Loading [MathJax]/jax/output/SVG/jax.js
Research article

New double-sum expansions for certain Mock theta functions

  • Received: 06 June 2022 Revised: 18 July 2022 Accepted: 19 July 2022 Published: 22 July 2022
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • The study of expansions of certain mock theta functions in special functions theory has a long and quite significant history. Motivated by recent correlations between q-series and mock theta functions, we establish a new q-series transformation formula and derive the double-sum expansions for mock theta functions. As an application, we state new double-sum representations for certain mock theta functions.

    Citation: Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz. New double-sum expansions for certain Mock theta functions[J]. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948

    Related Papers:

    [1] Lijun Hao . New proofs for three identities of seventh order mock theta functions. AIMS Mathematics, 2023, 8(2): 4806-4813. doi: 10.3934/math.2023238
    [2] Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ . A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492
    [3] Fei Hou, Bin Chen . Triple correlation sums of coefficients of θ-series. AIMS Mathematics, 2023, 8(10): 25275-25287. doi: 10.3934/math.20231289
    [4] Chuanan Wei, Chun Li . New q-supercongruences arising from a summation of basic hypergeometric series. AIMS Mathematics, 2022, 7(3): 4125-4136. doi: 10.3934/math.2022228
    [5] Long Li . Double series expansions for π. AIMS Mathematics, 2021, 6(5): 5000-5007. doi: 10.3934/math.2021294
    [6] Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu . On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418
    [7] Savin Treanţă, Cristina-Florentina Marghescu, Laura-Gabriela Matei . Efficiency conditions in multiple-objective optimal control models under generalized hypotheses. AIMS Mathematics, 2024, 9(9): 25184-25204. doi: 10.3934/math.20241228
    [8] Nadia N. Li, Wenchang Chu . Explicit formulae for Bernoulli numbers. AIMS Mathematics, 2024, 9(10): 28170-28194. doi: 10.3934/math.20241366
    [9] Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021
    [10] Jiaye Lin . Evaluations of some Euler-type series via powers of the arcsin function. AIMS Mathematics, 2025, 10(4): 8116-8130. doi: 10.3934/math.2025372
  • The study of expansions of certain mock theta functions in special functions theory has a long and quite significant history. Motivated by recent correlations between q-series and mock theta functions, we establish a new q-series transformation formula and derive the double-sum expansions for mock theta functions. As an application, we state new double-sum representations for certain mock theta functions.



    Throughout this paper, we use the standard q-series notation in [5]:

    (a;q)0=1,  (a;q)n=nk=1(1aqk1),n=1,2,3,.

    We also adopt the following compact notation for multiple q-shifted factorials:

    (a1,a2,,am;q)n=(a1;q)n(a2;q)n(am;q)n,

    where n is an integer or .

    The basic hypergeometric series rϕs is defined by

    rϕs[a1,a2,,arb1,,bs;q,z]=n=0(a1;q)n(a2;q)n(ar;q)n(q)n(b1;q)n(bs;q)n [(1)nq(n2)]1+srzn.

    The theory of mock theta functions is a very important research area of the theory of the basic hypergeometric series. Mock theta function was first introduced by Ramanujan in his last letter to Hardy [24]. Ramanujan listed 17 mock theta functions and called them orders of 3, 5 and 7. But he did not say explicitly what he meant and did not also give exact definition of order. Until now, exact definition of order has still not been given. The study of mock theta functions has attracted many experts and scholars. Recently, Patkowski [21] gave some new expansions for Ramanujan's 10th-order, 7th-order, and 5th-order mock theta functions F2(q4), ϕ(q4) and χ1(q4) by establishing some new Bailey pairs. In [19], Lovejoy and Osburn used Bailey pairs and Bailey transformation to obtain many mock theta functions in terms of q-hypergeometric double sums and gave connections to known single-sum mock theta functions. Then, Zhang and Li [25] derived some similar nice mock theta double sums by the same method on the previous basis. Patkowski [22] obtained double-sum expansions for mock theta functions of Andrew's third-order ¯ψ1(q) Ramanujan's 7th-order ϕ(q), and 10th-order F2(q). Some more recent investigations on this subject can be found in [9,10,17,18].

    As an example, double-sum expansion for 10th-order mock theta function F2(q) is restated as follows [22,Theorem 2.2,(2.13)]:

    n0nj0(1)jq2n2+2n+j2+j(q;q)2n+1(q2;q2)nj(q2;q2)j(1q2j+1)=F2(q2),

    where F2(q)=n0qn2+n(qn+1;q)n+1.

    In this paper, we make use of the following mock theta functions.

    The second-order mock theta functions (see [20]):

    A(q)=n=0qn+1(q2;q2)n(q;q2)n+1,B(q)=n=0qn(q;q2)n(q;q2)n+1,μ(q)=n=0(1)nqn2(q;q2)n(q2;q2)2n.

    The third-order mock theta functions (see [7]):

    ϕ(q)=n=0qn2(q2;q2)n,ψ(q)=n=1qn2(q;q2)n,ν(q)=n=0qn2+n(q;q2)n+1.

    The sixth-order mock theta functions (see [3]):

    ψ6(q)=n=1(1)n1qn2(q;q2)n1(q;q)2n1,ϕ6(q)=n=0(1)nqn2(q;q2)n(q;q)2n,ρ(q)=n=0qn(n+1)/2(q;q)n(q;q2)n+1,σ(q)=n=0q(n+2)(n+1)/2(q;q)n(q;q2)n+1.

    For more details about mock theta functions, the readers can refer to [1,2,3,4,6,7,23,24].

    Based on the above research results, we continue to do some research on double-sum expansions for mock theta functions in this paper. The rest of this paper is arranged as follows. In Section 2, we first provide a new q -series transformation formula in terms of series rearrangement method. And then as applications, some new double sums for certain mock theta functions are given.

    In this section, we give some double-sum representations for certain mock theta functions. First, in the following Proposition 1, we establish a new q-series transformation formula by means of q-series rearrangement.

    Proposition 1. For |q|<1 and |αab|<1, we have that

    n=0(q2/a,λ/q;q2)n(αab)n(αq2,λ;q2)n=(αa,αb;q2)(αq2,αab/q2;q2)n=0(1αq4n)(α,q2/a,q2/b;q2)n(αab/q2)nqn2n(1α)(q2,αa,αb;q2)n×nk=0(q2n,αq2n,λ/q;q2)kq4k(q2/b,αq2,λ;q2)k. (2.1)

    Proof. In terms of series rearrangement, the right-hand side of (2.1) equals that

    k=0n=k(1αq4n)(α,q2/a,q2/b;q2)n(αab/q2)nqn2n(1α)(q2,αa,αb;q2)n(q2n,αq2n,λ/q;q2)kq4k(q2/b,αq2,λ;q2)k=k=0n=0(1αq4n+4k)(α,q2/a,q2/b;q2)n+k(αab/q2)n+kq(n+k)2(n+k)(1α)(q2,αa,αb;q2)n+k×(q2(n+k),αq2(n+k),λ/q;q2)kq4k(q2/b,αq2,λ;q2)k=k=0(α,q2/a,λ/q;q2)k(q2,αa,αb,αq2,λ;q2)k(αab)kqk2+kn=0(1αq4n+4k)(αq2k,q2k+2/a,q2k+2/b;q2)n(1α)(q2k+2,αaq2k,αbq2k;q2)n×(q2(n+k),αq2(n+k);q2)k(αab)nqn2+2nk3n=k=0(1αq4k)(q2/a,λ/q;q2)k(α;q2)2k(1α)(αa,αb,αq2,λ;q2)k(αab)kn=0(αq4k;q2)n(1αq4n+4k)(q2;q2)n(1αq4k)×(q2k+2/a,q2k+2/b;q2)n(αaq2k,αbq2k;q2)n(αabq2)nqn2n. (2.2)

    Let qq2,aαq4k,bq2k+2/a,cq2k+2/b,d in the following sum of a very-well-poised 6ϕ5 series [5,Ⅱ.20]

    6ϕ5[a,qa1/2,qa1/2,b,c,da1/2,a1/2,aq/b,aq/c,aq/d;q,aq/bcd]=(aq,aq/bc,aq/bd,aq/cd;q)(aq/b,aq/c,aq/d,aq/bcd;q). (2.3)

    Then the second term of the right-hand side of (2.2) gives

    (αq4k+2,αab/q2;q2)(αaq2k,αbq2k;q2)=(αq2,αab/q2;q2)(αa,αb;q2)(αa,αb;q2)k(αq2;q2)2k.

    The right-hand side of (2.2) yields

    (αq2,αab/q2;q2)(αa,αb;q2)k=0(1αq4k)(q2/a,q2/b,λ/q;q2)k(α;q2)2k(1α)(αa,αb,q2/b,αq2,λ;q2)k(αab)k(αa,αb;q2)k(αq2;q2)2k=(αq2,αab/q2;q2)(αa,αb;q2)k=0(q2/a,λ/b;q2)k(αq2,λ;q2)k(αab)k.

    After some simplifications, we derive our desired result. This completes the proof.

    Next, as applications of the identity (2.1), in the following theorems we give some new double-sum representations for certain mock theta functions.

    Theorem 1. The following double-sum representation for the second-ordermock theta function A(q) is true:

    A(q)=q2(q;q2)2(q;q2)2n0nk0(1)n+kqn2+k22n+3k2nk(1q4n+1)(q;q2)n+k(q2;q2)2n(1q)(q2;q2)nk(q;q2)2n(q2;q2)k(q;q2)k+1. (2.4)

    Proof. Let a=b=1,α=q,λ=0 in (2.1). Then, we derive that

    n=0(q2;q2)nqn(q3;q2)n=(q,q;q2)(q3,q1;q2)n=0(1q4n+1)(q,q2,q2;q2)n(1q)(q2,q,q;q2)n(1)nqn22n×nk=0(q2n,q2n+1;q2)kq4k(q2,q3;q2)k.

    Multiplying both sides of the above equation by q1q and after certain simplifications, we get

    n=0(q2;q2)nqn+1(q;q2)n+1=q2(q;q2)2(1q)(q;q2)2n=01q4n+11q(q;q2)n(q2;q2)2n(q2;q2)n(q;q2)2n(1)nqn22n×nk=0(q2n,q2n+1;q2)kq4k(q2,q3;q2)k=q2(q;q2)2(q;q2)2n0nk0(1)n+kqn2+k22n+3k2nk(1q4n+1)(q;q2)n+k(q2;q2)2n(1q)(q2;q2)nk(q;q2)2n(q2;q2)k(q;q2)k+1.

    This completes the proof of the identity (2.4).

    By taking a=q,b=q1,α=q,λ=0 in (2.1), we deduce the following identity

    Corollary 1. The following double-sum representation for the second-order mock thetafunction B(q) is true:

    B(q)=2q(q2;q2)2(q;q2)2n0nk0(1)n+kqn2+k22n+3k2nk(1q4n+1)(q;q2)n+k(q;q2)n(q;q2)n+1(1q)(q2;q2)nk(q2,1;q2)n(q2;q4)k+1. (2.5)

    Taking α=1,λ=q2,b=q1,a0 in (2.1), we can also attain the identity (2.6) for the second-order mock theta function μ(q)

    Corollary 2. The following double-sum representation for the second-order mock thetafunction μ(q) is true:

    μ(q)=(q1;q2)2(q2;q2)n0nk0(1+q4n+1)(1)kq2n2+k23n+3k2nk(1;q2)n+k(q3;q2)n(q2;q4)k(q2;q2)nk(q1;q2)n(q2;q)2k(q;q)2k. (2.6)

    For certain third-order mock theta functions, we can also gain the similar conclusions as follows.

    Theorem 2. The following double-sum representations for the third-ordermock theta functions ϕ(q),ψ(q),ν(q) hold true:

    ϕ(q)=(1+q)(q;q2)(q;q2)n0nk0(1)n+kq2n2+k23n+3k2nk(1q4n1)(q1;q2)n+k(q2;q2)n(1q)(q2;q2)nk(q1;q2)n(q2;q2)2k (2.7)
    ψ(q)=q(q;q2)(q;q2)n0nk0(1)n+kq2n2+k2n+3k2nk(1q4n+1)(q;q2)n+k(q2;q2)n(q2;q2)nk(q;q2)n(q2;q2)k(q;q2)k+1 (2.8)
    ν(q)=2(q2;q2)(q;q2)n0nk0(1)n+kq2n2+k22n+3k2nk(1+q4n+1)(q;q2)n+k(q3;q2)n(1+q)(q2;q2)nk(1;q2)n(q6;q4)k. (2.9)

    Proof. For (2.7), taking α=q1,λ=q2,b=1,a0 in (2.1), we attain that

    n=0qn2(q2;q2)n=(q1;q2)(q;q2)n=01q4n11q1(q1,q2;q2)n(q2,q1;q2)n(1)nq2n23nnk=0(q2n,q2n1;q2)k(q2,q2;q2)kq4k=(1+q)(q;q2)(q;q2)n0nk01q4n11q(1)n+kq2n2+k23n+3k2nk(q1;q2)n+k(q2;q2)n(q2;q2)nk(q1;q2)n(q2;q2)2k.

    This completes the proof of the identity (2.7).

    For (2.8), set α=q,λ=0,b=1,a0 in (2.1). We deduce that

    n=0qn2+2n(q3;q2)n=(q;q2)(q3;q2)n=0(1q4n+1)(q,q2;q2)n(1q)(q2,q;q2)n(1)nq2n2nnk=0(q2n,q2n+1;q2)k(q2,q3;q2)kq4k=(q;q2)(q;q2)n0nk0(1q4n+1)(q;q2)n+k(q2;q2)n(q2;q2)nk(q;q2)n×(1)n+kq2n2+k2n+3k2nk(q2,q3;q2)k.

    Multiplying both sides of the above identity by q1q, we get the following double-sum representation for the third-order mock theta function ψ(q):

    ψ(q)=n=0qn2+2n+1(q;q2)n+1=q(q;q2)(q;q2)n0nk0(1q4n+1)(q;q2)n+k(q2;q2)n(q2;q2)nk(q;q2)n×(1)n+kq2n2+k2n+3k2nk(q2;q2)k(q;q2)k+1.

    This completes the proof of the identity (2.8).

    For (2.9), taking α=q,λ=0,b=q1,a0 in (2.1), we obtain that

    n=0qn2+n(q3;q2)n=(1;q2)(q3;q2)n=0(1+q4n+1)(q,q3;q2)n(1)nq2n22n(1+q)(q2,1;q2)n×nk=0(q2n,q2n+1;q2)kq4k(q3,q3;q2)k. (2.10)

    Multiplying both sides of the identity (2.10) by 11+q and after applications as seen above, we get our desired result (2.7). Thus we complete the proof of Theorem 2 by obtaining the Eq (2.9).

    Theorem 3. The following double-sum representations for the third-order mock thetafunctions ψ6(q),ϕ6(q),ρ(q),σ(q) hold true:

    ψ6(q)=q(q;q2)(q;q2)n0nk0(1)kq2n2+k2n+3k2nk(1+q4n+1)(q;q2)n+k(q4;q4)n(q2;q4)k(q2;q2)nk(q;q)2n(q;q)2k(q;q)2k+1 (2.11)
    ϕ6(q)=(q1;q2)(q;q2)n0nk0(1)kq2n2+k23n+3k2nk(1+q4n1)(q1;q2)n+k(q2;q2)n(q2;q4)k(1+q1)(q2;q2)nk(q1;q2)n(q;q)22k (2.12)
    ρ(q2)=2(q2;q2)(q;q2)n0nk0(1)n+kq2n2+k22n+3k2nk(1+q4n+1)(q;q2)n+k(q3;q2)n(q4;q4)k(q2;q2)nk(1;q2)n(q2;q)2k(q2;q4)k+1 (2.13)
    σ(q2)=q2(q2;q2)(q;q2)n0nk0(1)n+kq2n2+k2+3k2nk(1+q4n+1)(q;q2)n+k(q2;q4)n(q4;q4)k(q2;q2)nk(q;q)2n(q2;q4)k+1(q;q)2k. (2.14)

    Proof. For (2.11), set α=q,λ=q2,b=1,a0 in (2.1). Then we obtain

    n=0(q;q2)n(1)nqn2+2n(q3,q2;q2)n=(q;q2)(q3;q2)n=0(1+q4n+1)(q,q2;q2)nq2n2n(1+q)(q2,q;q2)n×nk=0(q2n,q2n+1,q;q2)kq4k(q2,q3,q2;q2)k.

    After suitable simplifications, we derive

    n=0(q;q2)n(1)nqn2+2n(q2;q)2n=(q;q2)(q3;q2)n0nk0(1)kq2n2+k2n+3k2nk(1+q4n+1)(q;q2)n+k(q4;q4)n(q2;q4)k(q2;q2)nk(q;q)2n(q;q)2k(q;q)2k+1.

    Multiplying both sides of the above identity by q1+q, we deduce that

    n=0(q;q2)n(1)nqn2+2n+1(q;q)2n+1=q(q;q2)(q;q2)n0nk0(1)kq2n2+k2n+3k2nk(1+q4n+1)(q;q2)n+k(q4;q4)n(q2;q4)k(q2;q2)nk(q;q)2n(q;q)2k(q;q)2k+1.

    This completes the proof of (2.11).

    For (2.12), set α=q1,λ=q2,b=1,a0 in (2.1). After some simplifications, we attain the identity (2.12). Therefore, we omit the proof.

    For (2.13), taking α=q,λ=q3,b=q1,a0 in (2.1) and after some simplifications, we get that

    n=0qn2+n(q2;q2)n(q6;q4)n=(1;q2)(q3;q2)n=0(1+q4n+1)(q,q3;q2)nq2n22n(1+q)(q2,1;q2)nnk=0(q2n,q2n+1,q2;q2)kq4k(q3,q3,q3;q2)k=2(q2;q2)(q3;q2)n0nk0(1)n+kq2n2+k22n+3k2nk(1+q4n+1)(q;q2)n+k(q3;q2)n(q2;q2)k(1+q)(q2;q2)nk(1;q2)n(q3;q2)k(q6;q4)k.

    Multiplying both sides of the above identity by 11q2 and through a mass of complex computations, we find the following double-sum representation for the sixth-order mock theta function ρ(q):

    n=0qn2+n(q2;q2)n(q2;q4)n+1=2(q2;q2)(q;q2)n0nk0(1)n+kq2n2+k22n+3k2nk(1+q4n+1)(q;q2)n+k(q3;q2)n(q4;q4)k(q2;q2)nk(1;q2)n(q2;q)2k(q2;q4)k+1.

    This completes the proof of the identity (2.13). For (2.14), take α=q,λ=q3,b=q,a0 in (2.1). Then we have that

    n=0qn2+3n(q2;q2)n(q6;q4)n=(q2;q2)(q3;q2)n=0(1+q4n+1)(q,q;q2)n(1)nq2n2(1+q)(q2,q2;q2)nnk=0(q2n,q2n+1,q2;q2)k(q,q3,q3;q2)kq4k=(q2;q2)(q3;q2)n0nk0(1+q4n+1)(q;q2)n+k(q2;q4)n(q4;q4)k(1)n+kq2n2+k2+3k2nk(1+q)(q2;q2)nk(q;q)2n(q6;q4)k(q;q)2k.

    In order to get our desired result, we multiply both sides of the above identity by q21q2. Thus, we have that

    n=0qn2+3n+2(q2;q2)n(q2;q4)n+1=q2(q2;q2)(q;q2)n0nk0(1)n+kq2n2+k2+3k2nk(1+q4n+1)(q;q2)n+k(q2;q4)n(q4;q4)k(q2;q2)nk(q;q)2n(q2;q4)k+1(q;q)2k.

    Basic (or q-) polynomials and (or q-) hypergeometric functions are particularly applicable in many diverse areas of mathematics, physics and other sciences. Here in our present investigation, we have motivated by the work of Patkowski [22] and have studied the double-sum expansions for mock theta functions. Then in terms of series rearrangement method, we have established a new q-series transformation formula. As an applications, we have derived some new double-sum representations for certain mock theta functions.

    Studies of the special functions and q-polynomials are widely using in different branches of mathematics. For example in [11], by make use of certain q-Chebyshev Polynomials, certain subclasses of analytic and bi-univalent functions have been defined systematically. Just like the class defined in [11], one can define a similar class by taking this newly established q-series transformation formula instead of q-Chebyshev Polynomials. These kind of investigations can also be found in [8,12,13,14,15,16].

    All authors declare no conflicts of interest in this paper.

    The first-named author (Q. Hu) is supported by the Natural Science Foundation of Henan Province (No. 212300410211), the National Natural Science Foundation of China (Grant No. 12101287) and the National Project Cultivation Foundation of Luoyang Normal University (No. 2020-PYJJ-011).



    [1] G. E. Andrews, D. Hickerson, Ramanujan's "lost notebook": The sixth order mock theta functions, Adv. Math., 89 (1991), 60–105. https://doi.org/10.1016/0001-8708(91)90083-J doi: 10.1016/0001-8708(91)90083-J
    [2] G. E. Andrews, q-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Proc. Steklov Inst. Math., 276 (2012), 21–32. https://doi.org/10.1134/S0081543812010038 doi: 10.1134/S0081543812010038
    [3] B. C. Berndt, S. H. Chan, Sixth order mock theta functions Adv. Math., 216 (2007), 771–786. https://doi.org/10.1016/j.aim.2007.06.004 doi: 10.1016/j.aim.2007.06.004
    [4] B. C. Berndt, R. A. Rankin, Ramanujan: Letters and Commentary, History of Mathematics, 9. American Mathematical Society, Providence, RI, London. Mathematical Society, London (1995), xiv+347pp.
    [5] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2Eds, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511526251
    [6] B. Gordon, R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc.(2), 62 (2000), 321–335. https://doi.org/10.1112/S0024610700008735 doi: 10.1112/S0024610700008735
    [7] B. Gordon, R. J. McIntosh, A survey of classic mock theta functions, In Partitions, q-Series, and Modular Forms, Developments in Math., 23 (2012), 95–144.
    [8] Q. X. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, 13 (2021), Article ID 1275, 1–14. https://doi.org/10.3390/sym13071275 doi: 10.3390/sym13071275
    [9] Z. Jia, B. Khan, Q. Hu, D. Niu, Applications of generalized q-difference equations for general q-polynomials, Symmetry, 13 (2021), 1222. https://doi.org/10.3390/sym13071222 doi: 10.3390/sym13071222
    [10] Z. Jia, B. Khan, P. Agarwal, Q. Hu, X. Wang, Two new Bailey lattices and their applications, Symmetry, 13 (2021), 958. https://doi.org/10.3390/sym13060958 doi: 10.3390/sym13060958
    [11] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of q-derivative operator to the subclass of Bi-Univalent functions involving q-Chebyshev Ppolynomials, J. Math., 2022 (2022), 8162182. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182
    [12] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. https://doi.org/10.3934/math.2021061 doi: 10.3934/math.2021061
    [13] M. G. Khan, B. Ahmad, N. Khan, W. K. Mashwani, S. Arjika, B. Khan, et al., Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, Dev. Geom. Funct. Theory, 2021 (2021), Article ID 4343163, 9 pages. https://doi.org/10.1155/2021/4343163 doi: 10.1155/2021/4343163
    [14] W. K. Mashwani, B. Ahmad, N. Khan, M. G. Khan, S. Arjika, B. Khan, et al., Fourth Hankel determinant for a subclass of starlike functions based on modified sigmoid, J. Funct. Space., 2021 (2021), Article ID 6116172. https://doi.org/10.1155/2021/6116172 doi: 10.1155/2021/6116172
    [15] M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions, AIMS Math. 6 (2021), 1110–1125. https://doi.org/10.3934/math.2021067 doi: 10.3934/math.2021067
    [16] L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, et al., Coefficient estimates for a subclass of meromorphic multivalent q -close-to-convex functions, Symmetry, 2021, 13, 1840. https://doi.org/10.3390/sym13101840 doi: 10.3390/sym13101840
    [17] H. M. Srivastava, J. Cao, S. Arjika, A note on generalized q-difference equations and their applications involving q-hypergeometric functions, Symmetry, 12 (2020), 1816. https://doi.org/10.3390/sym12111816 doi: 10.3390/sym12111816
    [18] H. M. Srivastava, S. Arjika, A. S. Kelil, Some homogeneous q-difference operators and the associated generalized Hahn polynomials, Appl. Set-Valued Anal. Optim., 1 (2019), 187–201. https://doi.org/10.48550/arXiv.1908.03207 doi: 10.48550/arXiv.1908.03207
    [19] J. Lovejoy, R. Osburn, Mock theta double sums, Glasg. Math. J., 59 (2017), 323–348. https://doi.org/10.1017/S0017089516000197 doi: 10.1017/S0017089516000197
    [20] R. J. McIntosh, Second order mock theta functions, Can. Math. Bull., 50 (2007), 284–290. https://doi.org/10.4153/CMB-2007-028-9 doi: 10.4153/CMB-2007-028-9
    [21] A. E. Patkowski, On some new Bailey pairs and new expansions for some Mock theta functions, Methods Appl. Anal., 23 (2016), 205–213. https://doi.org/10.7216/1300759920162310306 doi: 10.7216/1300759920162310306
    [22] A. E. Patkowski, More on some Mock theta double sums, Adv. in Appl. Math., 106 (2019), 20–27. https://doi.org/10.1016/j.aam.2019.01.006 doi: 10.1016/j.aam.2019.01.006
    [23] S. Ramanujan, Collected papers of Srinivasa Ramanujan, Edited by G. H. Hardy, P. V. Seshu. Aiyar, B. M. Wilson, Third printing of the 1927 original. With a new preface and commentary by Bruce C. Berndt, AMS Chelsea Publishing; Providence, RI (2000), xxxviii+426pp.
    [24] S. Ramanujan Collected Papers, Cambridge University Press, 1972, reprinted Chelsea, New York, 1962.
    [25] Z. Zhang, X. Li Mock theta functions in terms of q -hypergeometric double sums, Int. J. Number Theory, 14 (2018), 1715–1728.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1835) PDF downloads(73) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog