Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Instability analysis and geometric perturbation theory to a mutual beneficial interaction between species with a higher order operator

  • Received: 28 March 2022 Revised: 24 June 2022 Accepted: 11 July 2022 Published: 22 July 2022
  • MSC : 35K92, 35K91, 35K55

  • The higher order diffusion can be understood as a generalization to the classical fickian diffusion. To account for such generalization, the Landau-Ginzburg free energy concept is applied leading to a fourth order spatial operator. This kind of diffusion induces a set of instabilities in the proximity of the critical points raising difficulties to study the convergence of Travelling Waves (TW) solutions. This paper aims at introducing a system of two species driven by a mutual interaction towards prospering and with a logistic term in their respective reactions. Previous to any analytical finding of TW solutions, the instabilities of such solutions are studied. Afterwards, the Geometric Perturbation Theory is applied to provide means to search for a linearized hyperbolic manifold in the proximity of the equilibrium points. The homotopy graphs for each of the flows to the hyperbolic manifolds are provided, so that analytical solutions can be obtained in the proximity of the critical points. Additionally, the set of eigenvalues in the homotopy graphs tend to cluster and synchronize for increasing values of the TW-speed.

    Citation: José Luis Díaz Palencia, Abraham Otero. Instability analysis and geometric perturbation theory to a mutual beneficial interaction between species with a higher order operator[J]. AIMS Mathematics, 2022, 7(9): 17210-17224. doi: 10.3934/math.2022947

    Related Papers:

    [1] Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
    [2] Xiangxing Tao, Jiahui Wang . Commutators of multilinear θ-type generalized fractional integrals on non-homogeneous metric measure spaces. AIMS Mathematics, 2022, 7(6): 9627-9647. doi: 10.3934/math.2022535
    [3] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
    [4] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [5] Md Hasanuzzaman, Mohammad Imdad . Relation theoretic metrical fixed point results for Suzuki type ZR-contraction with an application. AIMS Mathematics, 2020, 5(3): 2071-2087. doi: 10.3934/math.2020137
    [6] Nizar Souayah, Nabil Mlaiki, Salma Haque, Doaa Rizk, Amani S. Baazeem, Wasfi Shatanawi . A new type of three dimensional metric spaces with applications to fractional differential equations. AIMS Mathematics, 2022, 7(10): 17802-17814. doi: 10.3934/math.2022980
    [7] Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111
    [8] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [9] Zijie Qin, Lin Chen . Characterization of ternary derivation of strongly double triangle subspace lattice algebras. AIMS Mathematics, 2023, 8(12): 29368-29381. doi: 10.3934/math.20231503
    [10] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
  • The higher order diffusion can be understood as a generalization to the classical fickian diffusion. To account for such generalization, the Landau-Ginzburg free energy concept is applied leading to a fourth order spatial operator. This kind of diffusion induces a set of instabilities in the proximity of the critical points raising difficulties to study the convergence of Travelling Waves (TW) solutions. This paper aims at introducing a system of two species driven by a mutual interaction towards prospering and with a logistic term in their respective reactions. Previous to any analytical finding of TW solutions, the instabilities of such solutions are studied. Afterwards, the Geometric Perturbation Theory is applied to provide means to search for a linearized hyperbolic manifold in the proximity of the equilibrium points. The homotopy graphs for each of the flows to the hyperbolic manifolds are provided, so that analytical solutions can be obtained in the proximity of the critical points. Additionally, the set of eigenvalues in the homotopy graphs tend to cluster and synchronize for increasing values of the TW-speed.



    Fractional derivatives, which have attracted considerable attention during the last few decades, can be defined according to their type. These include the Caputo [1,2,3,4,5,6,8,7,9,10,11,12,13], Riemann-Liouville [14,15,16,17,18,19,20,21], Riesz [22,23,24,25,26], and Caputo-Fabrizio (CF) [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] types. Especially for the CF derivative, there were many related reports based on some discussions of different aspects, see the above references, and the Refs. [43,44,45]. In order to better grasp the fractional order problem, one can refer to the related works [47,48] and other fractional books.

    Based on these fractional derivatives, numerous models have been developed. However, these models are difficult to solve directly by applying the general analytical methods because of the existence of fractional derivatives. This problem has inspired scholars to develop numerical algorithms to derive numerical solutions efficiently. In [5,49,50,51], a few high-order approximation formulas for the Riemann-Liouville, Caputo, and Riesz fractional derivatives were proposed and developed using different techniques or ideas. Recently, high-order discrete formulas for the CF fractional derivatives were designed and discussed in Refs. [32,33,34,35,36,37,38].

    Another difficulty for simulating the models with fractional derivatives is the non-locality which greatly reduces the efficiency of the algorithm and requires much more memory storage compared with the traditional local models. Specifically, to obtain the approximation solutions {Uk}Mk=1 with M a positive integer, for the fractional models its computing complexity is O(M2), and the memory storage is O(M), in contrast to the local models with O(M) and O(1), respectively. For fast algorithms aimed at the Riemann-Liouville, Caputo, and Riesz fractional derivatives, see Refs. [14,52,53,54,55]. However, few scholars studied the fast algorithm for the CF fractional derivative. To the best of our knowledge, authors in [39] proposed numerically a fast method for the CF fractional derivative without further analysing the error accuracy.

    In this study, our aim is to construct a novel efficient approximation formula for the following CF fractional derivative [31]

    CF0αtu(t)=11αt0u(s)exp[α1α(ts)]ds,0<α<1, (1.1)

    where t[0,T], 0<T<. Our contributions in this study mainly focus on

    Propose a novel second-order approximation formula for the CF fractional derivative with detailed theoretical analysis for the truncation error.

    Develop a fast algorithm based on the novel discretization technique which reduces the computing complexity from O(M2) to O(M) and the memory storage from O(M) to O(1). Moreover, we theoretically show that the fast algorithm maintains the optimal convergence rate.

    The remainder of this paper is structured as follows. In Section 2, we derive a novel approximation formula with second-order convergence rate for the CF fractional derivative. In Section 3, we develop a fast algorithm by splitting the CF fractional derivative into two parts, the history part and local part, and then rewrite the history part by a recursive formula. Further we prove the truncation error for the fast algorithm. In Section 4, two numerical examples are provided to verify the approximation results and the efficiency of our fast algorithm. In Section 5, we provide a conclusion and offer suggestions for future studies.

    Throughout this article, we denote C as a positive constant, which is free of the step size Δt.

    To derive a novel approximation formula, we choose a uniform time step size Δt=TM=tktk1 with nodes tk=kΔt,k=0,1,,M, where M is a positive constant. We denote uk=u(tk) on [0,T].

    We next give a discrete approximation of CF fractional derivative CF0αtu(t) at tk+12(k1)

    CF0αtu(tk+12)=11αkj=1tj+12tj12u(s)exp[α1α(tk+12s)]ds+11αt12t0u(s)exp[α1α(tk+12s)]ds=11αkj=1tj+12tj12[u(tj)+u(tj)(stj)+12u(ξj)(stj)2]exp[α1α(tk+12s)]ds+11αt12t0[u(t12)+u(t12)(st12)+12u(ξ0)(st12)2]exp[α1α(tk+12s)]ds=1αkj=1uj+1uj12Δt(Mk+12j+12Mk+12j12)+1αu1u0Δt(Mk+1212Mk+120)+Rk+121+Rk+122CF0Dαtu(tk+12)+Rk+12, (2.1)

    where ξj generally depending on s satisfies ξj(tj12,tj+12) for j1 and ξ0(t0,t12). The coefficients Mkj and error Rk+12 are defined as follows

    Mkj=exp[α1α(tktj)],     Rk+12=Rk+121+Rk+122, (2.2)
    Rk+121=11αkj=1tj+12tj12[u(tj)(stj)+12u(ξj)(stj)2]exp[α1α(tk+12s)]ds+11αt12t0[u(t12)(st12)+12u(ξ0)(st12)2]exp[α1α(tk+12s)]ds,Rk+122=11αO(Δ2t)tk+12t0exp[α1α(tk+12s)]ds. (2.3)

    From (2.1), we obtain the following approximation formula for CF0αtu(tk+12) with k1.

    CF0Dαtu(tk+12)=1αkj=1uj+1uj12Δt(Mk+12j+12Mk+12j12)+1αu1u0Δt(Mk+1212Mk+120). (2.4)

    Based on this discussion, we obtain the novel approximation formula (2.4). We next discuss the truncation error of the novel approximation formula.

    Theorem 1. For u(t)C3[0,T], the truncation error Rk+12(k0) satisfies the following estimate

    |Rk+12|CΔ2t, (2.5)

    where the constant C is independent of k and Δt.

    Proof. According to formula (2.3), we can obtain:

    |Rk+12||Rk+121|+|Rk+122||11αkj=1u(tj)tj+12tj12(stj)exp[α1α(tk+12s)]ds|+|11αu(t12)t12t0(st12)exp[α1α(tk+12s)]ds|+|12(1α)kj=1tj+12tj12u(ξj)(stj)2exp[α1α(tk+12s)]ds|+|12(1α)t12t0u(ξ0)(st12)2exp[α1α(tk+12s)]ds|+|11αtk+12t0O(Δ2t)exp[α1α(tk+12s)]ds|=I1+I2+I3+I4+I5. (2.6)

    For the term I1, using integration by parts, we can arrive at:

    I1maxt[0,T]|u(t)|Δ2t8(1α)kj=1{exp[α1α(tk+12tj+12)]exp[α1α(tk+12tj12)]}+maxt[0,T]|u(t)|αΔ2t8(1α)2tk+12t12exp[α1α(tk+12s)]dsmaxt[0,T]|u(t)|Δ2t4(1α)(1Mk+1212)CΔ2t. (2.7)

    Next, for the term I2, by using the mean value theorem of integrals, we obtain:

    I2=|Δt2(1α)u(t12)(tεt12)exp[α1α(tk+12tε)]|maxt[0,T]|u(t)|Δ2t4(1α)CΔ2t, (2.8)

    where t0tεt12.

    For the term I3, we can easily obtain:

    I3maxt[0,T]|u(t)|Δ2t8(1α)tk+12t12exp[α1α(tk+12s)]dsCΔ2t. (2.9)

    Similarly, we can estimate the term I4 as follows:

    I4maxt[0,T]|u(t)|Δ2t8(1α)t12t0exp[α1α(tk+12s)]dsCΔ2t. (2.10)

    Finally, for the term I5, we can derive:

    I511α|O(Δ2t)|(1Mk+120)CΔ2t. (2.11)

    Based on the aforementioned estimates for the terms I1, ,I5, we can complete the proof of the Theorem.

    It is obvious that the approximation formula (2.4) is nonlocal since the value at node tk+12 for the CF fractional derivative is concerned with all the values of uj, j=0,1,,k,k+1, which means the computing complexity when apply the formula (2.4) to ODEs is of O(M2) and the memory requirement is O(M). In the following analysis, inspired by the work [14], we develop a fast algorithm based on the new discretization technique used in this paper, with which the computing complexity is reduced from O(M2) to O(M) and the memory requirement is O(1) instead of O(M).

    We split the derivative CF0Dαtu(tk+12) for k1 into two parts: the history part denoted by Ch(tk+12) and the local part denoted by Cl(tk+12), respectively, as follows

    CF0αtu(tk+12)=Ch(tk+12)+Cl(tk+12)=11αtk12t0u(s)exp[α1α(tk+12s)]ds+11αtk+12tk12u(s)exp[α1α(tk+12s)]ds. (3.1)

    For the local part Cl(tk+12), we have

    Cl(tk+12)=uk+1uk12αΔt(1Mk+12k12)+Rk+12l, (3.2)

    where Mkj is defined by (2.2), and the truncation error Rk+12l is

    Rk+12l=11αtk+12tk12[u(tk)(stk)+12u(ξk)(stk)2]exp[α1α(tk+12s)]ds+11α[u(tk)uk+1uk12Δt]tk+12tk12exp[α1α(tk+12s)]ds,k1. (3.3)

    For the history part Ch(tk+12), we rewrite it into a recursive formula when k2 in the following way

    Ch(tk+12)=11αtk32t0u(s)exp[α1α(tk+12s)]ds+11αtk12tk32u(s)exp[α1α(tk+12s)]dsC(1)h(tk+12)+C(2)h(tk+12), (3.4)

    and when k=1,

    Ch(t32)=11αt12t0u(s)exp[α1α(t32s)]dsC(2)h(t32). (3.5)

    Careful calculations show that

    C(1)h(tk+12)=exp(αΔtα1)Ch(tk12),k2. (3.6)

    For the term C(2)h(tk+12), by similar analysis for the Theorem 1, we have

    C(2)h(tk+12)={ukuk22αΔt(Mk+12k12Mk+12k32)+Rk+12h,if k2u1u0αΔt(M3212M320)+R32h,if k=1, (3.7)

    where, for k2,

    Rk+12h=11αtk12tk32[u(tk1)(stk1)+12u(ξk1)(stk1)2]exp[α1α(tk+12s)]ds+11α[u(tk1)ukuk22Δt]tk12tk32exp[α1α(tk+12s)]ds, (3.8)

    and, for k=1,

    R32h=11αt12t0[u(t12)(st12)+12u(ξ0)(st12)2]exp[α1α(tk+12s)]ds+11α[u(t12)u1u0Δt]t12t0exp[α1α(t32s)]ds. (3.9)

    For the truncation error Rk+12l and Rk+12h defined respectively by (3.3) and (3.8)-(3.9), we have the estimates that

    Lemma 1. Suppose that u(t)C3[0,T], then for any k1, Rk+12l and Rk+12h satisfy

    |Rk+12l|CΔ3t,|Rk+12h|CΔ3t, (3.10)

    where the constant C is free of k and Δt.

    Proof. To avoid repetition we just prove the estimate for Rk+12l, since the estimate for Rk+12h can be derived similarly. By the definition (3.3), we have

    |Rk+12l|11αmaxt[0,T]|u(t)||tk+12tk12(stk)exp[α1α(tk+12s)]ds|+12(1α)maxt[0,T]|u(t)|tk+12tk12(stk)2exp[α1α(tk+12s)]ds+CΔ2t1αtk+12tk12exp[α1α(tk+12s)]ds.L1+L2+L3. (3.11)

    Then, for the term L1, using integration by parts and the Taylor expansion for exp(t) at zero, we have

    L1CΔ2t(Mk+12k+12Mk+12k12)+Ctk+12tk12(stk)2exp[α1α(tk+12s)]dsCΔ2t[1(1αΔt1α|O(Δ2t)|)]+CΔ3tCΔ3t. (3.12)

    For the terms L2 and L3, by the mean value theorem of integrals we can easily get L2CΔ3t and L3CΔ3t. Hence, we have proved the estimate for Rk+12l.

    Now, based on the above analysis, and for a better presentation, we can introduce an operator CF0Fαt for the fast algorithm defined by

    CF0Fαtu(tk+12)=uk+1uk12αΔt(1Mk+12k12)+Fh(tk+12),k1, (3.13)

    where the history part Fh(tk+12) satisfies

    Fh(tk+12)={exp(αΔtα1)Fh(tk12)+ukuk22αΔt(Mk+12k12Mk+12k32),if k2u1u0αΔt(M3212M320),if k=1. (3.14)

    We note that with (3.13) and (3.14), uk+1 only depends on uk, uk1 and uk2, which reduces the algorithm complexity from O(M2) to O(M) and the memory requirement from O(M) to O(1).

    The following theorem confirms the efficiency of the operator CF0Fαt, with which we can still obtain the second-order convergence rate.

    Theorem 2. Assume u(t)C3[0,T] and the operator CF0Fαt is defined by (3.13). Then

    |CF0αtu(tk+12)CF0Fαtu(tk+12)|CΔ2t, (3.15)

    where the constant C is independent of k and Δt.

    Proof. Combining (3.1), (3.2), (3.4)-(3.5) with (3.13), (3.14), we can get

    |CF0αtu(tk+12)CF0Fαtu(tk+12)||Ch(tk+12)Fh(tk+12)|+|Rk+12l|,k2. (3.16)

    Then, next we mainly analyse the estimate for |Ch(tk+12)Fh(tk+12)|. Actually, by definitions we obtain

    Ch(tk+12)Fh(tk+12)=exp(αΔtα1)[Ch(tk12)Fh(tk12)]+Rk+12h. (3.17)

    We introduce some notations to simplify the presentation. Let

    Tk+1=Ch(tk+12)Fh(tk+12),L=exp(αΔtα1). (3.18)

    Then, the recursive formula (3.17) reads that

    Tk+1=Lk1T2+Rk+1h, (3.19)

    where the term Rk+1h is defined by

    Rk+1h=Lk2R2+12h+Lk3R3+12h++Rk+12h. (3.20)

    Now, by (3.7) and (3.14) as well as the Lemma 1, we can get

    |T2|=|R32h|CΔ3t, (3.21)

    and

    |Rk+1h|CΔ3t(Lk2+Lk3++1)=CΔ3t1Lk11L. (3.22)

    Noting here that L(0,1) we have

    1L=1exp(αΔtα1)αΔt1ααΔt2(1α). (3.23)

    Combining (3.19), (3.21)-(3.23), we obtain that

    |Tk+1|CΔ2t. (3.24)

    Now, with (3.16), (3.17), (3.24) and the Lemma 1, we complete the proof for the theorem.

    To check the second-order convergence rate and the efficiency of the fast algorithm for the novel approximation formula, we choose two fractional ordinary differential equation models with the domain I=(0,T]. Let Uk be the numerical solution for the chosen models at tk, and define U0=u(0). Define the error as Err(Δt)=max1kM|Ukuk|. For the sufficiently smooth function u(t), we have the approximation formulas for u(tk+12) and its first derivative dudt|t=tk+12:

    u(tk+12)=12(uk+uk+1)+O(Δ2t),dudt|t=tk+12=uk+1ukΔt+O(Δ2t). (4.1)

    Then, combined with results (2.5) and (3.15), the second-order convergence rate in the following tests is expected.

    First, we consider the following fractional ordinary differential equation with an initial value:

    {CF0αtu(t)+u(t)=g1(t), tˉI,u(0)=φ0. (4.2)

    Next, by taking the exact solution u(t)=t2 and the initial value φ0=0, we derive the source function as follows:

    g1(t)=2tα+t22(1α)α2[1exp(α1αt)]. (4.3)

    Direct scheme: Based on the novel approximation formula (2.4), we derive the following discrete system at tk+12:

    Case k=0

    (12+1M120αΔt)U1=(12+1M120αΔt)U0+g1(t12), (4.4)

    Case k1

    (12+1Mk+12k122αΔt)Uk+1=1Mk+12k122αΔtUk112UkMk+1212Mk+120αΔt(U1U0)12αΔtk1j=1(Uj+1Uj1)(Mk+12j+12Mk+12j12)+g1(tk+12). (4.5)

    Fast scheme: Applying the fast algorithm to the equation (4.2), we can get, for k1:

    (12+1Mk+12k122αΔt)Uk+1=1Mk+12k122αΔtUk112Uk+g1(tk+12)Fh(tk+12), (4.6)

    where Fh(tk+12) is defined by (3.14). For the case k=0, the formula (4.4) is used to derive U1.

    Let T=1. By calculating based on the direct scheme (4.4)–(4.5) and the fast scheme (4.6), we obtain the error results by choosing changed mesh sizes time step Δt=210,211,212,213,214 for different fractional parameters α=0.1,0.5,0.9, respectively, in Table 1. From the computed results, we can see that the convergence rate for both of the schemes is close to 2, which is in agreement with our theoretical result.

    Table 1.  Convergence results of Example 1.
    α Δt Direct scheme Fast scheme
    Err(Δt) Rate CPU(s) Err(Δt) Rate CPU(s)
    0.1 210 4.76834890E-07 0.0625 4.76834890E-07 0.0072
    211 1.19209015E-07 1.999996 0.2508 1.19209014E-07 1.999996 0.0067
    212 2.98022864E-08 1.999998 0.8776 2.98022864E-08 1.999998 0.0088
    213 7.45057174E-09 2.000000 3.3688 7.45057174E-09 2.000000 0.0100
    214 1.86264512E-09 1.999998 13.2991 1.86264512E-09 1.999998 0.0140
    0.5 210 4.76811290E-07 0.0716 4.76811290E-07 0.0067
    211 1.19206056E-07 1.999961 0.2768 1.19206056E-07 1.999961 0.0083
    212 2.98019183E-08 1.999980 0.9433 2.98019183E-08 1.999980 0.0091
    213 7.45052997E-09 1.999990 3.6143 7.45052997E-09 1.999990 0.0098
    214 1.86263893E-09 1.999995 14.2937 1.86263893E-09 1.999995 0.0135
    0.9 210 8.88400608E-07 0.0834 8.88400608E-07 0.0071
    211 2.22067159E-07 2.000214 0.2935 2.22067163E-07 2.000214 0.0074
    212 5.55126489E-08 2.000108 1.1452 5.55126587E-08 2.000107 0.0083
    213 1.38776781E-08 2.000050 4.3128 1.38775857E-08 2.000060 0.0099
    214 3.46934370E-09 2.000032 17.1595 3.46943940E-09 1.999982 0.0199

     | Show Table
    DownLoad: CSV

    Moreover, we manifest the efficiency of our fast scheme in two aspects: (i) by comparing with a published second-order scheme [35] which is denoted as Scheme I and (ii) with the direct scheme (4.5). In Figure 1, we take T=10 and plot the CPU time consumed for Scheme I and our fast scheme under the condition |Err(Δt)|107 for each α=0.1,0.2,,0.9. It is evident that our fast scheme is much more efficient. Further, to check the computing complexity of our direct and fast schemes, we depict in Figure 2 the CPU time in seconds needed with α=0.1 in the log-log coordinate system, by taking T=1, M=103×2m, m=1,2,,6. One can see that the fast scheme has reduced the computing complexity from O(M2) to O(M).

    Figure 1.  Comparison of CPU time between our fast method and the Scheme I with the error satisfying |Err(Δt)|107.
    Figure 2.  CPU time for Example 1 with α=0.1.

    We next consider another initial value problem of the fractional ordinary differential equation:

    {du(t)dt+CF0αtu(t)=g2(t), tˉI,u(0)=ψ0, (4.7)

    where the exact solution is u(t)=exp(2t), the initial value is ψ0=1, and the source function is:

    g2(t)=22α[exp(2t)exp(α1αt)]+2exp(2t). (4.8)

    Direct scheme: For the model (4.7), we formulate the Crank-Nicolson scheme based on the new approximation formula (2.4) at tk+12 as follows:

    Case k=0

    (1Δt+1M120αΔt)U1=(1Δt+1M120αΔt)U0+g2(t12), (4.9)

    Case k1

    (1Δt+1Mk+12k122αΔt)Uk+1=1Mk+12k122αΔtUk1+1ΔtUkMk+1212Mk+120αΔt(U1U0)12αΔtk1j=1(Uj+1Uj1)(Mk+12j+12Mk+12j12)+g2(tk+12). (4.10)

    Fast scheme: Applying the fast algorithm to the model (4.7), we have, for k1:

    (1Δt+1Mk+12k122αΔt)Uk+1=1Mk+12k122αΔtUk1+UkΔt+g1(tk+12)Fh(tk+12). (4.11)

    Similarly, we also compute and list the convergence data in Table 2 to show further the effectiveness of the novel approximation and the fast algorithm.

    Table 2.  Convergence results of Example 2.
    α Δt Direct scheme Fast scheme
    Err(Δt) Rate CPU(s) Err(Δt) Rate CPU(s)
    0.2 210 1.85604636E-06 0.0620 1.85604607E-06 0.0066
    211 4.64007204E-07 2.000014 0.2317 4.64006418E-07 2.000016 0.0075
    212 1.16000631E-07 2.000015 0.8691 1.16003294E-07 1.999979 0.0091
    213 2.90011650E-08 1.999950 3.3423 2.89965145E-08 2.000214 0.0107
    214 7.24794447E-09 2.000467 13.4227 7.25755100E-09 1.998325 0.0154
    0.4 210 1.78086742E-06 0.0638 1.78086759E-06 0.0071
    211 4.45204337E-07 2.000041 0.2516 4.45203661E-07 2.000043 0.0080
    212 1.11298823E-07 2.000029 0.9043 1.11298892E-07 2.000026 0.0095
    213 2.78237513E-08 2.000049 3.5048 2.78246395E-08 2.000004 0.0110
    214 6.95804836E-09 1.999562 14.8677 6.95847024E-09 1.999521 0.0143
    0.8 210 3.89820152E-07 0.0785 3.89820181E-07 0.0115
    211 9.73901404E-08 2.000961 0.2962 9.73902248E-08 2.000960 0.0079
    212 2.43394851E-08 2.000477 1.0595 2.43393918E-08 2.000484 0.0095
    213 6.08529405E-09 1.999900 4.1052 6.08559336E-09 1.999823 0.0116
    214 1.51925406E-09 2.001964 16.5226 1.51877799E-09 2.002487 0.0156

     | Show Table
    DownLoad: CSV

    From the computed data summarized in Table 2, both of the schemes have a second-order convergence rate, and the fast scheme indeed improves the efficiency of the novel approximation formula without losing too much precision. Similarly as the Example 1, we compare in Figure 3 the times for both of the methods under different M=102×2m, for α=0.9 and m=1,2,,6 in the log-log coordinate system. One can see clearly that the computing complexity for the direct scheme is O(M2), and for the fast scheme it is O(M).

    Figure 3.  CPU time for Example 2 with α=0.9.

    In this study, we constructed a novel discrete formula for approximating the CF fractional derivative and proved the second-order convergence rate for the novel approximation formula. To overcome the nonlocal property of the derivative, we proposed a fast algorithm that tremendously improves the efficiency of the approximation formula. Moreover, we demonstrated the fast algorithm maintains the second-order convergence rate. In future works, this novel approximation formula and fast algorithm can be applied with the finite element, finite difference, or other numerical methods to specific fractional differential equation models with Caputo-Fabrizio derivatives.

    The authors are grateful to the three anonymous referees and editors for their valuable comments and good suggestions which greatly improved the presentation of the paper. This work is supported by the National Natural Science Fund (11661058, 11761053), the Natural Science Fund of Inner Mongolia Autonomous Region (2017MS0107), the program for Young Talents of Science, and Technology in Universities of the Inner Mongolia Autonomous Region (NJYT-17-A07).

    The authors declare no conflict of interest.



    [1] A. Audrito, J. L. Vázquez, The Fisher–KPP problem with doubly nonlinear "fast" diffusion, Nonlinear Anal., 157 (2017), 212–248. https://doi.org/10.1016/j.na.2017.03.015 doi: 10.1016/j.na.2017.03.015
    [2] A. I. Volpert, V. A. Volpert, Traveling wave solutions of parabolic systems, Translations of Mathematical Monographs, 140 (1994), American Mathematical Society.
    [3] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem, Byull. Moskov. Gos. Univ., Sect. A, 1 (1937).
    [4] C. K. Jones, Geometric singular perturbation theory in dynamical systems, Springer-Verlag, Berlín, 1995.
    [5] D. Aronson, Density-dependent interaction-diffusion systems, Proc. Adv. Seminar on Dynamics and Modeling of Reactive System, Academic Press, New York, 1980.
    [6] D. Aronson, H. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, Partial Differential Equations and Related Topics, Pub., New York, (1975), 5–49.
    [7] J. Karátson, A maximum principle for some nonlinear cooperative elliptic PDE systems with mixed boundary conditions, J. Math. Anal. Appl., 44 (2016), 900–910. https://doi.org/10.1016/j.jmaa.2016.06.062 doi: 10.1016/j.jmaa.2016.06.062
    [8] D. Aronson, H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76. https://doi.org/10.1016/0001-8708(78)90130-5 doi: 10.1016/0001-8708(78)90130-5
    [9] P. Stehlik, Exponential number of stationary solutions for Nagumo equations on graphs, J. Math. Anal. Appl., 455 (2017), 1749–1764. https://doi.org/10.1016/j.jmaa.2017.06.075 doi: 10.1016/j.jmaa.2017.06.075
    [10] D. Bonheure, F. Hamel, One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in RN, Chin. Ann. Math. Sec. B, 38 (2017), 149–172. https://doi.org/10.1007/s11401-016-1065-2 doi: 10.1007/s11401-016-1065-2
    [11] D. S. Cohen, J. D. Murray, A generalized diffusion model for growth and dispersal in a population, J. Math. Biology, 12 (1981), 237–249. https://doi.org/10.1007/BF00276132 doi: 10.1007/BF00276132
    [12] E. A. Coutsias, Some effects of spatial nonuniformities in chemically reacting systems, California Institute of Technology, 1980.
    [13] J. Paseka, S. A. Solovyov, M. Stehlík, On the category of lattice-valued bornological vector spaces, J. Math. Anal. Appl., 419 (2014), 138–155. https://doi.org/10.1016/j.jmaa.2014.04.033 doi: 10.1016/j.jmaa.2014.04.033
    [14] G. Hongjun, L. Changchun, Instabilities of traveling waves of the convective-diffusive Cahn-Hilliard equation, Chaos, Soliton. Fract., 20 (2004), 253–258. https://doi.org/10.1016/S0960-0779(03)00372-2 doi: 10.1016/S0960-0779(03)00372-2
    [15] J. Alexander, R. Gardner, C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math., 410 (1990), 167–212. https://doi.org/10.1515/crll.1990.410.167 doi: 10.1515/crll.1990.410.167
    [16] Kiselev, Fundamentals of diffusion MRI (Magnetic Resonance Imaging) physics, Wiley Online Library, 2017.
    [17] L. Bingtuan, H. Weinberger, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82–98. https://doi.org/10.1016/j.mbs.2005.03.008 doi: 10.1016/j.mbs.2005.03.008
    [18] L. Zhenbang, L. Changchun, On the nonlinear instability of traveling waves for a sixth-order parabolic equation, Abstr. Appl. Anal., 2012 (2012), Article ID 739156. https://doi.org/10.1155/2012/739156 doi: 10.1155/2012/739156
    [19] F. Gregorio, D. Mugnolo, Bi-Laplacians on graphs and networks, Jour. Evol. Equ., 20 (2020), 191–232. https://doi.org/10.1007/s00028-019-00523-7 doi: 10.1007/s00028-019-00523-7
    [20] W. M. Schouten-Straatman, H. J. Hupkes, Travelling wave solutions for fully discrete FitzHugh-Nagumo type equations with infinite-range interactions, J. Math. Anal. Appl., 502 (2021), 125272. https://doi.org/10.1016/j.jmaa.2021.125272 doi: 10.1016/j.jmaa.2021.125272
    [21] L. A. Peletier, W. C. Troy, Spatial Patterns, Higher order models in Physics and Mechanics, Progress in non linear differential equations and their applications, 45 (2001), Université Pierre et Marie Curie.
    [22] M. E. Akveld, J. Hulshof, Travelling wave solutions of a fourth-order semilinear diffusion equation, Appl. Math. Lett., 11 (1998), 115–120. https://doi.org/10.1016/S0893-9659(98)00042-1 doi: 10.1016/S0893-9659(98)00042-1
    [23] F. Gregorio, D. Mugnolo, Higher-order operators on networks: Hyperbolic and parabolic theory, Integr. Equ. Oper. Theory, 92 (2020). https://doi.org/10.1007/s00020-020-02610-8
    [24] N. Fenichel., Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193–226. https://doi.org/10.1512/iumj.1972.21.21017 doi: 10.1512/iumj.1972.21.21017
    [25] R. E. Beardmore, M. A. Peletier, C. J. Budd, M. A. Wadee, Bifurcations of periodic solutions satisfying the Zero-Hamiltonian constraint in reversible differential equations, SIAM J. Math. Anal., 36 (2005), 1461–1488. https://doi.org/10.1137/S0036141002418637 doi: 10.1137/S0036141002418637
    [26] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, Appplied Math. Sciences, 2012. https://doi.org/10.1007/978-1-4612-5561-1
    [27] R. A. Fisher. The advance of advantageous genes, Ann. Eugenics, 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
    [28] V. Galaktionov, Towards the KPP-Problem and Log-Front Shift for Higher-Order Nonlinear PDEs I, Bi-Harmonic and Other Parabolic Equations, Cornwell University arXiv: 1210.3513, (2012).
    [29] V. A. Galaktionov, S. I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: Majorizing Order-Preserving Operators, Indiana U. Math. J., 51 (2002), 1321–1338. http://www.jstor.org/stable/24902842
    [30] V. Goldshtein, A. Ukhlov, Weighted Sobolev spaces and embeddings theorems, T. Am. Math. Soc., 361 (2009), 3829–3850. https://doi.org/10.1090/S0002-9947-09-04615-7 doi: 10.1090/S0002-9947-09-04615-7
    [31] V. Rottschäfer, A. Doelman, On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation, Physica D, 118 (1998), 261–292. https://doi.org/10.1016/S0167-2789(98)00035-9 doi: 10.1016/S0167-2789(98)00035-9
    [32] A. Favini, G. R. Goldstein, J. A. Goldstein, S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219–235. https://doi.org/10.1016/j.jmaa.2006.11.058 doi: 10.1016/j.jmaa.2006.11.058
    [33] W. Strauss, G. Wang, Instabilities of travelling waves of the Kuramoto-Sivashinsky equation, Chin. Ann. Math. B, 23 (2002), 267–276. https://doi.org/10.1142/S0252959902000250 doi: 10.1142/S0252959902000250
    [34] X. Cabre, J. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys., 320 (2013), 679–722. https://doi.org/10.1007/s00220-013-1682-5 doi: 10.1007/s00220-013-1682-5
    [35] S. Kesavan, Topics in Functional Analysis and Applications, New Age International (formerly Wiley-Eastern), 1989.
  • This article has been cited by:

    1. Saïd Abbas, Mouffak Benchohra, Juan J. Nieto, Caputo–Fabrizio fractional differential equations with non instantaneous impulses, 2021, 0009-725X, 10.1007/s12215-020-00591-6
    2. Zahir Shah, Rashid Jan, Poom Kumam, Wejdan Deebani, Meshal Shutaywi, Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative, 2021, 26, 1420-3049, 1806, 10.3390/molecules26061806
    3. Rajarama Mohan Jena, Snehashish Chakraverty, Dumitru Baleanu, Maysaa M. Alqurashi, New Aspects of ZZ Transform to Fractional Operators With Mittag-Leffler Kernel, 2020, 8, 2296-424X, 10.3389/fphy.2020.00352
    4. Fatima Si Bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Successive Approximations for Caputo-Fabrizio Fractional Differential Equations, 2022, 81, 1338-9750, 117, 10.2478/tmmp-2022-0009
    5. Zahir Shah, Ebenezer Bonyah, Ebraheem Alzahrani, Rashid Jan, Nasser Aedh Alreshidi, Mariya Gubareva, Chaotic Phenomena and Oscillations in Dynamical Behaviour of Financial System via Fractional Calculus, 2022, 2022, 1099-0526, 1, 10.1155/2022/8113760
    6. Saïd Abbas, Mouffak Benchohra, Juan J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, 2021, 6, 2473-6988, 2932, 10.3934/math.2021177
    7. Rashid Jan, Salah Boulaaras, Hussain Ahmad, Muhammad Jawad, Sulima Zubair, Mohamed Abdalla, A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative, 2023, 7, 2504-3110, 164, 10.3390/fractalfract7020164
    8. Shorog Aljoudi, Existence and uniqueness results for coupled system of fractional differential equations with exponential kernel derivatives, 2022, 8, 2473-6988, 590, 10.3934/math.2023027
    9. Abdulrahman Obaid Alshammari, Imtiaz Ahmad, Rashid Jan, Sahar Ahmed Idris, Fractional-calculus analysis of the dynamics of CD4+ T cells and human immunodeficiency viruses, 2024, 1951-6355, 10.1140/epjs/s11734-024-01192-5
    10. Tao-Qian Tang, Rashid Jan, Hassan Ahmad, Zahir Shah, Narcisa Vrinceanu, Mihaela Racheriu, A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy, 2023, 30, 1776-0852, 1327, 10.1007/s44198-023-00133-5
    11. Salah Boulaaras, Rashid Jan, Amin Khan, Ali Allahem, Imtiaz Ahmad, Salma Bahramand, Modeling the dynamical behavior of the interaction of T-cells and human immunodeficiency virus with saturated incidence, 2024, 76, 0253-6102, 035001, 10.1088/1572-9494/ad2368
    12. Bin Fan, Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives, 2024, 9, 2473-6988, 7293, 10.3934/math.2024354
    13. Mubashara Wali, Sadia Arshad, Sayed M Eldin, Imran Siddique, Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations, 2023, 8, 2473-6988, 15129, 10.3934/math.2023772
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1779) PDF downloads(43) Cited by(0)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog