Using the three-term Weierstrass relation for theta functions and the properties of Hecke-type double sums and Appell-Lerch sums, we give new and simple proofs for the seventh order mock theta conjectures.
Citation: Lijun Hao. New proofs for three identities of seventh order mock theta functions[J]. AIMS Mathematics, 2023, 8(2): 4806-4813. doi: 10.3934/math.2023238
[1] | Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948 |
[2] | Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021 |
[3] | Fei Hou, Bin Chen . Triple correlation sums of coefficients of $ \theta $-series. AIMS Mathematics, 2023, 8(10): 25275-25287. doi: 10.3934/math.20231289 |
[4] | Kai Zhou . On the relationship between dominance order and $ \theta $-dominance order on multipartitions. AIMS Mathematics, 2025, 10(2): 2998-3012. doi: 10.3934/math.2025139 |
[5] | Fan Yang, Yang Li . The infinite sums of reciprocals and the partial sums of Chebyshev polynomials. AIMS Mathematics, 2022, 7(1): 334-348. doi: 10.3934/math.2022023 |
[6] | Imran Abbas Baloch, Thabet Abdeljawad, Sidra Bibi, Aiman Mukheimer, Ghulam Farid, Absar Ul Haq . Some new Caputo fractional derivative inequalities for exponentially $ (\theta, h-m) $–convex functions. AIMS Mathematics, 2022, 7(2): 3006-3026. doi: 10.3934/math.2022166 |
[7] | Robert Reynolds . A short note on a extended finite secant series. AIMS Mathematics, 2023, 8(11): 26882-26895. doi: 10.3934/math.20231376 |
[8] | Marta Na Chen, Wenchang Chu . Yabu's formulae for hypergeometric $ _3F_2 $-series through Whipple's quadratic transformations. AIMS Mathematics, 2024, 9(8): 21799-21815. doi: 10.3934/math.20241060 |
[9] | Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788 |
[10] | Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303 |
Using the three-term Weierstrass relation for theta functions and the properties of Hecke-type double sums and Appell-Lerch sums, we give new and simple proofs for the seventh order mock theta conjectures.
The mock theta functions were named and studied by the Indian mathematician Ramanujan. Four months before he died, he summarized his results in a letter to G.H. Hardy [7]. He provided four separate classes of mock theta functions: one class of third order, two of fifth order, and one of seventh order together with identities satisfied by them. Watson laid the foundations of this subject in the twentieth century. He showed many elegant and significant theorems. In particular, he made important contributions to the third order mock theta functions, see [9,10]. Since then, many great mathematicians made remarkable achievement of mock theta functions, such as Andrews, Hickerson, Ono, Duke, and so on. We first introduce the basic definitions and notation. Then we provide the background of our research.
Throughout this paper, let q denote a complex number with |q|<1. Here and in what follows, we adopt the standard q-series notation [3]. For any positive integer n,
(a;q)0:=1,(a;q)n:=n−1∏k=0(1−aqk),(a;q)∞:=∞∏k=0(1−aqk). |
For convenience, we use (a)n to denote (a;q)n.
The Jacobi triple product identity is stated as follows.
j(x;q):=(x)∞(q/x)∞(q)∞=∞∑n=−∞(−1)nq(n2)xn. | (1.1) |
From the definition of j(x;q), we have
j(x;q)=j(q/x;q) | (1.2) |
and
j(qnx;q)=(−1)nq−(n2)x−nj(x;q),n∈Z. | (1.3) |
Let m and a be integers with m positive. Define
Ja,m:=j(qa;qm),¯Ja,m:=j(−qa;qm),Jm:=∏i≥1(1−qmi),¯Jm:=∏i≥1(1+qmi), and j(b1,b2,…,bm;q):=j(b1;q)j(b2;q)…j(bm;q). |
Ramanujan's seventh order mock theta functions [7,p.355] are defined by
F0(q):=∞∑n=0qn2(qn+1;q)n,F1(q):=∞∑n=1qn2(qn;q)n,F2(q):=∞∑n=0qn(n+1)(qn+1;q)n+1. |
In 1988, by using the constant term method, Hickerson [5] proved the seventh order mock theta conjectures which can be written as follows.
F0(q)=2+2qg(q,q7)−J23,7J1, | (1.4) |
F1(q)=2q2g(q2,q7)+qJ21,7J1, | (1.5) |
F2(q)=2q2g(q3,q7)+J22,7J1, | (1.6) |
where g(z,q) is a universal mock theta function introduced by Hickerson [4] as
g(z;q):=z−1(−1+∞∑n=0qn2(z)n+1(qz−1)n)=∞∑n=0qn(n+1)(z)n+1(qz−1)n+1. |
Furthermore, from [6,Proposition 4.2], we have
g(z;q)=−z−1m(q2z−3,q3,z2)−z−2m(qz−3,q3,z2), | (1.7) |
where the Appell-Lerch sum m(x,q,z) is defined by Hickerson and Mortenson [6] in the following.
Definition 1.1. Let generic x,z∈C∗:=C∖{0} with neither z nor xz an integer power of q. Then
m(x,q,z):=−zj(z;q)∞∑r=−∞(−1)rq(r+12)zr1−qrxz. |
Following [6], the term "generic" means that the parameters do not cause poles in the Appell-Lerch sums or in the quotients of theta functions. In this paper, employing the three-term Weierstrass relation for theta functions and the relationships between Appell-Lerch sums and Hecke -type double sums, we provide new and simple proofs for the above three identities (1.4)–(1.6).
First, we recall some notation and definitions. The Hecke-type double sums are defined as follows.
Definition 2.1. Let x, y∈C∗ and define sg(r) :=1 for r≥0 and sg(r) :=−1 for r<0. Then
fa,b,c(x,y,q):=∑sg(r)=sg(s)sg(r)(−1)r+sxrysqa(r2)+brs+c(s2). |
The three-term Weierstrass relation for theta functions is stated in the following.
Proposition 2.1. [1,Theorem 1.20] For generic a,b,c,d∈C∗,
j(ac,a/c,bd,b/d;q)=j(ad,a/d,bc,b/c;q)+b/c⋅j(ab,a/b,cd,c/d;q). |
Next, we review some propositions for Appell-Lerch sums and Hecke-type double sums.
Proposition 2.2. [6,Proposition 3.1] For generic x,z,z0,z1∈C∗,
m(x,q,z)=m(x,q,qz), | (2.1) |
m(x,q,z)=x−1m(x−1,q,z−1), | (2.2) |
m(qx,q,z)=1−xm(x,q,z), | (2.3) |
m(x,q,z)=m(x,q,x−1z−1), and | (2.4) |
m(x,q,z1)=m(x,q,z0)+z0J31j(z1/z0;q)j(xz0z1;q)j(z0;q)j(z1;q)j(xz0;q)j(xz1;q). | (2.5) |
Lemma 2.1. [6,Theorem 1.3] Let n and p be positive integers with (n,p)=1. For generic x,y∈C∗,
fn,n+p,n(x,y,q)=gn,n+p,n(x,y,q,−1,−1)+1¯J0,np(2n+p)θn,p(x,y,q), |
where
ga,b,c(x,y,q,z1,z0):=a−1∑t=0(−y)tqc(t2)j(qbtx;qa)m(−qa(b+12)−c(a+12)−t(b2−ac)(−x)−b(−y)a,qa(b2−ac),z0)+c−1∑t=0(−x)tqa(t2)j(qbtx;qc)m(−qc(b+12)−a(c+12)−t(b2−ac)(−x)c(−y)b,qc(b2−ac),z1), |
and
θn,p(x,y,q):=p−1∑r∗=0p−1∑s∗=0qn(r−(n−1)/22)+(n+p)(r−(n−1)/2)(s−(n+1)/2)n(s+(n+1)/22)(−x)r−(n−1)/2×(−y)s+(n+1)/2J3p2(2n+p)j(−qnp(s−r)xn/yn;qnp2)j(qp(2n+p)(s+r)+p(n+p)xpyp;qp2(2n+p))j(qp(2n+p)r+p(n+p)/2(−y)n+p/(−x)n,qp(2n+p)s+p(n+p)/2(−x)n+p/(−y)n;qp2(2n+p)). |
Here r:=r∗+{(n−1)/2} and s:=s∗+{(n−1)/2}, with 0≤{α}<1 denoting the fractional part of α.
Taking the n=3, p=1 specialization of the above lemma, we derive the following result.
Proposition 2.3. For generic x,y∈C∗,
f3,4,3(x,y,q)=j(x;q3)m(q12x−4y3,q21,−1)−yj(q4x;q3)m(q5x−4y3,q21,−1)+q3y2j(q8x;q3)m(q−2x−4y3,q21,−1)+j(y;q3)m(q12x3y−4,q21,−1)−xj(q4y;q3)m(q5x3y−4,q21,−1)+q3x2j(q8y;q3)m(q−2x3y−4,q21,−1)−y2J37j(−x3y−3;q3)j(q4xy;q7)q2xj(−q2x−3y4,−q2x4y−3;q7)¯J0,21. | (2.6) |
Then we have the following lemma.
Lemma 2.2. We have
f3,4,3(q2,q2,q)=2J1,3m(q10,q21,−1)−2q−1J1,3m(q4,q21,−1)+q−1J37¯J0,3J1,7¯J24,7¯J0,21, | (2.7) |
f3,4,3(q3,q3,q)=−2q−2J1,3m(q2,q21,−1)−2q−1J1,3m(q5,q21,−1)+q−2J37¯J0,3J3,7¯J22,7¯J0,21, | (2.8) |
f3,4,3(q4,q4,q)=−2q−1J1,3m(q8,q21,−1)−2q−3J1,3m(q,q21,−1)+q−3J37¯J0,3J2,7¯J21,7¯J0,21. | (2.9) |
Proof. Based on the definition of j(x;q), for an integer m, we arrive at
j(qm;q)=j(q−m+1;q)=0. | (2.10) |
From (2.6) and (2.10), we have
f3,4,3(q2,q2,q)=2J2,3m(q10,q21,−1)+2q7J10,3m(q−4,q21,−1)−J37¯J0,3J8,7¯J24,7¯J0,21. |
Then applying (1.2), (1.3) and (2.2), we derive (2.7). The proofs of (2.8) and (2.9) are similar.
In the following, we begin to prove (1.4)–(1.6).
From [5,Theorem 2.0], we obtain the Hecke-type double sums for F0(q), F1(q), and F2(q).
J1F0(q)=f3,4,3(q2,q2,q), | (2.11) |
J1F1(q)=qf3,4,3(q4,q4,q), | (2.12) |
J1F2(q)=f3,4,3(q3,q3,q). | (2.13) |
Therefore, combining Lemma 2.2, (2.11)–(2.13) and the fact that J1 and J1,3 are the same from the definitions of them, we have
F0(q)=2m(q10,q21,−1)−2q−1m(q4,q21,−1)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2m(q10,q21,q−2)−2q−1m(q4,q21,q2)−2J321j(−q2,−q8;q21)j(−1,q2,q8,−q10;q21)−2q−1J321j(−q2,−q6;q21)j(−1,q2,−q4,q6;q21)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2m(q10,q21,q−2)−2q−1m(q4,q21,q2)−2J321j(−q2;q21)j(−1,q2;q21)(j(−q8;q21)j(q8,−q10;q21)+q−1j(−q6;q21)j(−q4,q6;q21))+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2m(q10,q21,q−2)−2q−1m(q4,q21,q2)−2J321j(−q2;q21)j(−1,q2;q21)(j(q−2,−q5,q7,−q9;q21)j(q−1,−q4,q6,q8,−q10;q21))+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2m(q10,q21,q−2)−2q−1m(q4,q21,q2)−2q−1J321j(−q2,−q5,q7,−q9;q21)j(−1,q,−q4,q6,q8,−q10;q21)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2m(q10,q21,q−2)−2q−1m(q4,q21,q2)−2q−1J27j(−q2;q7)j(−q3;q21)j(q,−q3;q7)j(−1;q21)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2q−10m(q−10,q21,q2)−2q−1m(q4,q21,q2)−2q−1J27j(−q2;q7)j(−q3;q21)j(q,−q3;q7)j(−1;q21)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2(1−m(q11,q21,q−2))−2q−1m(q4,q21,q2)−2q−1J27j(−q2;q7)j(−q3;q21)j(q,−q3;q7)j(−1;q21)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=2+2qg(q,q7)−2q−1J27j(−q2;q7)j(−q3;q21)j(q,−q3;q7)j(−1;q21)+q−1J37¯J0,3J1,7J1¯J24,7¯J0,21, | (2.14) |
where in the fourth equality, we replace q, a, b, c, and d by q21, −q6, −q7, −q8, and q2, respectively, in Proposition 2.1.
For F1(q), we have
F1(q)=−2m(q8,q21,−1)−2q−2m(q,q21,−1)+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21=−2m(q8,q21,q4)−2q−2m(q,q21,q4)−2J321j(−q4,−q12;q21)j(−1,q4,−q8,q12;q21)−2q−2J321j(−q4,−q5;q21)j(−1,−q,q4,q5;q21)+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21=−2m(q8,q21,q4)−2q−2m(q,q21,q4)−2J321j(−q4;q21)j(−1,q4;q21)(j(−q9;q21)j(−q12,q13;q21)+q−2j(−q5;q21)j(−q,q16;q21))+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21=−2m(q8,q21,q4)−2q−2m(q,q21,q4)−2J321j(−q4;q21)j(−1,q4;q21)(j(−q3,q−4,−q11,q14;q21)j(q−2,−q,q16,q12,−q13;q21))+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21=−2m(q8,q21,q4)−2q−2m(q,q21,q4)−2q−2J321j(−q3,−q4,q7,−q11;q21)j(−1,−q,q2,q5,−q8,q9;q21)+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21=−2m(q8,q21,q4)−2q−2m(q,q21,q4)−2q−2J27j(−q3;q7)j(−q6;q21)j(−q,q2;q7)j(−1;q21)+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21=2q2g(q2,q7)−2q−2J27j(−q3;q7)j(−q6;q21)j(−q,q2;q7)j(−1;q21)+q−2J37¯J0,3J2,7J1¯J21,7¯J0,21, | (2.15) |
where in the fourth equality, we replace q, a, b, c, and d by q21, −q5, −q7, −q9, and q4, respectively, in Proposition 2.1.
Moreover, we have
F2(q)=−2q−1m(q5,q21,−1)−2q−2m(q2,q21,−1)+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21=−2q−1m(q5,q21,q6)−2q−4m(q−2,q21,q6)−2q−1J321j(−q6,−q11;q21)j(−1,−q5,q6,q11;q21)−2q−4J321j(−q4,−q6;q21)j(−1,−q−2,q4,q6;q21)+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21=−2q−1m(q5,q21,q6)−2q−4m(q−2,q21,q6)−2q−1J321j(−q6;q21)j(−1,q6;q21)(j(−q11;q21)j(−q5,q11;q21)+q−1j(−q4;q21)j(−q2,q4;q21))+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21=−2q−1m(q5,q21,q6)−2q−4m(q−2,q21,q6)−2q−1J321j(−q6;q21)j(−1,q6;q21)(q−1j(−q,q6,q7,−q8;q21)j(−q2,q3,q4,−q5,q11;q21))+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21=−2q−1m(q5,q21,q6)−2q−4m(q−2,q21,q6)−2q−2J321j(−q,−q6,−q8,q7;q21)j(−1,−q2,q3,q4,−q5,q11;q21)+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21=−2q−1m(q5,q21,q6)−2q−4m(q−2,q21,q6)−2q−2J27j(−q;q7)j(−q9;q21)j(−q2,q3;q7)j(−1;q21)+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21=2q2g(q3,q7)−2q−2J27j(−q;q7)j(−q9;q21)j(−q2,q3;q7)j(−1;q21)+q−2J37¯J0,3J3,7J1¯J22,7¯J0,21, | (2.16) |
where in the fourth equality, we replace q, a, b, c, and d by q21, −q15, q10, q7, and q4, respectively, in Proposition 2.1.
Furthermore, applying the standard computational techniques from the theory of modular forms, we can prove the following identities. Those unfamiliar with this method might consult the work of Garvan and Liang [2] and Robins [8].
η21,0(τ)η14,4(τ)η42,6(τ)η14,6(τ)η21,3(τ)η42,0(τ)−η6,0(τ)η7,1(τ)η1221,0(τ)η123,0(τ)η214,6(τ)η42,0(τ)=1, |
η6,0(τ)η7,2(τ)η1221,0(τ)η123,0(τ)η214,2(τ)η42,0(τ)−η14,6(τ)η21,0(τ)η42,12(τ)η14,2(τ)η21,6(τ)η42,0(τ)=1, |
η6,0(τ)η7,3(τ)η1221,0(τ)η123,0(τ)η214,4(τ)η42,0(τ)−η14,2(τ)η21,0(τ)η42,18(τ)η14,4(τ)η21,9(τ)η42,0(τ)=1. |
Here, ηδ,g(τ) is the generalized Dedekind η-function defined by
ηδ,g(τ)=qP2(g/δ)δ/2∏n>0n≡g(modδ)(1−qn)∏n>0n≡−g(modδ)(1−qn), |
where τ∈H:={τ∈C:Imτ>0}, q=e2πiτ, P2(t)={t}2−{t}+16 is the second Bernoulli function, and {t} is the fractional part of t.
The above three identities can be rewritten as
2q−1J27¯J2,7¯J3,21J1,7¯J3,7¯J0,21−q−1J37¯J0,3J1,7J1¯J24,7¯J0,21=J23,7J1, | (2.17) |
q−2J37¯J0,3J2,7J1¯J21,7¯J0,21−2q−2J27¯J3,7¯J6,21¯J1,7J2,7¯J0,21=qJ21,7J1, | (2.18) |
q−2J37¯J0,3J3,7J1¯J22,7¯J0,21−2q−2J27¯J1,7¯J9,21¯J2,7J3,7¯J0,21=J22,7J1. | (2.19) |
Then combining (2.14) (resp. (2.15) and (2.16)), (2.17) (resp. (2.18) and (2.19)) and (1.7), we arrive at (1.4) (resp. (1.5) and (1.6)).
[1] | S. Cooper, Ramanujan's theta functions, Cham: Springer, 2017. http://dx.doi.org/10.1007/978-3-319-56172-1 |
[2] | F. Garvan, J. Liang, Automatic proof of theta-function identities, arXiv: 1807.08051, 2016. |
[3] | G. Gasper, M. Rahman, Basic hypergeometric series, 2Eds., Cambridge: Cambridge University Press, 2004. http://dx.doi.org/10.1017/CBO9780511526251 |
[4] |
D. Hickerson, A proof of the mock theta conjectures, Invent. Math., 94 (1988), 639–660. http://dx.doi.org/10.1007/BF01394279 doi: 10.1007/BF01394279
![]() |
[5] |
D. Hickerson, On the seventh order mock theta functions, Invent. Math., 94 (1988), 661–677. http://dx.doi.org/10.1007/BF01394280 doi: 10.1007/BF01394280
![]() |
[6] |
D. Hickerson, E. Mortenson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions, Ⅰ, Proc. Lond. Math. Soc., 109 (2014), 382–422. http://dx.doi.org/10.1112/plms/pdu007 doi: 10.1112/plms/pdu007
![]() |
[7] | S. Ramanujan, Collected papers, London: Cambrige University Press, 1927. |
[8] | S. Robins, Generalized Dedekind η-products, In: The Rademacher legacy to mathematics, New York: Amer Mathematical Society, 1994,119–128. |
[9] |
G. Watson, The final problem: an account of the mock theta functions, J. Lond. Math. Soc., 1 (1936), 55–80. http://dx.doi.org/10.1112/jlms/s1-11.1.55 doi: 10.1112/jlms/s1-11.1.55
![]() |
[10] |
G. Watson, The mock theta functions (2), Proc. Lond. Math. Soc., 2 (1937), 274–304. http://dx.doi.org/10.1112/plms/s2-42.1.274 doi: 10.1112/plms/s2-42.1.274
![]() |