2023, 20(8): 15265-15308. doi: 10.3934/mbe.2023683 |
[6] | Zilong Zhuang, Zhiyao Lu, Zizhao Huang, Chengliang Liu, Wei Qin . A novel complex network based dynamic rule selection approach for open shop scheduling problem with release dates. Mathematical Biosciences and Engineering, 2019, 16(5): 4491-4505. doi: 10.3934/mbe.2019224 |
[7] | Shaofeng Yan, Guohui Zhang, Jinghe Sun, Wenqiang Zhang . An improved ant colony optimization for solving the flexible job shop scheduling problem with multiple time constraints. Mathematical Biosciences and Engineering, 2023, 20(4): 7519-7547. doi: 10.3934/mbe.2023325 |
[8] | Zichen Wang, Xin Wang . Fault-tolerant control for nonlinear systems with a dead zone: Reinforcement learning approach. Mathematical Biosciences and Engineering, 2023, 20(4): 6334-6357. doi: 10.3934/mbe.2023274 |
[9] | Jin Zhang, Nan Ma, Zhixuan Wu, Cheng Wang, Yongqiang Yao . Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience. Mathematical Biosciences and Engineering, 2024, 21(5): 6077-6096. doi: 10.3934/mbe.2024267 |
[10] | Lu-Wen Liao . A branch and bound algorithm for optimal television commercial scheduling. Mathematical Biosciences and Engineering, 2022, 19(5): 4933-4945. doi: 10.3934/mbe.2022231 |
Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) are two newly developed meta-heuristic algorithms that simulate several intelligent hunting behaviors of Aquila and African vulture in nature, respectively. AO has powerful global exploration capability, whereas its local exploitation phase is not stable enough. On the other hand, AVOA possesses promising exploitation capability but insufficient exploration mechanisms. Based on the characteristics of both algorithms, in this paper, we propose an improved hybrid AO and AVOA optimizer called IHAOAVOA to overcome the deficiencies in the single algorithm and provide higher-quality solutions for solving global optimization problems. First, the exploration phase of AO and the exploitation phase of AVOA are combined to retain the valuable search competence of each. Then, a new composite opposition-based learning (COBL) is designed to increase the population diversity and help the hybrid algorithm escape from the local optima. In addition, to more effectively guide the search process and balance the exploration and exploitation, the fitness-distance balance (FDB) selection strategy is introduced to modify the core position update formula. The performance of the proposed IHAOAVOA is comprehensively investigated and analyzed by comparing against the basic AO, AVOA, and six state-of-the-art algorithms on 23 classical benchmark functions and the IEEE CEC2019 test suite. Experimental results demonstrate that IHAOAVOA achieves superior solution accuracy, convergence speed, and local optima avoidance than other comparison methods on most test functions. Furthermore, the practicality of IHAOAVOA is highlighted by solving five engineering design problems. Our findings reveal that the proposed technique is also highly competitive and promising when addressing real-world optimization tasks. The source code of the IHAOAVOA is publicly available at https://doi.org/10.24433/CO.2373662.v1.
In this paper, we consider the following diffusion equation on
{−∇⋅(α∇u)=f,inΩ,u=0,on∂Ω. | (1) |
To approximate (1), taking advantage of the adaptive mesh refinement (AMR) to save valuable computational resources, the adaptive finite element method on quadtree mesh is among the most popular ones in the engineering and scientific computing community [20]. Compared with simplicial meshes, quadtree meshes provide preferable performance in the aspects of the accuracy and robustness. There are lots of mature software packages (e.g., [1,2]) on quadtree meshes. To guide the AMR, one possible way is through the a posteriori error estimation to construct computable quantities to indicate the location that the mesh needs to be refined/coarsened, thus to balance the spacial distribution of the error which improves the accuracy per computing power. Residual-based and recovery-based error estimators are among the most popular ones used. In terms of accuracy, the recovery-based error estimator shows more appealing attributes [28,3].
More recently, newer developments on flux recovery have been studied by many researchers on constructing a post-processed flux in a structure-preserving approximation space. Using (1) as an example, given that the data
However, these
More recently, a new class of methods called the virtual element methods (VEM) were introduced in [4,8], which can be viewed as a polytopal generalization of the tensorial/simplicial finite element. Since then, lots of applications of VEM have been studied by many researchers. A usual VEM workflow splits the consistency (approximation) and the stability of the method as well as the finite dimensional approximation space into two parts. It allows flexible constructions of spaces to preserve the structure of the continuous problems such as higher order continuities, exact divergence-free spaces, and many others. The VEM functions are represented by merely the degrees of freedom (DoF) functionals, not the pointwise values. In computation, if an optimal order discontinuous approximation can be computed elementwisely, then adding an appropriate parameter-free stabilization suffices to guarantee the convergence under common assumptions on the geometry of the mesh.
The adoption of the polytopal element brings many distinctive advantages, for example, treating rectangular element with hanging nodes as polygons allows a simple construction of
The major ingredient in our study is an
If
(α∇uT,∇vT)=(f,vT),∀vT∈Qk(T)∩H10(Ω), | (2) |
in which the standard notation is opted.
Qk(T):={v∈H1(Ω):v|K∈Qk(K),∀K∈T}. |
and on
Qk(K):=Pk,k(K)={p(x)q(y),p∈Pk([a,b]),q∈Pk([c,d])}, |
where
On
NH:={z∈N:∃K∈T,z∈∂K∖NK} | (3) |
Otherwise the node
For each edge
{v}γe:=γv−+(1−γ)v+. |
In this subsection, the quadtree mesh
For the embedded element
Subsequently,
On
Vk(K):={τ∈H(div;K)∩H(rot;K):∇⋅τ∈Pk−1(K),∇×τ=0,τ⋅ne∈Pk(e),∀e⊂∂K}. | (4) |
An
Vk:={τ∈H(div):τ|K∈Vk(K),onK∈Tpoly}. | (5) |
Next we turn to define the degrees of freedom (DoFs) of this space. To this end, we define the set of scaled monomials
Pk(e):=span{1,s−mehe,(s−mehe)2,…,(s−mehe)k}, | (6) |
where
Pk(K):=span{mα(x):=(x−xKhK)α,|α|≤k}. | (7) |
The degrees of freedom (DoFs) are then set as follows for a
(e)k≥1∫e(τ⋅ne)mds,∀m∈Pk(e),one⊂Epoly.(i)k≥2∫Kτ⋅∇mdx,∀m∈Pk−1(K)/RonK∈Tpoly. | (8) |
Remark 1. We note that in our construction, the degrees of freedom to determine the curl of a VEM function originally in [8] are replaced by a curl-free constraint thanks to the flexibility to virtual element. The reason why we opt for this subspace is that the true flux
As the data
Consider
On each
{−α∇uT}γee⋅ne:=(γe(−αK−∇uT|K−)+(1−γe)(−αK+∇uT|K+))⋅ne, | (9) |
where
γe:=α1/2K+α1/2K++α1/2K−. | (10) |
First for both
σT⋅ne={−α∇uT}γee⋅ne. | (11) |
In the lowest order case
|K|∇⋅σT=∫K∇⋅σTdx=∫∂KσT⋅n∂Kds=∑e⊂∂K∫eσT⋅n∂K|eds. | (12) |
If
∇⋅σT=Πk−1f+cK. | (13) |
The reason to add
cK=1|K|(−∫KΠk−1fdx+∑e⊂∂K∫e{−α∇uT}γee⋅n∂K|eds), | (14) |
Consequently for
(σT,∇q)K=−(Πk−1f+cK,q)K+∑e⊂∂K({−α∇uT}γee⋅n∂K|e,q)e. | (15) |
To the end of constructing a computable local error indicator, inspired by the VEM formulation [8], the recovered flux is projected to a space with a much simpler structure. A local oblique projection
(Πτ,∇p)K=(τ,∇p)K,∀p∈Pk(K)/R. | (16) |
Next we are gonna show that this projection operator can be straightforward computed for vector fields in
When
(τ,∇p)K=−(∇⋅τ,p)K+(τ⋅n,p)∂K. | (17) |
By definition of the space (4) when
When
(τ,∇p)K=−(∇⋅τ,Πk−1p)K+(τ⋅n,p)∂K=(τ,∇Πk−1p)K+(τ⋅n,p−Πk−1p)∂K, | (18) |
which can be evaluated using both DoF sets
Given the recovered flux \(\mathit{\boldsymbol{\sigma}}_{\mathcal{T}}\) in Section 3, the recovery-based local error indicator
ηflux,K:=‖α−1/2(σT+α∇uT)‖K,andηres,K:=‖α−1/2(f−∇⋅σT)‖K, | (19) |
then
ηK={ηflux,Kwhenk=1,(η2flux,K+η2res,K)1/2whenk≥2. | (20) |
A computable
ˆηflux,K:=‖α−1/2KΠ(σT+αK∇uT)‖K, | (21) |
with the oblique projection
ˆηstab,K:=|α−1/2K(I−Π)(σT+αK∇uT)|S,K. | (22) |
Here
SK(v,w):=∑e⊂∂Khe(v⋅ne,w⋅ne)e+∑α∈Λ(v,∇mα)K(w,∇mα)K, | (23) |
where
The computable error estimator
ˆη2={∑K∈T(ˆη2flux,K+ˆη2stab,K)=:∑K∈Tˆη2Kwhenk=1,∑K∈T(ˆη2flux,K+ˆη2stab,K+η2res,K)=:∑K∈Tˆη2Kwhenk≥2. | (24) |
In this section, we shall prove the proposed recovery-based estimator
Theorem 4.1. Let
ˆη2flux,K≲osc(f;K)2+η2elem,K+η2edge,K, | (25) |
where
osc(f;K)=α−1/2KhK‖f−Πk−1f‖K,ηelem,K:=α−1/2KhK‖f+∇⋅(α∇uT)‖K,andηedge,K:=(∑e⊂∂KheαK+αKe‖[[α∇uT⋅ne]]‖2e)1/2. |
In the edge jump term,
Proof. Let
ˆη2flux,K=(Π(σT+αK∇uT),∇p)K=(σT+αK∇uT,∇p)K=−(∇⋅(σT+αK∇uT),p)K+∑e⊂∂K∫e(σT+αK∇uT)⋅n∂K|epds. | (26) |
By (11), without loss of generality we assume
(σT+αK∇uT)⋅ne=((1−γe)αK∇uT|K−(1−γe)αKe∇uT|Ke)⋅ne=α1/2Kα1/2K+α1/2Ke[[α∇uT⋅ne]]e. | (27) |
The boundary term in (26) can be then rewritten as
∫e(σT+αK∇uT)⋅nepds=∫e1α1/2K+α1/2Ke[[α∇uT⋅ne]]eα1/2Kpds≲1(αK+αKe)1/2h1/2e‖[[α∇uT⋅ne]]‖eα1/2Kh−1/2e‖p‖e. | (28) |
By a trace inequality on an edge of a polygon (Lemma 7.1), and the Poincaré inequality for
h−1/2e‖p‖e≲h−1K‖p‖K+‖∇p‖K≲‖∇p‖K. |
As a result,
∑e⊂∂K∫e(σT+αK∇uT)⋅nepds≲ηedge,Kα1/2K‖∇p‖e=ηedge,Kˆηflux,K. |
For the bulk term on
−(∇⋅(σT+αK∇uT),p)K≤|∇⋅(σT+αK∇uT)||K|1/2‖p‖K≤1|K|1/2|∫K∇⋅(σT+αK∇uT)dx|‖p‖K=1|K|1/2|∑e⊂∂K∫e(σT+αK∇uT)⋅neds|‖p‖K≤(∑e⊂∂K1α1/2K+α1/2Ke‖[[α∇uT⋅ne]]‖eα1/2Khe)‖∇p‖≲ηedge,Kˆηflux,K. |
When
−(∇⋅(σT+αK∇uT),p)K=−(Πk−1f+cK+∇⋅(αK∇uT),p)K≤(‖f−Πk−1f‖K+‖f+∇⋅(α∇uT)‖K+|cK||K|1/2)‖p‖K. | (29) |
The first two terms can be handled by combining the weights
cK|K|1/2=1|K|1/2(−∫K(Πk−1f−f)dx−∫K(f+∇⋅(α∇uT))dx+∫K∇⋅(α∇uT)dx+∑e⊂∂K∫e{−α∇uT}γee⋅neds)≤‖f−Πk−1f‖K+‖f+∇⋅(α∇uT)‖K+1|K|1/2∑e⊂∂K∫e(αK∇uT−{α∇uT}γee)⋅neds≤‖f−Πk−1f‖K+‖f+∇⋅(α∇uT)‖K+∑e⊂∂Kα1/2Kα1/2K+α1/2Ke‖[[α∇uT⋅ne]]‖e. | (30) |
The two terms on
−(∇⋅(σT+αK∇uT),p)K≲(osc(f;K)+ηelem,K+ηedge,K)α1/2K‖∇p‖ |
and the theorem follows.
Theorem 4.2. Under the same setting with Theorem 4.1, let
ˆη2stab,K≲osc(f;K)2+η2elem,K+η2edge,K, | (31) |
The constant depends on
Proof. This theorem follows directly from the norm equivalence Lemma 7.3:
|α−1/2K(I−Π)(σT+αK∇uT)|S,K≲|α−1/2K(σT+αK∇uT)|S,K, |
while evaluating the DoFs
Theorem 4.3. Under the same setting with Theorem 4.1, on any
ˆηK≲osc(f;K)+‖α1/2∇(u−uT)‖ωK, | (32) |
with a constant independent of
Proof. This is a direct consequence of Theorem 4.1 and 4.2 and the fact that the residual-based error indicator is efficient by a common bubble function argument.
In this section, we shall prove that the computable error estimator
Assumption 1 (
By Assumption 1, we denote the father
Assumption 2 (Quasi-monotonicity of
Denote
πzv={∫ωz∩ωm(z)vϕz∫ωz∩ωm(z)ϕzifz∈Ω,0ifz∈∂Ω. | (33) |
We note that if
Iv:=∑z∈N1(πzv)ϕz. | (34) |
Lemma 4.4 (Estimates for
α1/2Kh−1K‖v−Iv‖K+α1/2K‖∇Iv‖K≲‖α1/2∇v‖ωK, | (35) |
and for
∑K⊂ωzh−2z‖α1/2(v−πzv)ϕz‖2K≲‖α1/2∇v‖2ωz, | (36) |
in which
Proof. The estimate for
Denotes the subset of nodes
osc(f;T)2:=∑z∈N1∩(N∂Ω∪NI)h2z‖α−1/2f‖2ωz+∑z∈N1∖(N∂Ω∪NI)h2z‖α−1/2(f−fz)‖2ωz, | (37) |
with
Theorem 4.5. Let
‖α1/2∇(u−uT)‖≲(ˆη2+osc(f;T)2)1/2. | (38) |
For
‖α1/2∇(u−uT)‖≲ˆη, | (39) |
where the constant depends on
Proof. Let
‖α1/2∇ε‖2=(α∇(u−uT),∇(ε−Iε))=(α∇u+σT,∇(ε−Iε))−(α∇uT+σT,∇(ε−Iε))=(f−∇⋅σT,ε−Iε)−(α∇uT+σT,∇(ε−Iε))≤(∑K∈Tα−1Kh2K‖f−∇⋅σT‖2K)1/2(∑K∈TαKh−2K‖ε−Iε‖2K)1/2(∑K∈Tα−1K‖α∇uT+σT‖2K)1/2(∑K∈TαK‖∇(ε−Iε)‖2K)1/2.≲(∑K∈T(η2res,K+η2flux,K))1/2(∑K∈T‖α1/2∇ε‖ωK)1/2. |
Applying the norm equivalence of
When
(f,ε−Iε)=∑z∈N1∑K⊂ωz(f,(ε−πzε)ϕz)K, | (40) |
in which a patch-wise constant
(f−∇⋅σT,ε−Iε)=(f,ε−Iε)−(∇⋅(σT+αK∇uT),ε−Iε)=∑z∈N∑K⊂ωz(f,(ε−πzε)ϕz)K−(∇⋅(σT+αK∇uT),ε−Iε)≤(osc(f;T)2)1/2(∑z∈N1∑K⊂ωzh−2z‖α1/2(ε−πzε)ϕz‖2K)1/2+(∑K∈Tα−1Kh2K‖∇⋅(σT+αK∇uT)‖2K)1/2(∑K∈TαKh−2K‖ε−Iε‖2K)1/2. |
Applied an inverse inequality in Lemma 7.2 on
The numerics is prepared using the bilinear element for common AMR benchmark problems. The codes for this paper are publicly available on https://github.com/lyc102/ifem implemented using
The adaptive finite element (AFEM) iterative procedure is following the standard
SOLVE⟶ESTIMATE⟶MARK⟶REFINE. |
The linear system is solved by MATLAB
∑K∈Mˆη2K≥θ∑K∈Tˆη2K,forθ∈(0,1). |
Throughout all examples, we fix
η2Residual,K:=α−1Kh2K‖f+∇⋅(α∇uT)‖2K+12∑e⊂∂KheαK+αKe‖[[α∇uT⋅ne]]‖2e, |
Let
effectivityindex:=η/‖α1/2∇ε‖,whereε:=u−uT,η=ηResidualorˆη, |
i.e., the closer to 1 the effectivity index is, the more accurate this estimator is to measure the error of interest. We use an order
lnηn∼−rηlnNn+c1,andln‖α1/2∇(u−uT)‖∼−rerrlnNn+c2, |
where the subscript
In this example, a standard AMR benchmark on the L-shaped domain is tested. The true solution
The solution
This example is a common benchmark test problem introduced in [9], see also [17,12]) for elliptic interface problems. The true solution
μ(θ)={cos((π/2−δ)γ)⋅cos((θ−π/2+ρ)γ)if0≤θ≤π/2cos(ργ)⋅cos((θ−π+δ)γ)ifπ/2≤θ≤πcos(δγ)⋅cos((θ−π−ρ)γ)ifπ≤θ<3π/2cos((π/2−ρ)γ)⋅cos((θ−3π/2−δ)γ)if3π/2≤θ≤2π |
While
γ=0.1,R≈161.4476387975881,ρ=π/4,δ≈−14.92256510455152, |
By this choice, this function is very singular near the origin as the maximum regularity it has is
The AFEM procedure for this problem stops when the relative error reaches
A postprocessed flux with the minimum
However, we do acknowledge that the technical tool involving interpolation is essentially limited to
The author is grateful for the constructive advice from the anonymous reviewers. This work was supported in part by the National Science Foundation under grants DMS-1913080 and DMS-2136075, and no additional revenues are related to this work.
Unlike the identity matrix stabilization commonly used in most of the VEM literature, for
\begin{equation} (\!(\mathit{\boldsymbol{\sigma}}, {\mathit{\boldsymbol{\tau}}})\!)_{K} : = \big({\Pi} \mathit{\boldsymbol{\sigma}}, {\Pi} \mathit{\boldsymbol{\tau}} \big)_K + {S}_K\big(({\rm I}-{\Pi} )\mathit{\boldsymbol{\sigma}}, ({\rm I}-{\Pi} )\mathit{\boldsymbol{\tau}}\big), \end{equation} | (41) |
where
To show the inverse inequality and the norm equivalence used in the reliability bound, on each element, we need to introduce some geometric measures. Consider a polygonal element
Proposition 1. Under Assumption 1,
Lemma 7.1 (Trace inequality on small edges [13]). If Proposition 1 holds, for
\begin{equation} h_e^{-1/2}\left\Vert{v}\right\Vert_{e} \lesssim h_K^{-1} \left\Vert{v}\right\Vert_{K} + \left\Vert{\nabla v}\right\Vert_{K}, \quad \mathit{on} \;e\subset K. \end{equation} | (42) |
Proof. The proof follows essentially equation (3.9) in [13,Lemma 3.3] as a standard scaled trace inequality on
h_e^{-1/2}\left\Vert{v}\right\Vert_{e} \lesssim h_e^{-1} \left\Vert{v}\right\Vert_{T_e} + \left\Vert{\nabla v}\right\Vert_{T_e} \lesssim h_K^{-1} \left\Vert{v}\right\Vert_{K} + \left\Vert{\nabla v}\right\Vert_{K}. |
Lemma 7.2 (Inverse inequalities). Under Assumption 1, we have the following inverse estimates for
\begin{equation} \|\nabla \cdot \mathit{\boldsymbol{\tau}}\|_K \lesssim h_K^{-1} \|\mathit{\boldsymbol{\tau}}\|_K, \quad \mathit{and} \quad \|\nabla \cdot \mathit{\boldsymbol{\tau}}\|_K \lesssim h_K^{-1} S_K\big(\mathit{\boldsymbol{\tau}},\mathit{\boldsymbol{\tau}}\big)^{1/2}. \end{equation} | (43) |
Proof. The first inequality in (43) can be shown using a bubble function trick. Choose
\|\nabla \cdot \mathit{\boldsymbol{\tau}}\|_K^2 \lesssim (\nabla \cdot \mathit{\boldsymbol{\tau}}, p b_K) = -(\mathit{\boldsymbol{\tau}}, \nabla (p b_K)) \leq \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K \left\Vert{ \nabla (p b_K)}\right\Vert_K, |
and then
\left\Vert{ \nabla (p b_K)}\right\Vert \leq \left\Vert{ b_K \nabla p }\right\Vert_K + \left\Vert{p\nabla b_K}\right\Vert_K \leq \left\Vert{ b_K }\right\Vert_{\infty,\Omega} \left\Vert{\nabla p }\right\Vert_K + \left\Vert{p}\right\Vert_K \left\Vert{\nabla b_K}\right\Vert_{\infty,K}. |
Consequently, the first inequality in (43) follows above by the standard inverse estimate for polynomials
To prove the second inequality in (43), by integration by parts we have
\begin{equation} \left\Vert{\nabla\cdot\mathit{\boldsymbol{\tau}}}\right\Vert^2 = (\nabla\cdot\mathit{\boldsymbol{\tau}}, p) = -(\mathit{\boldsymbol{\tau}},\nabla p) + \sum\limits_{e\subset\partial K} (\mathit{\boldsymbol{\tau}}\cdot \mathit{\boldsymbol{n}}_e, p). \end{equation} | (44) |
Expand
\begin{equation} \left\Vert{p}\right\Vert_K^2 = \mathbf{p}^{\top} \mathbf{M} \mathbf{p} \geq \mathbf{p}^{\top} \operatorname{diag}(\mathbf{M}) \mathbf{p} \geq \min\limits_j \mathbf{M}_{jj}\left\Vert{\mathbf{p}}\right\Vert_{\ell^2}^2 \simeq h_K^2 \left\Vert{\mathbf{p}}\right\Vert_{\ell^2}^2, \end{equation} | (45) |
since
\begin{aligned} \left\Vert{\nabla\cdot\mathit{\boldsymbol{\tau}}}\right\Vert^2 & \leq \left(\sum\limits_{\alpha\in \Lambda} (\mathit{\boldsymbol{\tau}}, m_{\alpha})_K^2 \right)^{1/2} \left(\sum\limits_{\alpha\in \Lambda} p_{\alpha}^2 \right)^{1/2} \\ & \quad + \left(\sum\limits_{e\subset \partial K} h_e \left\Vert{\mathit{\boldsymbol{\tau}}\cdot \mathit{\boldsymbol{n}}_e}\right\Vert_e^2 \right)^{1/2} \left(\sum\limits_{e\subset \partial K} h_e^{-1} \left\Vert{p}\right\Vert_e^2 \right)^{1/2} \\ & \lesssim S_K(\mathit{\boldsymbol{\tau}},\mathit{\boldsymbol{\tau}})^{1/2} \left(\left\Vert{\mathbf{p}}\right\Vert_{\ell^2} + h_K^{-1} \left\Vert{p}\right\Vert_K + \left\Vert{\nabla p}\right\Vert_K \right). \end{aligned} |
As a result, the second inequality in (43) is proved when apply an inverse inequality for
Remark 2. While the proof in Lemma 7.2 relies on
Lemma 7.3 (Norm equivalence). Under Assumption 1, let
\begin{equation} \gamma_* \Vert{\mathit{\boldsymbol{\tau}}}\Vert_K \leq \Vert{ \mathit{\boldsymbol{\tau}}}\Vert_{h,K} \leq \gamma^*\Vert{\mathit{\boldsymbol{\tau}}}\Vert_K, \end{equation} | (46) |
where both
Proof. First we consider the lower bound, by triangle inequality,
\Vert{\mathit{\boldsymbol{\tau}}}\Vert_{K}\leq \big\Vert{{\Pi}\mathit{\boldsymbol{\tau}}}\big\Vert_{K} + \big\Vert{(\mathit{\boldsymbol{\tau}} - {\Pi}\mathit{\boldsymbol{\tau}}) }\big\Vert_{K}. |
Since
\begin{equation} \Vert{\mathit{\boldsymbol{\tau}} }\Vert_{K}^2 \leq S_K\big(\mathit{\boldsymbol{\tau}},\mathit{\boldsymbol{\tau}}\big), \quad \;{\rm{ for }}\; \mathit{\boldsymbol{\tau}}\in \mathcal{V}_k(K). \end{equation} | (47) |
To this end, we consider the weak solution to the following auxiliary boundary value problem on
\begin{equation} \left\{ \begin{aligned} \Delta \psi & = \nabla\cdot \mathit{\boldsymbol{\tau}}&\;{\rm{ in }}\; K, \\ \frac{\partial \psi}{\partial n} & = \mathit{\boldsymbol{\tau}} \cdot\mathit{\boldsymbol{n}}_{\partial K} &\;{\rm{ on }}\;\partial K. \end{aligned} \right. \end{equation} | (48) |
By a standard Helmholtz decomposition result (e.g. Proposition 3.1, Chapter 1[23]), we have
\left\Vert{\mathit{\boldsymbol{\tau}} - \nabla \psi}\right\Vert_K^2 = (\mathit{\boldsymbol{\tau}} - \nabla \psi, \nabla^{\perp} \phi) = 0. |
Consequently, we proved essentially the unisolvency of the modified VEM space (4) and
\begin{equation} \begin{aligned} & \big\Vert{\mathit{\boldsymbol{\tau}} }\big\Vert_{K}^2 = (\mathit{\boldsymbol{\tau}}, \nabla \psi)_K = \big(\mathit{\boldsymbol{\tau}}, \nabla \psi \big)_K \\ = & \; -\big(\nabla\cdot\mathit{\boldsymbol{\tau}}, \psi \big)_K+ (\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_{\partial K} ,\psi )_{\partial K} \\ \leq & \;\|\nabla \cdot \mathit{\boldsymbol{\tau}}\|_K \| \psi\|_K + \sum\limits_{e\subset \partial K} \|\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_e\|_e\| \psi \|_e \\ \leq &\; \|\nabla \cdot \mathit{\boldsymbol{\tau}}\|_K \| \psi\|_K + \left(\sum\limits_{e\subset \partial K} h_e\|\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_e\|_e^2\right)^{1/2} \left(\sum\limits_{e\subset \partial K} h_e^{-1}\|\psi\|_e^2\right)^{1/2} \end{aligned} \end{equation} | (49) |
Proposition 1 allows us to apply an isotropic trace inequality on an edge of a polygon (Lemma 7.1), combining with the Poincaré inequality for
h_e^{-1/2}\|\psi\|_e \lesssim h_K^{-1} \|\psi\|_K + \|\nabla \psi\|_K \lesssim \|\nabla \psi\|_K. |
Furthermore applying the inverse estimate in Lemma 7.2 on the bulk term above, we have
\big\Vert{\mathit{\boldsymbol{\tau}} }\big\Vert_{K}^2 \lesssim S_K\big(\mathit{\boldsymbol{\tau}},\mathit{\boldsymbol{\tau}}\big)^{1/2} \|\nabla \psi\|_K, |
which proves the validity of (47), thus yield the lower bound.
To prove the upper bound, by
\begin{equation} h_e\|\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_e\|_e^2 \lesssim \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K,\quad \;{\rm{ and }}\; \quad |(\mathit{\boldsymbol{\tau}}, \nabla m_{\alpha})_K| \leq \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K. \end{equation} | (50) |
To prove the first inequality, by Proposition 1 again, consider the edge bubble function
\begin{equation} \left\Vert{\nabla b_e}\right\Vert_{\infty,K} = O(1/h_e), \;{\rm{ and }}\; \left\Vert{b_e}\right\Vert_{\infty, K} = O(1). \end{equation} | (51) |
Denote
\begin{aligned} \|\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_e\|_e^2 & \lesssim \big(\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_e, b_e q_e \big)_e = x\big(\mathit{\boldsymbol{\tau}}\cdot\mathit{\boldsymbol{n}}_e, b_e q_e \big)_{\partial K} \\ & = \big(\mathit{\boldsymbol{\tau}}, q_e\nabla b_e \big)_K + \big(\nabla\cdot\mathit{\boldsymbol{\tau}}, b_e q_e\big)_K \\ & \leq \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K \left\Vert{q_e\nabla b_e}\right\Vert_{T_e} + \left\Vert{\nabla\cdot\mathit{\boldsymbol{\tau}}}\right\Vert_K \left\Vert{q_e b_e}\right\Vert_{T_e}, \\ & \leq \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K \left\Vert{q_e}\right\Vert_{T_e} \left\Vert{\nabla b_e}\right\Vert_{\infty,K} + \left\Vert{\nabla\cdot\mathit{\boldsymbol{\tau}}}\right\Vert_K \left\Vert{q_e}\right\Vert_{T_e} \left\Vert{b_e}\right\Vert_{\infty,K}. \end{aligned} |
Now by the fact that
The second inequality in (50) can be estimated straightforward by the scaling of the monomials (7)
\begin{equation} \left|(\mathit{\boldsymbol{\tau}}, \nabla m_{\alpha})_K\right| \leq \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K \left\Vert{\nabla m_{\alpha}}\right\Vert_K \leq \left\Vert{\mathit{\boldsymbol{\tau}}}\right\Vert_K . \end{equation} | (52) |
Hence, (46) is proved.
[1] |
Y. Xiao, X. Sun, Y. Guo, S. Li, Y. Zhang, Y. Wang, An improved gorilla troops optimizer based on lens opposition-based learning and adaptive β-Hill climbing for global optimization, CMES-Comput. Model. Eng. Sci., 131 (2022), 815–850. https://doi.org/10.32604/cmes.2022.019198 doi: 10.32604/cmes.2022.019198
![]() |
[2] |
Y. Xiao, X. Sun, Y. Guo, H. Cui, Y. Wang, J. Li, et al., An enhanced honey badger algorithm based on Lévy flight and refraction opposition-based learning for engineering design problems, J. Intell. Fuzzy Syst., (2022), 1–24. https://doi.org/10.3233/JIFS-213206 doi: 10.3233/JIFS-213206
![]() |
[3] |
Q. Liu, N. Li, H. Jia, Q. Qi, L. Abualigah, Y. Liu, A hybrid arithmetic optimization and golden sine algorithm for solving industrial engineering design problems, Mathematics, 10 (2022), 1567. https://doi.org/10.3390/math10091567 doi: 10.3390/math10091567
![]() |
[4] |
A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, Q. V. Pham, Nonlinear marine predator algorithm: a cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks, Expert Syst. Appl., 203 (2022), 117395. https://doi.org/10.1016/j.eswa.2022.117395 doi: 10.1016/j.eswa.2022.117395
![]() |
[5] |
G. Hu, J. Zhong, B. Du, G. Wei, An enhanced hybrid arithmetic optimization algorithm for engineering applications, Comput. Methods Appl. Mech. Eng., 394 (2022), 114901. https://doi.org/10.1016/j.cma.2022.114901 doi: 10.1016/j.cma.2022.114901
![]() |
[6] |
A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based Chaotic harris hawks optimizer: algorithm and internet of vehicles application, Appl. Soft Comput., 109 (2021), 107574. https://doi.org/10.1016/j.asoc.2021.107574 doi: 10.1016/j.asoc.2021.107574
![]() |
[7] |
W. Zhao, L. Wang, S. Mirjalili, Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications, Comput. Methods Appl. Mech. Eng., 388 (2022), 114194. https://doi.org/10.1016/j.cma.2021.114194 doi: 10.1016/j.cma.2021.114194
![]() |
[8] |
K. Sun, H. Jia, Y. Li, Z. Jiang, Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization, J. Intell. Fuzzy Syst., 40 (2021), 1667–1679. https://doi.org/10.3233/jifs-201755 doi: 10.3233/JIFS-201755
![]() |
[9] |
K. Zhong, G. Zhou, W. Deng, Y. Zhou, Q. Luo, MOMPA: multi-objective marine predator algorithm, Comput. Methods Appl. Mech. Eng., 385 (2021), 114029. https://doi.org/10.1016/j.cma.2021.114029 doi: 10.1016/j.cma.2021.114029
![]() |
[10] |
Q. Fan, H. Huang, K. Yang, S. Zhang, L. Yao, Q. Xiong, A modified equilibrium optimizer using opposition-based learning and novel update rules, Expert Syst. Appl., 170 (2021), 114575. https://doi.org/10.1016/j.eswa.2021.114575 doi: 10.1016/j.eswa.2021.114575
![]() |
[11] |
L. Abualigah, A. Diabat, M. A. Elaziz, Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems, J. Ambient Intell. Humanized Comput., (2021), https://doi.org/10.1007/s12652-021-03372-w doi: 10.1007/s12652-021-03372-w
![]() |
[12] |
S. Wang, H. Jia, L. Abualigah, Q. Liu, R. Zheng, An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems, Processes, 9 (2021), 1551. https://doi.org/10.3390/pr9091551 doi: 10.3390/pr9091551
![]() |
[13] |
L. Abualigah, A. A. Ewees, M. A. A. Al-qaness, M. A. Elaziz, D. Yousri, R. A. Ibrahim, et al., Boosting arithmetic optimization algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems, Neural Comput. Appl., 34 (2022), 8823–8852. https://doi.org/10.1007/s00521-022-06906-1 doi: 10.1007/s00521-022-06906-1
![]() |
[14] |
Y. Zhang, Y. Wang, L. Tao, Y. Yan, J. Zhao, Z. Gao, Self-adaptive classification learning hybrid JAYA and Rao-1 algorithm for large-scale numerical and engineering problems, Eng. Appl. Artif. Intell., 114 (2022), 105069. https://doi.org/10.1016/j.engappai.2022.105069 doi: 10.1016/j.engappai.2022.105069
![]() |
[15] |
D. Wu, H. Jia, L. Abualigah, Z. Xing, R. Zheng, H. Wang, et al., Enhance teaching-learning-based optimization for tsallis-entropy-based feature selection classification approach, Processes, 10 (2022), 360. https://doi.org/10.3390/pr10020360 doi: 10.3390/pr10020360
![]() |
[16] |
H. Jia, W. Zhang, R. Zheng, S. Wang, X. Leng, N. Cao, Ensemble mutation slime mould algorithm with restart mechanism for feature selection, Int. J. Intell. Syst., 37 (2021), 2335–2370. https://doi.org/10.1002/int.22776 doi: 10.1002/int.22776
![]() |
[17] |
H. Jia, K. Sun, Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization, Pattern Anal. Appl., 24 (2021), 1249–1274. https://doi.org/10.1007/s10044-021-00985-x doi: 10.1007/s10044-021-00985-x
![]() |
[18] |
C. Kumar, T. D. Raj, M. Premkumar, T. D. Raj, A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters, Optik, 223 (2020), 165277. https://doi.org/10.1016/j.ijleo.2020.165277 doi: 10.1016/j.ijleo.2020.165277
![]() |
[19] |
Y. Zhang, Y. Wang, S. Li, F. Yao, L. Tao, Y. Yan, et al., An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models, Math. Biosci. Eng., 19 (2022), 5610–5637. https://doi.org/10.3934/mbe.2022263 doi: 10.3934/mbe.2022263
![]() |
[20] |
M. Eslami, E. Akbari, S. T. Seyed Sadr, B. F. Ibrahim, A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models, Energy Sci. Eng., (2022). https://doi.org/10.1002/ese3.1160 doi: 10.1002/ese3.1160
![]() |
[21] |
J. Zhao, Y. Zhang, S. Li, Y. Wang, Y. Yan, Z. Gao, A chaotic self-adaptive JAYA algorithm for parameter extraction of photovoltaic models, Math. Biosci. Eng., 19 (2022), 5638–5670. https://doi.org/10.3934/mbe.2022264 doi: 10.3934/mbe.2022264
![]() |
[22] |
X. Bao, H. Jia, C. Lang, A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation, IEEE Access, 7 (2019), 76529–76546. https://doi.org/10.1109/access.2019.2921545 doi: 10.1109/ACCESS.2019.2921545
![]() |
[23] |
S. Lin, H. Jia, L. Abualigah, M. Altalhi, Enhanced slime mould algorithm for multilevel thresholding image segmentation using entropy measures, Entropy, 23 (2021), 1700. https://doi.org/10.3390/e23121700 doi: 10.3390/e23121700
![]() |
[24] |
M. Abd Elaziz, D. Mohammadi, D. Oliva, K. Salimifard, Quantum marine predators algorithm for addressing multilevel image segmentation, Appl. Soft Comput., 110 (2021), 107598. https://doi.org/10.1016/j.asoc.2021.107598 doi: 10.1016/j.asoc.2021.107598
![]() |
[25] |
J. Yao, Y. Sha, Y. Chen, G. Zhang, X. Hu, G. Bai, et al., IHSSAO: An improved hybrid salp swarm algorithm and aquila optimizer for UAV path planning in complex terrain, Appl. Sci., 12 (2022), 5634. https://doi.org/10.3390/app12115634 doi: 10.3390/app12115634
![]() |
[26] |
J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–72. https://doi.org/10.1038/scientificamerican0792-66 doi: 10.1038/scientificamerican0792-66
![]() |
[27] |
P. J. Angeline, Genetic programming: On the programming of computers by means of natural selection, Biosystems, 33 (1994), 69–73. https://doi.org/10.1016/0303-2647(94)90062-0 doi: 10.1016/0303-2647(94)90062-0
![]() |
[28] |
R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
![]() |
[29] |
H. G. Beyer, H. P. Schwefel, Evolution strategies-A comprehensive introduction, Nat. Comput., 1 (2002), 3–52. https://doi.org/10.1023/A:1015059928466 doi: 10.1023/A:1015059928466
![]() |
[30] |
D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12 (2008), 702–713. https://doi.org/10.1109/TEVC.2008.919004 doi: 10.1109/TEVC.2008.919004
![]() |
[31] |
S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
![]() |
[32] |
E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
![]() |
[33] |
S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495–513. https://doi.org/10.1007/s00521-015-1870-7 doi: 10.1007/s00521-015-1870-7
![]() |
[34] |
W. Zhao, L. Wang, Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst., 163 (2019), 283–304. https://doi.org/10.1016/j.knosys.2018.08.030 doi: 10.1016/j.knosys.2018.08.030
![]() |
[35] |
A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci., 222 (2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023 doi: 10.1016/j.ins.2012.08.023
![]() |
[36] |
S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
![]() |
[37] |
A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Software, 110 (2017), 69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014 doi: 10.1016/j.advengsoft.2017.03.014
![]() |
[38] |
L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
![]() |
[39] | J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 |
[40] |
M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Mag., 1 (2006), 28–39. https://doi.org/10.1109/MCI.2006.329691 doi: 10.1109/MCI.2006.329691
![]() |
[41] |
S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2015), 1053–1073. https://doi.org/10.1007/s00521-015-1920-1 doi: 10.1007/s00521-015-1920-1
![]() |
[42] |
S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015), 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010
![]() |
[43] |
S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |
[44] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
![]() |
[45] |
S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: a bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002
![]() |
[46] |
F. Glover, Tabu search—Part Ⅰ, ORSA J. Comput., 1 (1989), 190–206. https://doi.org/10.1287/ijoc.1.3.190 doi: 10.1287/ijoc.1.3.190
![]() |
[47] |
D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz, et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831. https://doi.org/10.1016/j.engappai.2013.05.008 doi: 10.1016/j.engappai.2013.05.008
![]() |
[48] |
M. S. Gonçalves, R. H. Lopez, L. F. F. Miguel, Search group algorithm: a new metaheuristic method for the optimization of truss structures, Comput. Struct., 153 (2015), 165–184. https://doi.org/10.1016/j.compstruc.2015.03.003 doi: 10.1016/j.compstruc.2015.03.003
![]() |
[49] |
E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, 2007 IEEE Congr. Evol. Comput., (2007), 4661–4667. https://doi.org/10.1109/CEC.2007.4425083 doi: 10.1109/CEC.2007.4425083
![]() |
[50] |
R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.Aided Des., 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
![]() |
[51] |
S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
![]() |
[52] |
S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
![]() |
[53] |
S. Kaur, L. K. Awasthi, A. L. Sangal, G. Dhiman, Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl. Artif. Intell., 90 (2020), 103541. https://doi.org/10.1016/j.engappai.2020.103541 doi: 10.1016/j.engappai.2020.103541
![]() |
[54] |
A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
![]() |
[55] |
B. Abdollahzadeh, F. Soleimanian Gharehchopogh, S. Mirjalili, Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems, Int. J. Intell. Syst., 36 (2021), 5887–5958. https://doi.org/10.1002/int.22535 doi: 10.1002/int.22535
![]() |
[56] |
H. Jia, X. Peng, C. Lang, Remora optimization algorithm, Expert Syst. Appl., 185 (2021), 115665. https://doi.org/10.1016/j.eswa.2021.115665 doi: 10.1016/j.eswa.2021.115665
![]() |
[57] |
Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
![]() |
[58] |
L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191 (2022), 116158. https://doi.org/10.1016/j.eswa.2021.116158 doi: 10.1016/j.eswa.2021.116158
![]() |
[59] |
Y. Xiao, X. Sun, Y. Zhang, Y. Guo, Y. Wang, J. Li, An improved slime mould algorithm based on Tent chaotic mapping and nonlinear inertia weight, Int. J. Innovative Comput. Inf. Control, 17 (2021), 2151–2176. https://doi.org/10.24507/ijicic.17.06.2151 doi: 10.24507/ijicic.17.06.2151
![]() |
[60] |
R. Zheng, H. Jia, L. Abualigah, Q. Liu, S. Wang, Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization, Processes, 9 (2021), 1774. https://doi.org/10.3390/pr9101774 doi: 10.3390/pr9101774
![]() |
[61] |
H. Jia, K. Sun, W. Zhang, X. Leng, An enhanced chimp optimization algorithm for continuous optimization domains, Complex Intell. Syst., 8 (2022), 65–82. https://doi.org/10.1007/s40747-021-00346-5 doi: 10.1007/s40747-021-00346-5
![]() |
[62] |
A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, J. Too, P. Pillai, Trustworthy and efficient routing algorithm for IoT-FinTech applications using non-linear Lévy brownian generalized normal distribution optimization, IEEE Internet Things J., (2021), 1–16. https://doi.org/10.1109/jiot.2021.3109075 doi: 10.1109/jiot.2021.3109075
![]() |
[63] |
D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
![]() |
[64] |
S. Chakraborty, A. K. Saha, R. Chakraborty, M. Saha, S. Nama, HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization, Int. J. Intell. Syst., 37 (2022), 52–104. https://doi.org/10.1002/int.22617 doi: 10.1002/int.22617
![]() |
[65] |
P. Pirozmand, A. Javadpour, H. Nazarian, P. Pinto, S. Mirkamali, F. Ja'fari, GSAGA: A hybrid algorithm for task scheduling in cloud infrastructure, J. Supercomput., (2022). https://doi.org/10.1007/s11227-022-04539-8 doi: 10.1007/s11227-022-04539-8
![]() |
[66] |
H. Abdel-Mawgoud, S. Kamel, A. A. A. El-Ela, F. Jurado, Optimal allocation of DG and capacitor in distribution networks using a novel hybrid MFO-SCA method, Electr. Power Compon. Syst., 49 (2021), 259–275. https://doi.org/10.1080/15325008.2021.1943066 doi: 10.1080/15325008.2021.1943066
![]() |
[67] |
L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A. Al-qaness, A. H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. https://doi.org/10.1016/j.cie.2021.107250 doi: 10.1016/j.cie.2021.107250
![]() |
[68] |
B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408
![]() |
[69] |
Z. Guo, B. Yang, Y. Han, T. He, P. He, X. Meng, et al., Optimal PID tuning of PLL for PV inverter based on aquila optimizer, Front. Energy Res., 9 (2022), 812467. https://doi.org/10.3389/fenrg.2021.812467 doi: 10.3389/fenrg.2021.812467
![]() |
[70] |
M. R. Hussan, M. I. Sarwar, A. Sarwar, M. Tariq, S. Ahmad, A. Shah Noor Mohamed, et al., Aquila optimization based harmonic elimination in a modified H-bridge inverter, Sustainability, 14 (2022), 929. https://doi.org/10.3390/su14020929 doi: 10.3390/su14020929
![]() |
[71] |
G. Vashishtha, R. Kumar, Autocorrelation energy and aquila optimizer for MED filtering of sound signal to detect bearing defect in Francis turbine, Meas. Sci. Technol., 33 (2021), 015006. https://doi.org/10.1088/1361-6501/ac2cf2 doi: 10.1088/1361-6501/ac2cf2
![]() |
[72] |
A. M. AlRassas, M. A. A. Al-qaness, A. A. Ewees, S. Ren, M. Abd Elaziz, R. Damaševičius, et al., Optimized ANFIS model using Aquila optimizer for oil production forecasting, Processes, 9 (2021), 1194. https://doi.org/10.3390/pr9071194 doi: 10.3390/pr9071194
![]() |
[73] |
A. K. Khamees, A. Y. Abdelaziz, M. R. Eskaros, A. El-Shahat, M. A. Attia, Optimal power flow solution of wind-integrated power system using novel metaheuristic method, Energies, 14 (2021), 6117. https://doi.org/10.3390/en14196117 doi: 10.3390/en14196117
![]() |
[74] |
J. Zhao, Z. M. Gao, The heterogeneous Aquila optimization algorithm, Math. Biosci. Eng., 19 (2022), 5867–5904. https://doi.org/10.3934/mbe.2022275 doi: 10.3934/mbe.2022275
![]() |
[75] |
M. Kandan, A. Krishnamurthy, S. A. M. Selvi, M. Y. Sikkandar, M. A. Aboamer, T. Tamilvizhi, Quasi oppositional Aquila optimizer-based task scheduling approach in an IoT enabled cloud environment, J. Supercomput., 78 (2022), 10176–10190. https://doi.org/10.1007/s11227-022-04311-y doi: 10.1007/s11227-022-04311-y
![]() |
[76] |
X. Li, S. Mobayen, Optimal design of a PEMFC‐based combined cooling, heating and power system based on an improved version of Aquila optimizer, Concurrency Comput. Pract. Exper., 34 (2022), e6976. https://doi.org/10.1002/cpe.6976 doi: 10.1002/cpe.6976
![]() |
[77] |
J. Zhao, Z. M. Gao, H. F. Chen, The simplified aquila optimization algorithm, IEEE Access, 10 (2022), 22487–22515. https://doi.org/10.1109/access.2022.3153727 doi: 10.1109/ACCESS.2022.3153727
![]() |
[78] |
S. Mahajan, L. Abualigah, A. K. Pandit, M. Altalhi, Hybrid Aquila optimizer with arithmetic optimization algorithm for global optimization tasks, Soft Comput., 26 (2022), 4863–4881. https://doi.org/10.1007/s00500-022-06873-8 doi: 10.1007/s00500-022-06873-8
![]() |
[79] |
Y. Zhang, Y. Yan, J. Zhao, Z. Gao, AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer, IEEE Access, 10 (2022), 10907–10933. https://doi.org/10.1109/access.2022.3144431 doi: 10.1109/ACCESS.2022.3144431
![]() |
[80] |
G. Vashishtha, S. Chauhan, A. Kumar, R. Kumar, An ameliorated African vulture optimization algorithm to diagnose the rolling bearing defects, Meas. Sci. Technol., 33 (2022), 075013. https://doi.org/10.1088/1361-6501/ac656a doi: 10.1088/1361-6501/ac656a
![]() |
[81] |
M. R. Kaloop, B. Roy, K. Chaurasia, S. M. Kim, H. M. Jang, J. W. Hu, et al., Shear strength estimation of reinforced concrete deep beams using a novel hybrid metaheuristic optimized SVR models, Sustainability, 14 (2022), 5238. https://doi.org/10.3390/su14095238 doi: 10.3390/su14095238
![]() |
[82] |
M. Manickam, R. Siva, S. Prabakeran, K. Geetha, V. Indumathi, T. Sethukarasi, Pulmonary disease diagnosis using African vulture optimized weighted support vector machine approach, Int. J. Imaging Syst. Technol., 32 (2022), 843–856. https://doi.org/https://doi.org/10.1002/ima.22669 doi: 10.1002/ima.22669
![]() |
[83] |
J. Fan, Y. Li, T. Wang, An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism, PLoS One, 16 (2021), e0260725. https://doi.org/10.1371/journal.pone.0260725 doi: 10.1371/journal.pone.0260725
![]() |
[84] | H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, (2005), 695–701. https://doi.org/10.1109/CIMCA.2005.1631345 |
[85] |
N. A. Alawad, B. H. Abed-alguni, Discrete island-based cuckoo search with highly disruptive polynomial mutation and opposition-based learning strategy for scheduling of workflow applications in cloud environments, Arabian J. Sci. Eng., 46 (2021), 3213–3233. https://doi.org/10.1007/s13369-020-05141-x doi: 10.1007/s13369-020-05141-x
![]() |
[86] |
T. T. Nguyen, H. J. Wang, T. K. Dao, J. S. Pan, J. H. Liu, S. Weng, An improved slime mold algorithm and its application for optimal operation of cascade hydropower stations, IEEE Access, 8 (2020), 226754–226772. https://doi.org/10.1109/access.2020.3045975 doi: 10.1109/access.2020.3045975
![]() |
[87] |
Y. Zhang, Y. Wang, Y. Yan, J. Zhao, Z. Gao, LMRAOA: an improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problems, Alexandria Eng. J., 61 (2022), 12367–12403. https://doi.org/10.1016/j.aej.2022.06.017 doi: 10.1016/j.aej.2022.06.017
![]() |
[88] |
S. Wang, H. Jia, Q. Liu, R. Zheng, An improved hybrid Aquila optimizer and Harris Hawks optimization for global optimization, Math. Biosci. Eng., 18 (2021), 7076–7109. https://doi.org/10.3934/mbe.2021352 doi: 10.3934/mbe.2021352
![]() |
[89] |
Q. Fan, Z. Chen, W. Zhang, X. Fang, ESSAWOA: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization, Eng. Comput., 38 (2022), 797–814. https://doi.org/10.1007/s00366-020-01189-3 doi: 10.1007/s00366-020-01189-3
![]() |
[90] |
F. Yu, Y. Li, B. Wei, X. Xu, Z. Zhao, The application of a novel OBL based on lens imaging principle in PSO, Acta Electron. Sin., 42 (2014), 230–235. https://doi.org/10.3969/j.issn.0372-2112.2014.02.004 doi: 10.3969/j.issn.0372-2112.2014.02.004
![]() |
[91] |
W. Long, J. Jiao, X. Liang, S. Cai, M. Xu, A random opposition-based learning grey wolf optimizer, IEEE Access, 7 (2019), 113810–113825. https://doi.org/10.1109/access.2019.2934994 doi: 10.1109/access.2019.2934994
![]() |
[92] |
H. T. Kahraman, H. Bakir, S. Duman, M. Katı, S. Aras, U. Guvenc, Dynamic FDB selection method and its application: modeling and optimizing of directional overcurrent relays coordination, Appl. Intell., 52 (2022), 4873–4908. https://doi.org/10.1007/s10489-021-02629-3 doi: 10.1007/s10489-021-02629-3
![]() |
[93] |
H. T. Kahraman, S. Aras, E. Gedikli, Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms, Knowl.-Based Syst., 190 (2020), 105169. https://doi.org/10.1016/j.knosys.2019.105169 doi: 10.1016/j.knosys.2019.105169
![]() |
[94] |
S. Aras, E. Gedikli, H. T. Kahraman, A novel stochastic fractal search algorithm with fitness-distance balance for global numerical optimization, Swarm Evol. Comput., 61 (2021), 100821. https://doi.org/10.1016/j.swevo.2020.100821 doi: 10.1016/j.swevo.2020.100821
![]() |
[95] |
S. Duman, H. T. Kahraman, U. Guvenc, S. Aras, Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems, Soft Comput., 25 (2021), 6577–6617. https://doi.org/10.1007/s00500-021-05654-z doi: 10.1007/s00500-021-05654-z
![]() |
[96] |
S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, Inf. Sci., 180 (2010), 2044–2064. https://doi.org/10.1016/j.ins.2009.12.010 doi: 10.1016/j.ins.2009.12.010
![]() |
[97] |
E. Theodorsson-Norheim, Friedman and Quade tests: basic computer program to perform nonparametric two-way analysis of variance and multiple comparisons on ranks of several related samples, Comput. Biol. Med., 17 (1987), 85–99. https://doi.org/10.1016/0010-4825(87)90003-5 doi: 10.1016/0010-4825(87)90003-5
![]() |
[98] | K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report Nanyang Technological University, Singapore, (2018). |
[99] |
C. A. Coello Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Eng., 191 (2002), 1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1 doi: 10.1016/S0045-7825(01)00323-1
![]() |
1. | Hengliang Tang, Jinda Dong, Solving Flexible Job-Shop Scheduling Problem with Heterogeneous Graph Neural Network Based on Relation and Deep Reinforcement Learning, 2024, 12, 2075-1702, 584, 10.3390/machines12080584 | |
2. | Chen Han, Xuanyin Wang, TPN:Triple network algorithm for deep reinforcement learning, 2024, 591, 09252312, 127755, 10.1016/j.neucom.2024.127755 | |
3. | Miguel S. E. Martins, João M. C. Sousa, Susana Vieira, A Systematic Review on Reinforcement Learning for Industrial Combinatorial Optimization Problems, 2025, 15, 2076-3417, 1211, 10.3390/app15031211 | |
4. | Tianhua Jiang, Lu Liu, A Bi-Population Competition Adaptive Interior Search Algorithm Based on Reinforcement Learning for Flexible Job Shop Scheduling Problem, 2025, 24, 1469-0268, 10.1142/S1469026824500251 | |
5. | Tianyuan Mao, A Review of Scheduling Methods for Multi-AGV Material Handling Systems in Mixed-Model Assembly Workshops, 2025, 5, 2710-0723, 227, 10.54691/p4x5a536 | |
6. | Peng Zhao, You Zhou, Di Wang, Zhiguang Cao, Yubin Xiao, Xuan Wu, Yuanshu Li, Hongjia Liu, Wei Du, Yuan Jiang, Liupu Wang, 2025, Dual Operation Aggregation Graph Neural Networks for Solving Flexible Job-Shop Scheduling Problem with Reinforcement Learning, 9798400712746, 4089, 10.1145/3696410.3714616 | |
7. | Yuxin Peng, Youlong Lyu, Jie Zhang, Ying Chu, Heterogeneous Graph Neural-Network-Based Scheduling Optimization for Multi-Product and Variable-Batch Production in Flexible Job Shops, 2025, 15, 2076-3417, 5648, 10.3390/app15105648 |