Our method | Method in [38] | ||
α | M=4 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 1.22946×10−16 | 1.1552×10−6 | 1.4408×10−6 |
0.5 | 2.40485×10−16 | 1.0805×10−6 | 1.4007×10−6 |
0.9 | 8.83875×10−17 | 8.1511×10−7 | 1.3682×10−6 |
Biological invasions have been paid more attention since invasive species may cause certain threats to local ecosystems. When biological control is adopted, selecting control species for effect better becomes the focus of latest studies. A food web system, with one native species, one invasive species as predator, and one introduced control species preying on both native and invasive species, is established based on pair approximation, in which the spatial landscape of biological invasion and control is concerned, and the local and global dispersal strategies of invasive species, in addition to the predation preferences of control species for native and invasive species, are considered. The influence of the initial density and initial spatial structures of the control species is investigated and the effects of control species releasing time are analyzed. Generally, the earlier the species introduction, the better the control effect, especially for invasive species dispersing globally. Interestingly, too low control species predation preference for native species can lead to unsuccessful introduction, while too much predation preference will have a weak control effect. The larger the control species predatory preference for invasive species is, the more conducive it is to biological control. The extinction of the invasive species is closely related to the initial density and concentration of the control species. This study gives some insights on selecting control species, its appropriate releasing time, and the density and spatial aggregation of it. Some real-life examples are elaborated on, which provides references for biological invasion control.
Citation: Zhiyin Gao, Sen Liu, Weide Li. Biological control for predation invasion based on pair approximation[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10252-10274. doi: 10.3934/mbe.2022480
[1] | Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364 |
[2] | Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372 |
[3] | Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830 |
[4] | Mariam Al-Mazmumy, Maryam Ahmed Alyami, Mona Alsulami, Asrar Saleh Alsulami, Saleh S. Redhwan . An Adomian decomposition method with some orthogonal polynomials to solve nonhomogeneous fractional differential equations (FDEs). AIMS Mathematics, 2024, 9(11): 30548-30571. doi: 10.3934/math.20241475 |
[5] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
[6] | Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151 |
[7] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta . A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057 |
[8] | Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed . Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436 |
[9] | Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476 |
[10] | K. Ali Khalid, Aiman Mukheimer, A. Younis Jihad, Mohamed A. Abd El Salam, Hassen Aydi . Spectral collocation approach with shifted Chebyshev sixth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 8622-8644. doi: 10.3934/math.2022482 |
Biological invasions have been paid more attention since invasive species may cause certain threats to local ecosystems. When biological control is adopted, selecting control species for effect better becomes the focus of latest studies. A food web system, with one native species, one invasive species as predator, and one introduced control species preying on both native and invasive species, is established based on pair approximation, in which the spatial landscape of biological invasion and control is concerned, and the local and global dispersal strategies of invasive species, in addition to the predation preferences of control species for native and invasive species, are considered. The influence of the initial density and initial spatial structures of the control species is investigated and the effects of control species releasing time are analyzed. Generally, the earlier the species introduction, the better the control effect, especially for invasive species dispersing globally. Interestingly, too low control species predation preference for native species can lead to unsuccessful introduction, while too much predation preference will have a weak control effect. The larger the control species predatory preference for invasive species is, the more conducive it is to biological control. The extinction of the invasive species is closely related to the initial density and concentration of the control species. This study gives some insights on selecting control species, its appropriate releasing time, and the density and spatial aggregation of it. Some real-life examples are elaborated on, which provides references for biological invasion control.
A wide range of fields rely on Chebyshev polynomials (CPs). Some CPs are famously special polynomials of Jacobi polynomials (JPs). We can extract four kinds of CPs from JPs. They were employed in many applications; see [1,2,3,4]. However, others can be considered special types of generalized ultraspherical polynomials; see [5,6]. Some contributions introduced and utilized other specific kinds of generalized ultraspherical polynomials. In the sequence of papers [7,8,9,10], the authors utilized CPs of the fifth- and sixth-kinds to treat different types of differential equations (DEs). Furthermore, the eighth-kind CPs were utilized in [11,12] to solve other types of DEs.
Several phenomena that arise in different applied sciences can be better understood by delving into fractional calculus, which studies the integration and derivatives for non-integer orders. When describing important phenomena, fractional differential equations (FDEs) are vital. There are many examples of FDEs applications; see, for instance, [13,14,15]. Because it is usually not feasible to find analytical solutions for these equations, numerical methods are relied upon. Several methods were utilized to tackle various types of FDEs. Here are some techniques used to treat several FDEs: the Adomian decomposition method [16], a finite difference scheme [17], generalized finite difference method [18], Gauss collocation method [19], the inverse Laplace transform [20], the residual power series method [21], multi-step methods [22], Haar wavelet in [23], matrix methods in [24,25,26], collocation methods in [27,28,29,30], Galerkin methods in [31,32,33], and neural networks method in [34].
Among the essential FDEs are the Rayleigh-Stokes equations. The fractional Rayleigh-Stokes equation is a mathematical model for the motion of fluids with fractional derivatives. This equation is used in many areas of study, such as non-Newtonian fluids, viscoelastic fluids, and fluid dynamics. Many contributions were devoted to investigating the types of Rayleigh-Stokes from a theoretical and numerical perspective. Theoretically, one can consult [35,36,37]. Several numerical approaches were followed to solve these equations. In [38], the authors used a finite difference method for the fractional Rayleigh-Stokes equation (FRSE). In [39], a computational method for two-dimensional FRSE is followed. The authors of [40] used a finite volume element algorithm to treat a nonlinear FRSE. In [41], a numerical method is applied to handle a type of Rayleigh-Stokes problem. Discrete Hahn polynomials treated variable-order two-dimensional FRSE in [42]. The authors of [43] numerically solved the FRSE.
The significance of spectral approaches in engineering and fluid dynamics has been better understood in recent years, and this trend is being further explored in the applied sciences [44,45,46]. In these techniques, approximations to integral and differential equations are assumed by expanding a variety of polynomials, which are frequently orthogonal. The three spectral techniques used most often are the collocation, tau, and Galerkin methods. The optimal spectral approach to solving the provided equation depends on the nature of the DE and the governing conditions that regulate it. The three spectral methods use distinct trial and test functions. In the Galerkin method, the test and trial functions are chosen so that each basis function member meets the given DE's underlying constraints; see [47,48]. The tau method is not limited to a specific set of basis functions like the Galerkin approach. This is why it solves many types of DEs; see [49]. Among the spectral methods, the collocation method is the most suitable; see, for example, [50,51].
In his seminal papers [52,53], Shen explored a new idea to apply the Galerkin method. He selected orthogonal combinations of Legendre and first-kind CPs to solve the second- and fourth-order DEs. The Galerkin approach was used to discretize the problems with their governing conditions. To address the even-order DEs, the authors of [54] employed a generalizing combination to solve even-order DEs.
This paper's main contribution and significance is the development of a new Galerkin approach for treating the FRSE. The suggested technique has the advantage that it yields accurate approximations by picking a small number of the retained modes of the selected Galerkin basis functions.
The current paper has the following structure. Section 2 presents some preliminaries and essential relations. Section 3 describes a Galerkin approach for treating FRSE. A comprehensive study on the convergence analysis is studied in Section 4. Section 5 is devoted to presenting some illustrative examples to show the efficiency and applicability of our proposed method. Section 6 reports some conclusions.
This section defines the fractional Caputo derivative and reviews some of its essential properties. Next, we gather significant characteristics of the second-kind CPs. This paper will use some orthogonal combinations of the second-kind CPs to solve the FRSE.
Definition 2.1. In Caputo's sense, the fractional-order derivative of the function ξ(s) is defined as [55]
Dαξ(s)=1Γ(p−α)∫s0(s−t)p−α−1ξ(p)(t)dt,α>0,s>0, p−1<α<p,p∈N. | (2.1) |
For Dα with p−1<α<p,p∈N, the following identities are valid:
DαC=0,C is a constant, | (2.2) |
Dαsp={0,if p∈N0andp<⌈α⌉,p!Γ(p−α+1)sp−α,if p∈N0andp≥⌈α⌉, | (2.3) |
where N={1,2,...} and N0={0,1,2,…}, and ⌈α⌉ is the ceiling function.
The shifted second-kind CPs U∗j(t) are orthogonal regarding the weight function ω(t)=√t(τ−t) in the interval [0,τ] and defined as [56,57]
U∗j(t)=j∑r=0λr,jtr,j≥0, | (2.4) |
where
λr,j=22r(−1)j+r(j+r+1)!τr(2r+1)!(j−r)!, | (2.5) |
with the following orthogonality relation [56]:
∫τ0ω(t)U∗m(t)U∗n(t)dt=qm,n, | (2.6) |
where
qm,n=πτ28{1,if m=n,0,if m≠n. | (2.7) |
{U∗m(t)}m≥0 can be generated by the recursive formula:
U∗m(t)=2(2tτ−1)U∗m−1(t)−U∗m−2(t),U∗0(t)=1,U∗1(t)=2tτ−1,m≥2. | (2.8) |
The following theorem that presents the derivatives of U∗m(t) is helpful in what follows.
Theorem 2.1. [56] For all j≥n, the following formula is valid:
DnU∗j(t)=(4τ)nj−n∑p=0 (p+j+n)even(p+1)(n)12(j−n−p)(12(j−n−p))!(12(j+n+p+2))1−nU∗p(t). | (2.9) |
The following particular formulas of (2.9) give expressions for the first- and second-order derivatives.
Corollary 2.1. The following derivative formulas are valid:
DU∗j(t)=4τj−1∑p=0 (p+j)odd(p+1)U∗p(t),j≥1, | (2.10) |
D2U∗j(t)=4τ2j−2∑p=0 (p+j)even(p+1)(j−p)(j+p+2)U∗p(t),j≥2. | (2.11) |
Proof. Special cases of Theorem 2.1.
This section is devoted to analyzing a Galerkin approach to solve the following FRSE [38,58]:
vt(x,t)−Dαt[avxx(x,t)]−bvxx(x,t)=S(x,t),0<α<1, | (3.1) |
governed by the following constraints:
v(x,0)=v0(x),0<x<ℓ, | (3.2) |
v(0,t)=v1(t),v(ℓ,t)=v2(t),0<t≤τ, | (3.3) |
where a and b are two positive constants and S(x,t) is a known smooth function.
Remark 3.1. The well-posedness and regularity of the fractional Rayleigh-Stokes problem are discussed in detail in [36].
We choose the trial functions to be
φi(x)=x(ℓ−x)U∗i(x). | (3.4) |
Due to (2.6), it can be seen that {φi(x)}i≥0 satisfies the following orthogonality relation:
∫ℓ0ˆω(x)φi(x)φj(x)dx=ai,j, | (3.5) |
where
ai,j=πℓ28{1,if i=j,0,if i≠j, | (3.6) |
and ˆω(x)=1x32(ℓ−x)32.
Theorem 3.1. The second-derivative of φi(x) can be expressed explicitly in terms of U∗j(x) as
d2φi(x)dx2=i∑j=0μj,iU∗j(x), | (3.7) |
where
μj,i=−2{j+1,ifi>j, and(i+j)even,12(i+1)(i+2),ifi=j,0,otherwise. | (3.8) |
Proof. Based on the basis functions in (3.4), we can write
d2φi(x)dx2=−2U∗i(x)+2(ℓ−2x)dU∗i(x)dx+(xℓ−x2)d2U∗i(x)dx2. | (3.9) |
Using Corollary 2.1, Eq (3.9) may be rewritten as
d2φi(x)dx2=−2U∗i(x)+8j−1∑p=0 (p+j)odd(p+1)U∗p(x)−16ℓj−1∑p=0 (p+j)odd(p+1)xU∗p(x)+4ℓj−2∑p=0 (p+j)even(p+1)(j−p)(j+p+2)xU∗p(x)−(2ℓ)2j−2∑p=0 (p+j)even(p+1)(j−p)(j+p+2)x2U∗p(x). | (3.10) |
With the aid of the recurrence relation (2.8), the following recurrence relation for U∗i(x) holds:
xU∗i(x)=ℓ4[U∗i+1(x)+2U∗i(x)+U∗i−1(x)]. | (3.11) |
Moreover, the last relation enables us to write the following relation:
x2U∗i(x)=ℓ24[4U∗i+1(x)+6U∗i(x)+4U∗i−1(x)+U∗i−2(x)+U∗i+2(x)]. | (3.12) |
If we insert relations (3.11) and (3.12) into relation (3.10), and perform some computations, then we get
d2φi(x)dx2=i∑j=0μj,iU∗j(x), | (3.13) |
where
μj,i=−2{j+1,if i>j, and (i+j)even,12(i+1)(i+2),if i=j,0,otherwise. | (3.14) |
This completes the proof.
Consider the FRSE (3.1), governed by the conditions: v(0,t)=v(ℓ,t)=0.
Now, consider the following spaces:
PM(Ω)=span{φi(x)U∗j(t):i,j=0,1,…,M},XM(Ω)={v(x,t)∈PM(Ω):v(0,t)=v(ℓ,t)=0}, | (3.15) |
where Ω=(0,ℓ)×(0,τ].
The approximate solution ˆv(x,t)∈XM(Ω) may be expressed as
ˆv(x,t)=M∑i=0M∑j=0cijφi(x)U∗j(t)=φCU∗T, | (3.16) |
where
φ=[φ0(x),φ1(x),…,φM(x)], |
U∗=[U∗0(t),U∗1(t),…,U∗M(t)], |
and C=(cij)0≤i,j≤M is the unknown matrix to be determined whose order is (M+1)×(M+1).
The residual R(x,t) of Eq (3.1) may be calculated to give
R(x,t)=ˆvt(x,t)−Dαt[aˆvxx(x,t)]−bˆvxx(x,t)−S(x,t). | (3.17) |
The philosophy in applying the Galerkin method is to find ˆv(x,t)∈XM(Ω), such that
(R(x,t),φr(x)U∗s(t))ˉω(x,t)=0,0≤r≤M,0≤s≤M−1, | (3.18) |
where ˉω(x,t)=ˆω(x)ω(t). The last equation may be rewritten as
M∑i=0M∑j=0cij(φi(x),φr(x))ˆω(x)(dU∗j(t)dt,U∗s(t))ω(t)−aM∑i=0M∑j=0cij(d2φi(x)dx2,φr(x))ˆω(x)(DαtU∗j(t),U∗s(t))ω(t)−bM∑i=0M∑j=0cij(d2φi(x)dx2,φr(x))ˆω(x)(U∗j(t),U∗s(t))ω(t)=(S(x,t),φr(x)U∗s(t))ˉω(x,t). | (3.19) |
In matrix form, Eq (3.19) can be written as
ATCB−aHTCK−bHTCQ=G, | (3.20) |
where
G=(gr,s)(M+1)×M,grs=(S(x,t),φr(x)U∗s(t))ˉω(x,t), | (3.21) |
A=(ai,r)(M+1)×(M+1),ai,r=(φi(x),φr(x))ˆω(x), | (3.22) |
B=(bj,s)(M+1)×M,bj,s=(dU∗j(t)dt,U∗s(t))ω(t), | (3.23) |
H=(hir)(M+1)×(M+1),hi,r=(d2φi(x)dx2,φr(x))ˆω(x), | (3.24) |
K=(kj,s)(M+1)×M,kj,s=(DαtU∗j(t),U∗s(t))ω(t), | (3.25) |
Q=(qj,s)(M+1)×M,qj,s=(U∗j(t),U∗s(t))ω(t). | (3.26) |
Moreover, (3.2) implies that
M∑i=0M∑j=0cijai,rU∗j(0)=(v(x,0),φr(x))ˆω(x),0≤r≤M. | (3.27) |
Now, Eq (3.20) along with (3.27) constitutes a system of algebraic equations of order (M+1)2, that may be solved using a suitable numerical procedure.
Now, the derivation of the formulas of the entries of the matrices A, B, H, K and Q are given in the following theorem.
Theorem 3.2. The following definite integral formulas are valid:
(a)∫ℓ0ˆω(x)φi(x)φr(x)dx=ai,r,(b)∫ℓ0ˆω(x)d2φi(x)dx2φr(x)dx=hi,r,(c)∫τ0ω(t)U∗j(t)U∗s(t)dt=qj,s,(d)∫τ0ω(t)dU∗j(t)dtU∗s(t)dt=bj,s,(e)∫τ0ω(t)[DαtU∗j(t)]U∗s(t)dt=kj,s, | (3.28) |
where qj,s and ai,r are given respectively in Eqs (2.6) and (3.6). Also, we have
hi,r=i∑j=0μj,iγj,r, | (3.29) |
bj,s=πτ2j−1∑p=0 (p+j+1)even(p+1)δp,s, | (3.30) |
γj,r={π(r+1),ifj≥r and(r+j)even,π(j+1),ifj<r and(r+j)even,0,otherwise, | (3.31) |
δp,s={1,ifp=s,0,ifp≠s, | (3.32) |
and
kj,s=j∑k=1π4k−1(s+1)k!τ2−α(−1)j+k+s(j+k+1)!Γ(k−α+32)(2k+1)!(j−k)!Γ(k−α+1)× 3˜F2(−s,s+2,−α+k+3232,−α+k+3|1), | (3.33) |
where 3˜F2 is the regularized hypergeometric function [59].
Proof. To find the elements hi,r: Using Theorem 3.1, one has
hi,r=∫ℓ0ˆω(x)d2φi(x)dx2φr(x)dx=i∑j=0μj,i∫ℓ0ˆω(x)U∗j(x)φr(x)dx. | (3.34) |
Now, ∫ℓ0ˆω(x)U∗j(x)φr(x)dx can be calculated to give the following result:
∫ℓ0ˆω(x)U∗j(x)φr(x)dx=γj,r, | (3.35) |
and therefore, we get the following desired result:
hi,r=i∑j=0μj,iγj,r. | (3.36) |
To find the elements bj,s: Formula (2.10) along with the orthogonality relation (2.6) helps us to write
bj,s=∫τ0ω(t)dU∗j(t)dtU∗s(t)dt=πτ2j−1∑p=0 (p+j)odd(p+1)δp,s. | (3.37) |
To find kj,s: Using property (2.3) together with (2.4), one can write
kj,s=∫τ0ω(t)[DαtU∗j(t)]U∗s(t)dt=j∑k=122kk!(−1)j+k(j+k+1)!(2k+1)!τk(j−k)!Γ(k−α+1)∫τ0U∗s(t)tk−αω(t)dt=j∑k=122kk!(−1)j+k(j+k+1)!(2k+1)!(j−k)!(k−α)!s∑n=0√π22n−1τ2−α(−1)n+sΓ(n+s+2)Γ(k+n−α+32)(2n+1)!(s−n)!Γ(k+n−α+3). | (3.38) |
If we note the following identity:
s∑n=0√π22n−1τ2−α(−1)n+s(n+s+1)!Γ(k+n−α+32)(2n+1)!(s−n)!Γ(k+n−α+3)=14π(−1)s(s+1)τ−α+2 Γ(k−α+32)3˜F2(−s,s+2,−α+k+3232,−α+k+3|1), | (3.39) |
then, we get
kj,s=j∑k=1π4k−1(s+1)k!τ2−α(−1)j+k+sΓ(j+k+2)Γ(k−α+32)Γ(2k+2)(j−k)!Γ(k−α+1)× 3˜F2(−s,s+2,−α+k+3232,−α+k+3|1). | (3.40) |
Theorem 3.2 is now proved.
Remark 3.2. The following algorithm shows our proposed Galerkin technique, which outlines the necessary steps to get the approximate solutions.
Algorithm 1 Coding algorithm for the proposed technique |
Input a,b,ℓ,τ,α,v0(x), and S(x,t). |
Step 1. Assume an approximate solution ˆv(x,t) as in (3.16). |
Step 2. Apply Galerkin method to obtain the system in (3.20) and (3.27). |
Step 4. Use Theorem 3.2 to get the elements of matrices A,B,H,K and Q. |
Step 5. Use NDsolve command to solve the system in (3.20) and (3.27) to get cij. |
Output ˆv(x,t). |
Remark 3.3. Based on the following substitution:
v(x,t):=y(x,t)+(1−xℓ)v(0,t)+xℓv(ℓ,t), | (3.41) |
the FRSE (3.1) with non-homogeneous boundary conditions will convert to homogeneous ones y(0,t)=y(ℓ,t)=0.
In this section, we study the error bound for the two cases corresponding to the 1-D and 2-D Chebyshev-weighted Sobolev spaces.
Assume the following Chebyshev-weighted Sobolev spaces:
Hα,mω(t)(I1)={u:Dα+ktu∈L2ω(t)(I1),0≤k≤m}, | (4.1) |
Ymˆω(x)(I2)={u:u(0)=u(ℓ)=0 and Dkxu∈L2ˆω(x)(I2),0≤k≤m}, | (4.2) |
where I1=(0,τ) and I2=(0,ℓ) are quipped with the inner product, norm, and semi-norm
(u,v)Hα,mω(t)=m∑k=0(Dα+ktu,Dα+ktv)L2ω(t),||u||2Hα,mω(t)=(u,u)Hα,mω(t),|u|Hα,mω(t)=||Dα+mtu||L2ω(t),(u,v)Ymˆω(x)=m∑k=0(Dkxu,Dkxv)L2ˆω(x),||u||2Ymˆω(x)=(u,u)Ymˆω(x),|u|Ymˆω(x)=||Dmxu||L2ˆω(x), | (4.3) |
where 0<α<1 and m∈N.
Also, assume the following two-dimensional Chebyshev-weighted Sobolev space:
Hr,sˉω(x,t)(Ω)={u:u(0,t)=u(ℓ,t)=0 and ∂α+p+qu∂xp∂tα+q∈L2ˉω(x,t)(Ω),r≥p≥0,s≥q≥0}, | (4.4) |
equipped with the norm and semi-norm
||u||Hr,sˉω(x,t)=(r∑p=0s∑q=0||∂α+p+qu∂xp∂tα+q||2L2ˉω(x,t))12,|u|Hr,sˉω(x,t)=||∂α+r+su∂xr∂tα+s||L2ˉω(x,t), | (4.5) |
where 0<α<1 and r,s∈N.
Lemma 4.1. [60] For n∈N, n+r>1, and n+s>1, where r,s∈R are any constants, we have
Γ(n+r)Γ(n+s)≤or,snnr−s, | (4.6) |
where
or,sn=exp(r−s2(n+s−1)+112(n+r−1)+(r−s)2n). | (4.7) |
Theorem 4.1. Suppose 0<α<1, and ˉη(t)=M∑j=0ˆηjU∗j(t) is the approximate solution of η(t)∈Hα,mω(t)(I1). Then, for 0≤k≤m≤M+1, we get
||Dα+kt(η(t)−ˆη(t))||L2ω(t)≲τm−kM−54(m−k)|η(t)|2Hα,mω(t), | (4.8) |
where A≲B indicates the existence of a constant ν such that A≤νB.
Proof. The definitions of η(t) and ˆη(t) allow us to have
||Dα+kt(η(t)−ˆη(t))||2L2ω(t)=∞∑n=M+1|ˆηn|2||Dα+ktU∗n(t)||2L2ω(t)=∞∑n=M+1|ˆηn|2||Dα+ktU∗n(t)||2L2ω(t)||Dα+mtU∗n(t)||2L2ω(t)||Dα+mtU∗n(t)||2L2ω(t)≤||Dα+ktU∗M+1(t)||2L2ω(t)||Dα+mtU∗M+1(t)||2L2ω(t)|η(t)|2Hα,mω(t). | (4.9) |
To estimate the factor ||Dα+ktU∗M+1(t)||2L2ω(t)||Dα+mtU∗M+1(t)||2L2ω(t), we first find ||Dα+ktU∗M+1(t)||2L2ω(t).
||Dα+ktU∗M+1(t)||2L2ω(t)=∫τ0Dα+ktU∗M+1(t)Dα+ktU∗M+1(t)ω(t)dt. | (4.10) |
Equation (2.3) along with (2.4) allows us to write
Dα+ktU∗M+1(t)=M+1∑r=k+1λr,M+1r!Γ(r−k−α+1)tr−k−α, | (4.11) |
and accordingly, we have
||Dα+ktU∗M+1(t)||2L2ω(t)=M+1∑r=k+1λ2r,M+1(r!)2Γ2(r−k−α+1)∫τ0t2(r−k−α)+12(τ−t)12dt=M+1∑r=k+1λ2r,M+1τ2(r−k−α+1)√π(r!)2Γ(2(r−k−α)+32)2Γ2(r−k−α+1)Γ(2(r−k−α)+3). | (4.12) |
The following inequality can be obtained after applying the Stirling formula [44]:
Γ2(r+1)Γ(2(r−k−α)+32)Γ2(r−k−α+1)Γ(2(r−k−α)+3)≲r2(k+α)(r−k)−32. | (4.13) |
By virtue of the Stirling formula [44] and Lemma 4.1, ||Dα+ktU∗M+1(t)||2L2ω(t) can be written as
||Dα+ktU∗M+1(t)||2L2ω(t)≲λ∗τ2(M−k−α+2)(M+1)2(k+α)(M−k+1)−32M+1∑r=k+11=λ∗τ2(M−k−α+2)(M+1)2(k+α)(M−k+1)−12=λ∗τ2(M−k−α+2)(Γ(M+2)Γ(M+1))2(k+α)(Γ(M−k+2)Γ(M−k+1))−12≲τ2(M−k−α+2)M2(k+α)(M−k)−12, | (4.14) |
where λ∗=max0≤r≤M+1{λ2r,M+1√π2}.
Similarly, we have
||Dα+mtU∗M+1(t)||2L2ω(t)≲τ2(M−m−α+2)M2(m+α)(M−m)−12, | (4.15) |
and accordingly, we have
||Dα+ktU∗M+1(t)||2L2ω(t)||Dα+mtU∗M+1(t)||L2ω(t)≲τ2(m−k)M2(k−m)(M−kM−m)−12=τ2(m−k)M−2(m−k)(Γ(M−k+1)Γ(M−m+1))−12≲τ2(m−k)M−52(m−k). | (4.16) |
Inserting Eq (4.16) into Eq (4.9), one gets
||Dα+kt(η(t)−ˆη(t))||2L2ω(t)≲τ2(m−k)M−52(m−k)|η(t)|2Hα,mω(t). | (4.17) |
Therefore, we get the desired result.
Theorem 4.2. Suppose ˉζ(x)=∑Mi=0ˆζiφi(x), is the approximate solution of ζM(x)∈Ymˆω(x)(I2). Then, for 0≤k≤m≤M+1, we get
||Dkx(ζ(x)−ˉζ(x))||L2ˆω(x)≲ℓm−kM−14(m−k)|ζ(x)|2Ymˆω(x). | (4.18) |
Proof. At first, based on the definitions of ζ(x) and ˉζ(x), one has
||Dkx(ζ(x)−ˉζ(x)||2L2ˆω(x)=∞∑n=M+1|ˆζn|2||Dkxφn(x)||2L2ˆω(x)=∞∑n=M+1|ˆζn|2||Dkxφn(x)||2L2ˆω(x)||Dmxφn(x)||2L2ˆω(x)||Dmxφn(x)||2L2ˆω(x)≤||DkxφM+1(x)||2L2ˆω(x)||DmxφM+1(x)||2L2ˆω(x)|ζ(x)|2Ymˆω(x). | (4.19) |
Now, we have
DkxφM+1(x)=M+1∑r=kℓλr,M+1Γ(r+2)Γ(r−k+2)xr−k+1−M+1∑r=kλr,M+1Γ(r+3)Γ(r−k+3)xr−k+2, | (4.20) |
and therefore, ||DkxφM+1(x)||2L2ˆω(x) can be written as
||DkxφM+1(x)||2L2ˆω(x)=−M+1∑r=kℓ2(r−k)λ2r,M+12√πΓ2(r+2)Γ(2(r−k+1)−12)Γ2(r−k+2)Γ(2(r−k+1)−1)+M+1∑r=kℓ2(r−k+1)λ2r,M+12√πΓ2(r+3)Γ(2(r−k+2)−12)Γ2(r−k+3)Γ(2(r−k+2)−1). | (4.21) |
The application of the Stirling formula [44] leads to
Γ2(r+2)Γ(2(r−k+1)−12)Γ2(r−k+2)Γ(2(r−k+1)−1)≲r2k(r−k)12,Γ2(r+3)Γ(2(r−k+2)−12)Γ2(r−k+3)Γ(2(r−k+2)−1)≲r2k(r−k)12, | (4.22) |
and hence, we get
||DkxφM+1(x)||2L2ˆω(x)≲ℓ2(r−k+1)M2k(M−k)32. | (4.23) |
Finally, we get the following estimation:
||DkxφM+1(x)||2L2ˆω(x)||DmxφM+1(x)||2L2ˆω(x)≲ℓ2(m−k)M−12(m−k). | (4.24) |
At the end, we get
||Dkx(ζ(x)−ˉζ(x))||L2ˆω(x)≲ℓm−kM−14(m−k)|ζ(x)|2Ymˆω(x). | (4.25) |
Theorem 4.3. Given the following assumptions: α=0, 0≤p≤r≤M+1, and the approximation to v(x,t)∈Hr,s¨ω(Ω) is ˆv(x,t). As a result, the estimation that follows is applicable:
||∂p∂xp(v(x,t)−ˆv(x,t))||L2ˉω(x,t)≲ℓr−pM−14(r−p)|v(x,t)|Hr,0ˉω(x,t). | (4.26) |
Proof. According to the definitions of v(x,t) and ˆv(x,t), one has
v(x,t)−ˆv(x,t)=M∑i=0∞∑j=M+1cijφi(x)U∗j(t)+∞∑i=M+1∞∑j=0cijφi(x)U∗j(t)≤M∑i=0∞∑j=0cijφi(x)U∗j(t)+∞∑i=M+1∞∑j=0cijφi(x)U∗j(t). | (4.27) |
Now, applying the same procedures as in Theorem 4.2, we obtain
||∂p∂xp(v(x,t)−ˆv(x,t))||L2ˉω(x,t)≲ℓr−pM−14(r−p)|v(x,t)|Hr,0ˉω(x,t). | (4.28) |
Theorem 4.4. Given the following assumptions: α=0, 0≤q≤s≤M+1, and the approximation to v(x,t)∈Hr,s¨ω(Ω) is ˆv(x,t). As a result, the estimation that follows is applicable:
||∂q∂tq(v(x,t)−ˆv(x,t))||L2ˉω(x,t)≲τs−qM−54(s−q)|v(x,t)|H0,sˉω(x,t). | (4.29) |
Theorem 4.5. Let ˆv(x,t) be the approximate solution of v(x,t)∈Hr,sˉω(x,t)(Ω), and assume that 0<α<1. Consequently, for 0≤p≤r≤M+1, and 0≤q≤s≤M+1, we obtain
||∂α+q∂tα+q[∂p∂xp(v(x,t)−ˆv(x,t))]||L2ˉω(x,t)≲τs−qℓr−pM−14[5(s−q)+r−p)]|v(x,t)|Hr,0ˉω(x,t). | (4.30) |
Proof. The proofs of Theorems 4.4 and 4.5 are similar to the proof of Theorem 4.3.
Theorem 4.6. Let R(x,t) be the residual of Eq (3.1), then ||R(x,t)||L2ˉω(x,t)→0 as M→∞.
Proof. ||R(x,t)||L2ˉω(x,t) of Eq (3.28) can be written as
||R(x,t)||L2ˉω(x,t)=||ˆvt(x,t)−Dαt[aˆvxx(x,t)]−bˆvxx(x,t)−S(x,t)||L2ˉω(x,t)≤||∂∂t(v(x,t)−ˆv(x,t))||L2ˉω(x,t)−a||∂α∂tα[∂2∂x2(v(x,t)−ˆv(x,t))]||L2ˉω(x,t)−b||∂2∂x2(v(x,t)−ˆv(x,t))||L2ˉω(x,t). | (4.31) |
Now, the application of Theorems 4.3–4.5 leads to
||R(x,t)||L2ˉω(x,t)≲τs−1M−54(s−1)|v(x,t)|H0,sˉω(x,t)−aτsℓr−2M−14[5s+r−2)]|v(x,t)|Hr,0ˉω(x,t)−bℓr−2M−14(r−2)|v(x,t)|Hr,0ˉω(x,t). | (4.32) |
Therefore, it is clear that ||R(x,t)||L2ˉω(x,t)→0 as M→∞.
This section will compare our shifted second-kind Galerkin method (SSKGM) with other methods. Three test problems will be presented in this regard.
Example 5.1. [38] Consider the following equation:
vt(x,t)−Dαt[vxx(x,t)]−vx(x,t)=S(x,t),0<α<1, | (5.1) |
where
S(x,t)=2tx(x−ℓ)[(5x2−5xℓ+ℓ2)(6Γ(3−α)t1−α+3t)−x2(x−ℓ)2], | (5.2) |
governed by (3.2) and (3.3). Problem (5.1) has the exact solution: u(x,t)=x3(ℓ−x)3t2.
In Table 1, we compare the L2 errors of the SSKGM with that obtained in [38] at ℓ=τ=1. Table 2 reports the amount of time for which a central processing unit (CPU) was used for obtaining results in Table 1. These tables show the high accuracy of our method. Figure 1 illustrates the absolute errors (AEs) at different values of α at M=4 when ℓ=τ=1. Figure 2 illustrates the AEs at different values of α at M=4 when ℓ=3, and τ=2. Figure 3 shows the AEs at different α at M=4 when ℓ=10, and τ=5.
Our method | Method in [38] | ||
α | M=4 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 1.22946×10−16 | 1.1552×10−6 | 1.4408×10−6 |
0.5 | 2.40485×10−16 | 1.0805×10−6 | 1.4007×10−6 |
0.9 | 8.83875×10−17 | 8.1511×10−7 | 1.3682×10−6 |
CPU time of our method | CPU time of method in [38] | ||
α | M=4 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 30.891 | 16.828 | 67.243 |
0.5 | 35.953 | 16.733 | 67.470 |
0.9 | 31.078 | 16.672 | 67.006 |
Example 5.2. [38] Consider the following equation:
vt(x,t)−Dαt[vx(x,t)]−vx(x,t)=S(x,t),0<α<1, | (5.3) |
where
S(x,t)=u2+sin(πx)[2π2Γ(3−α)t2−α+π2t2+2t]−t4sin2(πx), |
governed by (3.2) and (3.3). Problem (5.3) has the exact solution: u(x,t)=t2sin(πx).
Table 3 compares the L2 errors of the SSKGM with those obtained by the method in [38] at ℓ=τ=1. This table shows that our results are more accurate. Table 4 reports the CPU time used for obtaining results in Table 3. Moreover, Figure 4 sketches the AEs at different values M when α=0.7, and ℓ=τ=1. Table 5 presents the maximum AEs at α=0.8 and M=8 when ℓ=τ=1. Figure 5 sketches the AEs at different α for M=10, ℓ=3 and τ=1.
Our method | Method in [38] | ||
α | M=8 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 4.97952×10−10 | 9.1909×10−5 | 5.1027×10−5 |
0.5 | 5.85998×10−10 | 8.4317×10−5 | 4.4651×10−5 |
0.9 | 4.62473×10−10 | 6.2864×10−5 | 4.0543×10−5 |
CPU time of our method | CPU time of method in [38] | ||
α | M=8 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 119.061 | 20.095 | 70.952 |
0.5 | 118.001 | 19.991 | 71.117 |
0.9 | 121.36 | 19.908 | 71.153 |
x | t=0.2 | t=0.4 | t=0.6 | t=0.8 |
0.1 | 7.82271×10−12 | 9.69765×10−11 | 1.48667×10−10 | 2.65085×10−10 |
0.2 | 4.24386×10−11 | 6.82703×10−11 | 2.34553×10−10 | 5.1182×10−10 |
0.3 | 4.48637×10−11 | 6.28317×10−11 | 2.69028×10−10 | 4.28024×10−10 |
0.4 | 2.57132×10−11 | 5.02944×10−11 | 1.45928×10−10 | 3.26067×10−10 |
0.5 | 6.59974×10−11 | 1.22092×10−11 | 4.38141×10−10 | 7.16844×10−10 |
0.6 | 1.11684×10−11 | 1.04731×10−10 | 1.78963×10−10 | 2.80989×10−10 |
0.7 | 4.19906×10−11 | 7.33454×10−11 | 2.70484×10−10 | 4.25895×10−10 |
0.8 | 2.97515×10−11 | 1.16961×10−10 | 2.70621×10−10 | 4.63116×10−10 |
0.9 | 1.0014×10−11 | 8.68311×10−11 | 1.43244×10−10 | 2.71797×10−10 |
Example 5.3. Consider the following equation:
vt(x,t)−Dαt[vx(x,t)]−vx(x,t)=S(x,t),0<α<1, | (5.4) |
where
S(x,t)=sin(2πx)(4π2Γ(5)Γ(5−α)t4−α+4π2t4+4t3), |
governed by (3.2) and (3.3). The exact solution of this problem is: u(x,t)=t4sin(2πx).
Table 6 presents the maximum AEs at α=0.5 and M=9 when ℓ=τ=1. Figure 6 sketches the AEs at different M and α=0.9 when ℓ=τ=1.
x | t=0.2 | t=0.4 | t=0.6 | t=0.8 |
0.1 | 4.36556×10−8 | 6.4783×10−8 | 4.6896×10−8 | 3.07364×10−8 |
0.2 | 3.41326×10−8 | 5.29923×10−8 | 2.18292×10−8 | 6.69242×10−8 |
0.3 | 4.74795×10−8 | 5.70081×10−5 | 1.14413×10−7 | 1.69409×10−7 |
0.4 | 8.64528×10−8 | 1.11593×10−7 | 1.6302×10−7 | 1.69931×10−7 |
0.5 | 2.03915×10−8 | 2.95873×10−8 | 2.78558×10−8 | 2.04027×10−11 |
0.6 | 8.36608×10−8 | 1.07773×10−7 | 1.59124×10−7 | 1.70274×10−7 |
0.7 | 1.53354×10−8 | 1.00892×10−8 | 7.07611×10−8 | 1.68702×10−7 |
0.8 | 3.88458×10−8 | 6.00347×10−8 | 2.85788×10−8 | 6.72342×10−8 |
0.9 | 3.00922×10−8 | 4.49878×10−8 | 2.82622×10−8 | 3.06797×10−8 |
Example 5.4. [61] Consider the following equation:
vt(x,t)−Dαt[vx(x,t)]−vx(x,t)=S(x,t),0<α<1, | (5.5) |
governed by the following constraints:
v(x,0)=0,0<x<1, | (5.6) |
v(0,t)=tγ+2,v(1,t)=etγ+2,0<t≤1, | (5.7) |
where
S(x,t)=ex(tγ+1(γ−t+2)−Γ(γ+3)Γ(−α+γ+3)t−α+γ+2), |
and the exact solution of this problem is: u(x,t)=extγ+2. This problem is solved for the case γ=1. In Table 7, we compare the L2 errors of the SSKGM with that obtained in [61] at different values of α. This table shows the high accuracy of our method. Figure 7 illustrates the AE (left) and the approximate solution (right) at M=7 when α=0.6.
Our method | Method in [61] | |
α | M=7 | n=m=10 |
0.1 | 1.39197×10−11 | 2.176×10−9 |
0.3 | 1.34984×10−10 | 9.045×10−9 |
0.5 | 5.87711×10−11 | 1.516×10−8 |
0.7 | 8.43536×10−12 | 1.415×10−8 |
0.9 | 7.46064×10−12 | 5.749×10−9 |
This study presented a Galerkin algorithm technique for solving the FRSE using orthogonal combinations of the second-kind CPs. The Galerkin method converts the FRSE with its underlying conditions into a matrix system whose entries are given explicitly. A suitable algebraic algorithm may be utilized to solve such a system, and by chance, the approximate solution can be obtained. We showcased the effectiveness and precision of the algorithm through a comprehensive study of the error analysis and by presenting multiple numerical examples. We think the proposed method can be applied to other types of FDEs. As an expected future work, we aim to employ this paper's developed theoretical results and suitable spectral methods to treat some other problems.
W. M. Abd-Elhameed: Conceptualization, Methodology, Validation, Formal analysis, Funding acquisition, Investigation, Project administration, Supervision, Writing–Original draft, Writing–review & editing. A. M. Al-Sady: Methodology, Validation, Writing–Original draft; O. M. Alqubori: Methodology, Validation, Investigation; A. G. Atta: Conceptualization, Methodology, Validation, Formal analysis, Visualization, Software, Writing–Original draft, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-FR-70). Therefore, the authors thank the University of Jeddah for its technical and financial support.
The authors declare that they have no competing interests.
[1] |
R. Dirzo, P. H. Raven, Global state of biodiversity and loss, Annu. Rev. Environ. Resour., 28 (2003), 137-167. https://doi.org/10.1146/annurev.energy.28.050302.105532 doi: 10.1146/annurev.energy.28.050302.105532
![]() |
[2] |
M. Sean, F. Richard, B. Thomas, W. James, Biodiversity: The ravages of guns, nets and bulldozers, Nature, 536 (2016), 143-145. https://doi.org/10.1038/536143a doi: 10.1038/536143a
![]() |
[3] |
M. Enders, M. T. Hutt, J. M. Jeschke, Drawing a map of invasion biology based on a network of hypotheses, Ecosphere, 9 (2018), e02146. https://doi.org/10.1002/ecs2.2146 doi: 10.1002/ecs2.2146
![]() |
[4] |
K. Schulze, K. Knights, L. Coad, J. Geldmann, F. Leverington, A. Eassom, et al., An assessment of threats to terrestrial protected areas, Conserv. Lett., 11 (2018), e12435. https://doi.org/10.1111/conl.12435 doi: 10.1111/conl.12435
![]() |
[5] |
X. Liu, T. M. Blackburn, T. Song, X. Wang, C. Huang, Y. Li, Animal invaders threaten protected areas worldwide, Nat. Commun., 11 (2020), 2892. https://doi.org/10.1038/s41467-020-16719-2 doi: 10.1038/s41467-020-16719-2
![]() |
[6] |
R. T. Shackleton, L. C. Foxcroft, P. Pyšek, L. E. Wood, D. M. Richardson, Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme, Biol. Conserv., 243 (2020), 108424. https://doi.org/10.1016/j.biocon.2020.108424 doi: 10.1016/j.biocon.2020.108424
![]() |
[7] |
S. Branco, N. Videira, M. Branco, M. R. Paiva, A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services: towards an integrated management approach, J. Environ. Manage., 149 (2015), 17-26. https://doi.org/10.1016/j.jenvman.2014.09.026 doi: 10.1016/j.jenvman.2014.09.026
![]() |
[8] |
B. A. Jones, Invasive species impacts on human well-being using the life satisfaction index, Ecol. Econ., 134 (2017), 250-257. https://doi.org/10.1016/j.ecolecon.2017.01.002 doi: 10.1016/j.ecolecon.2017.01.002
![]() |
[9] |
K. Petren, T. J. Case, An experimental demonstration of exploitation competition in an ongoing invasion, Ecology, 77 (1996), 118-132. https://doi.org/10.2307/2265661 doi: 10.2307/2265661
![]() |
[10] |
Z. A. Itoo, Z. A. Reshi, The multifunctional role of ectomycorrhizal associations in forest ecosystem processes, Bot. Rev., 79 (2013), 371–400. https://doi.org/10.1007/s12229-013-9126-7 doi: 10.1007/s12229-013-9126-7
![]() |
[11] |
A. M. Stefanowicz, M. Stanek, M. Nobis, S. Zubek, Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties, Sci. Total Environ., 574 (2017), 938-946. https://doi.org/10.1016/j.scitotenv.2016.09.120 doi: 10.1016/j.scitotenv.2016.09.120
![]() |
[12] |
D. S. Wilcove, D. Rothstein, J. Dubow, A. Phillips, E. Losos, Quantifying threats to imperiled species in the United States, BioScience, 48 (1998), 607-615. https://doi.org/10.2307/1313420 doi: 10.2307/1313420
![]() |
[13] |
G. Mollot, J. H. Pantel, T. N. Romanuk, The effects of invasive species on the decline in species richness: a global meta-analysis, Adv. Ecol. Res., 56 (2017), 61-83. https://doi.org/10.1016/bs.aecr.2016.10.002 doi: 10.1016/bs.aecr.2016.10.002
![]() |
[14] |
Y. Kumagai, R. B. Gibson, P. Filion, Evaluating long-term urban resilience through an examination of the history of green spaces in Tokyo, Local Environ., 20 (2015), 1018-1039. https://doi.org/10.1080/13549839.2014.887060 doi: 10.1080/13549839.2014.887060
![]() |
[15] |
D. Pimentel, L. Lach, R. Zuniga, D. Morrison, Environmental and economic costs of nonindigenous species in the United States, BioScience, 50 (1999), 53-65. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO; 2 doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
![]() |
[16] | C. Lard, J. Schmidt, B. Morris, L. Estes, C. Ryan, D. Bergquist, An economic impact of imported fire ants in the United States of America, Technical Research Report, (2006), 1999-2001. |
[17] |
F. Kraus, Impacts from invasive reptiles and amphibians, Annu. Rev. Ecol. Evol. Syst., 46 (2015), 75-97. https://doi.org/10.1146/annurev-ecolsys-112414-054450 doi: 10.1146/annurev-ecolsys-112414-054450
![]() |
[18] |
K. Chalkowski, C. A. Lepczyk, S. Zohdy, Parasite ecology of invasive species: conceptual framework and new hypotheses, Trends Parasitol., 34 (2018), 655-663. https://doi.org/10.1016/j.pt.2018.05.008 doi: 10.1016/j.pt.2018.05.008
![]() |
[19] | Microbes and pathogens, in Theoretical Approaches to Biological Control (eds. B. Hawkins and H. Cornell), Cambridge University Press, (1999), 3-21. https://doi.org/10.1017/CBO9780511542077.022 |
[20] |
K. Takayama, X. Liu, Y. Kakui, K. Yamashita, M. Manda, Y. Nakanishi, et al., The influence of free-ranging ducks (Indian runner, Chinese native duck and crossbred duck) on emerging weeds and pest insect infestations in paddy fields, Jpn. J. Livest. Manage., 34 (1998), 1-11. https://doi.org/10.20652/jjlm.34.1_1 doi: 10.20652/jjlm.34.1_1
![]() |
[21] |
Y. Shan, Y. Zhu, J. Li, N. Wang, Q. Yu, C. Xue, Acute lethal and sublethal effects of four insecticides on the lacewing (Chrysoperla sinica Tjeder), Chemosphere, 250 (2020), 126321. https://doi.org/10.1016/j.chemosphere.2020.126321 doi: 10.1016/j.chemosphere.2020.126321
![]() |
[22] |
M. Boriani, Chouioia cunea Yang (Hymenoptera, Eulophidae), parasitoid of Hyphantria cunea (Drury) (Lepidoptera Arctiidae), new for Europe, Boll. Zool. Agrar. Bachic., 23 (1991), 193-196. https://doi.org/10.13140/2.1.3361.8565 doi: 10.13140/2.1.3361.8565
![]() |
[23] |
P. E. Hulme, Beyond control: wider implications for the management of biological invasions, J. Appl. Ecol., 43 (2006), 835-847. https://doi.org/10.1111/j.1365-2664.2006.01227.x doi: 10.1111/j.1365-2664.2006.01227.x
![]() |
[24] |
P. M. J. Brown, T. Adriaens, H. Bathon, J. Cuppen, A. Goldarazena, T. Hägg, et al., Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid, BioControl, 53 (2008), 5–21. https://doi.org/10.1007/s10526-007-9132-y doi: 10.1007/s10526-007-9132-y
![]() |
[25] |
D. E. Hiebeler, Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal, Ecology, 81 (2000), 1629-1641. https://doi.org/10.2307/177312 doi: 10.2307/177312
![]() |
[26] |
J. Liao, Z. Ying, D. A. Woolnough, A. D. Miller, Z. Li, I. Nijs, Coexistence of species with different dispersal cross landscapes: a critical role of a spatial correlation in disturbance, Proc. R. Soc. B, 283 (2016), 20160537. https://doi.org/10.1098/rspb.2016.0537 doi: 10.1098/rspb.2016.0537
![]() |
[27] | R. Wittenberg, Invasive Alien Species: A Toolkit of Best Prevention and Management Practices (eds. M. J. W. Cock), CAB International, (2001), 4-47. https://doi.org/10.1079/9780851995694.0000 |
[28] |
L. W. J. Anderson, California's reaction to Caulerpa taxifolia: a model for invasive species rapid response, Biol. Invasions, 7 (2005), 1003-1016. https://doi.org/10.1007/s10530-004-3123-z doi: 10.1007/s10530-004-3123-z
![]() |
[29] |
L. Wang, Y. P. Liu, R. W. Wang, Weak predation strength promotes stable coexistence of predators and prey in the same chain and across chains, Int. J. Bifurcation Chaos, 30 (2020). https://doi.org/10.1142/S0218127420502284 doi: 10.1142/S0218127420502284
![]() |
[30] |
J. M. Chase, A. A. Burgett, E. G. Biro, Habitat isolation moderates the strength of top-down control in experimental pond food webs, Ecology, 91 (2010), 637-643. https://doi.org/10.1890/09-0262.1 doi: 10.1890/09-0262.1
![]() |
[31] |
J. Liao, D. Bearup, Y. Wang, I. Nijs, D. Bonte, Y. Li, et al., Robustness of metacommunities with omnivory to habitat destruction: disentangling patch fragmentation from patch loss, Ecology, 98 (2017), 1631-1639. https://doi.org/10.1002/ecy.1830 doi: 10.1002/ecy.1830
![]() |
[32] |
S. Nie, W. Li, How spatial structure of species and disturbance influence the ecological invasion, Ecol. Modell., 431 (2020). https://doi.org/10.1016/j.ecolmodel.2020.109199 doi: 10.1016/j.ecolmodel.2020.109199
![]() |
[33] |
R. MacArthur, Species packing and competitive equilibrium for many species, Theor. Popul Biol., 1 (1970), 1-11. https://doi.org/10.1016/0040-5809(70)90039-0 doi: 10.1016/0040-5809(70)90039-0
![]() |
[34] |
J. R. Ziegler, Dispersal and reproduction in Tribolium: the influence of initial density, Environ. Entomol., 7 (1978), 149-156. https://doi.org/10.1093/ee/7.1.149 doi: 10.1093/ee/7.1.149
![]() |
[35] |
A. K. Gerry, S. D. Wilson, The influence of initial size on the competitive responses of six plant species, Ecology, 76 (1995), 272-279. https://doi.org/10.2307/1940648 doi: 10.2307/1940648
![]() |
[36] |
L. M. Puth, D. M. Post, Studying invasion: have we missed the boat? Ecol. Lett., 8 (2005), 715-721. https://doi.org/10.1111/j.1461-0248.2005.00774.x doi: 10.1111/j.1461-0248.2005.00774.x
![]() |
[37] |
K. S. McCann, J. B. Rasmussen, J. Umbanhowar, The dynamics of spatially coupled food webs, Ecol. Lett., 8 (2005), 513-523. https://doi.org/10.1111/j.1461-0248.2005.00742.x doi: 10.1111/j.1461-0248.2005.00742.x
![]() |
[38] |
S. S. Greenleaf, N. M. Williams, R. Winfree, C. Kremen, Bee foraging ranges and their relationship to body size, Oecologia, 153 (2007), 589-596. https://doi.org/10.1007/s00442-007-0752-9 doi: 10.1007/s00442-007-0752-9
![]() |
[39] |
B. E. McLaren, R. O. Peterson, Wolves, moose, and tree rings on Isle Royale, Science, 266 (1994), 1555-1558. https://doi.org/10.1126/science.266.5190.1555 doi: 10.1126/science.266.5190.1555
![]() |
[40] |
A. P. Beckerman, M. Uriarte, O. J. Schmitz, Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain, Proc. Natl. Acad. Sci. U. S. A., 94 (1997), 10735-10738. https://doi.org/10.1073/pnas.94.20.10735 doi: 10.1073/pnas.94.20.10735
![]() |
[41] | F. H. Bormann, G. E. Likens, Catastrophic disturbance and the steady state in northern hardwood forests, Am. Sci., 67 (1979), 660-669. https://www.osti.gov/biblio/5608130 |
[42] |
W. B. Espeut, On the Acclimatization of the Indian Mungoos in Jamaica, Proc. Zool. Soc. London, 50 (2010), 712-714. https://doi.org/10.1111/j.1096-3642.1883.tb02783.x doi: 10.1111/j.1096-3642.1883.tb02783.x
![]() |
[43] |
T. A. Shiganova, Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure, Fish. Oceanogr., 7 (1998), 305-310. https://doi.org/10.1046/j.1365-2419.1998.00080.x doi: 10.1046/j.1365-2419.1998.00080.x
![]() |
[44] |
K. Johst, R. Brandl, S. Eber, Metapopulation persistence in dynamic landscapes: the role of dispersal distance, Oikos, 98 (2002), 263-270. https://doi.org/10.1034/j.1600-0706.2002.980208.x doi: 10.1034/j.1600-0706.2002.980208.x
![]() |
[45] |
A. Miller, D. Reilly, S. Bauman, K. Shea, Interactions between frequency and size of disturbance affect competitive outcomes, Ecol. Res., 27 (2012), 783-791. https://doi.org/10.1007/s11284-012-0954-4 doi: 10.1007/s11284-012-0954-4
![]() |
[46] |
R. Ju, H. Li, C. Shih, B. Li, Progress of biological invasions research in China over the last decade, Biodiversity Sci., 20 (2012), 581-611. https://doi.org/10.3724/SP.J.1003.2012.31148 doi: 10.3724/SP.J.1003.2012.31148
![]() |
[47] |
O. Cano-Rocabayera, A. de Sostoa, L. Coll, A. Maceda-Veiga, Managing small, highly prolific invasive aquatic species: exploring an ecosystem approach for the eastern mosquitofish (Gambusia holbrooki), Sci. Total Environ., 673 (2019), 594-604. https://doi.org/10.1016/j.scitotenv.2019.02.460 doi: 10.1016/j.scitotenv.2019.02.460
![]() |
[48] | F. Ge, X. Liu, W. Pang, Y. Dang, Biological control efficiency of ladybirds on arthropod pests in cotton agroecosystems, Chin. J. Appl. Ecol., 13 (2002), 841-844. Available from: http://www.cjae.net/EN/Y2002/V/I7/841. |
[49] |
E. Caudera, S. Viale, S. Bertolino, J. Cerri, E. Venturino, A mathematical model supporting a hyperpredation effect in the apparent competition between invasive eastern cottontail and native European hare, Bull. Math. Biol., 83 (2021). https://doi.org/10.1007/s11538-021-00873-9 doi: 10.1007/s11538-021-00873-9
![]() |
[50] | L. E. Johnson, Killer algae, Biodivers. Conserv., 10 (2001), 305–307. https://doi.org/10.1023/A:1008950708167 |
1. | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, On generalized Hermite polynomials, 2024, 9, 2473-6988, 32463, 10.3934/math.20241556 | |
2. | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Abdulrahman Khalid Al-Harbi, Mohammed H. Alharbi, Ahmed Gamal Atta, Generalized third-kind Chebyshev tau approach for treating the time fractional cable problem, 2024, 32, 2688-1594, 6200, 10.3934/era.2024288 | |
3. | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta, A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials, 2024, 12, 2227-7390, 3672, 10.3390/math12233672 | |
4. | Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, 2024, 9, 2473-6988, 34567, 10.3934/math.20241646 | |
5. | M.H. Heydari, M. Razzaghi, M. Bayram, A numerical approach for multi-dimensional ψ-Hilfer fractional nonlinear Galilei invariant advection–diffusion equations, 2025, 68, 22113797, 108067, 10.1016/j.rinp.2024.108067 | |
6. | Youssri Hassan Youssri, Waleed Mohamed Abd-Elhameed, Amr Ahmed Elmasry, Ahmed Gamal Atta, An Efficient Petrov–Galerkin Scheme for the Euler–Bernoulli Beam Equation via Second-Kind Chebyshev Polynomials, 2025, 9, 2504-3110, 78, 10.3390/fractalfract9020078 | |
7. | Minilik Ayalew, Mekash Ayalew, Mulualem Aychluh, Numerical approximation of space-fractional diffusion equation using Laguerre spectral collocation method, 2025, 2661-3352, 10.1142/S2661335224500291 | |
8. | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta, A Collocation Approach for the Nonlinear Fifth-Order KdV Equations Using Certain Shifted Horadam Polynomials, 2025, 13, 2227-7390, 300, 10.3390/math13020300 | |
9. | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta, A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials, 2025, 10, 2473-6988, 1201, 10.3934/math.2025057 | |
10. | M. Hosseininia, M.H. Heydari, D. Baleanu, M. Bayram, A hybrid method based on the classical/piecewise Chebyshev cardinal functions for multi-dimensional fractional Rayleigh–Stokes equations, 2025, 25, 25900374, 100541, 10.1016/j.rinam.2025.100541 | |
11. | Waleed Mohamed Abd-Elhameed, Abdulrahman Khalid Al-Harbi, Omar Mazen Alqubori, Mohammed H. Alharbi, Ahmed Gamal Atta, Collocation Method for the Time-Fractional Generalized Kawahara Equation Using a Certain Lucas Polynomial Sequence, 2025, 14, 2075-1680, 114, 10.3390/axioms14020114 | |
12. | Ahmed Gamal Atta, Approximate Petrov–Galerkin Solution for the Time Fractional Diffusion Wave Equation, 2025, 0170-4214, 10.1002/mma.10984 |
Our method | Method in [38] | ||
α | M=4 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 1.22946×10−16 | 1.1552×10−6 | 1.4408×10−6 |
0.5 | 2.40485×10−16 | 1.0805×10−6 | 1.4007×10−6 |
0.9 | 8.83875×10−17 | 8.1511×10−7 | 1.3682×10−6 |
Our method | Method in [38] | ||
α | M=8 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 4.97952×10−10 | 9.1909×10−5 | 5.1027×10−5 |
0.5 | 5.85998×10−10 | 8.4317×10−5 | 4.4651×10−5 |
0.9 | 4.62473×10−10 | 6.2864×10−5 | 4.0543×10−5 |
x | t=0.2 | t=0.4 | t=0.6 | t=0.8 |
0.1 | 7.82271×10−12 | 9.69765×10−11 | 1.48667×10−10 | 2.65085×10−10 |
0.2 | 4.24386×10−11 | 6.82703×10−11 | 2.34553×10−10 | 5.1182×10−10 |
0.3 | 4.48637×10−11 | 6.28317×10−11 | 2.69028×10−10 | 4.28024×10−10 |
0.4 | 2.57132×10−11 | 5.02944×10−11 | 1.45928×10−10 | 3.26067×10−10 |
0.5 | 6.59974×10−11 | 1.22092×10−11 | 4.38141×10−10 | 7.16844×10−10 |
0.6 | 1.11684×10−11 | 1.04731×10−10 | 1.78963×10−10 | 2.80989×10−10 |
0.7 | 4.19906×10−11 | 7.33454×10−11 | 2.70484×10−10 | 4.25895×10−10 |
0.8 | 2.97515×10−11 | 1.16961×10−10 | 2.70621×10−10 | 4.63116×10−10 |
0.9 | 1.0014×10−11 | 8.68311×10−11 | 1.43244×10−10 | 2.71797×10−10 |
x | t=0.2 | t=0.4 | t=0.6 | t=0.8 |
0.1 | 4.36556×10−8 | 6.4783×10−8 | 4.6896×10−8 | 3.07364×10−8 |
0.2 | 3.41326×10−8 | 5.29923×10−8 | 2.18292×10−8 | 6.69242×10−8 |
0.3 | 4.74795×10−8 | 5.70081×10−5 | 1.14413×10−7 | 1.69409×10−7 |
0.4 | 8.64528×10−8 | 1.11593×10−7 | 1.6302×10−7 | 1.69931×10−7 |
0.5 | 2.03915×10−8 | 2.95873×10−8 | 2.78558×10−8 | 2.04027×10−11 |
0.6 | 8.36608×10−8 | 1.07773×10−7 | 1.59124×10−7 | 1.70274×10−7 |
0.7 | 1.53354×10−8 | 1.00892×10−8 | 7.07611×10−8 | 1.68702×10−7 |
0.8 | 3.88458×10−8 | 6.00347×10−8 | 2.85788×10−8 | 6.72342×10−8 |
0.9 | 3.00922×10−8 | 4.49878×10−8 | 2.82622×10−8 | 3.06797×10−8 |
Our method | Method in [61] | |
α | M=7 | n=m=10 |
0.1 | 1.39197×10−11 | 2.176×10−9 |
0.3 | 1.34984×10−10 | 9.045×10−9 |
0.5 | 5.87711×10−11 | 1.516×10−8 |
0.7 | 8.43536×10−12 | 1.415×10−8 |
0.9 | 7.46064×10−12 | 5.749×10−9 |
Our method | Method in [38] | ||
α | M=4 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 1.22946×10−16 | 1.1552×10−6 | 1.4408×10−6 |
0.5 | 2.40485×10−16 | 1.0805×10−6 | 1.4007×10−6 |
0.9 | 8.83875×10−17 | 8.1511×10−7 | 1.3682×10−6 |
CPU time of our method | CPU time of method in [38] | ||
α | M=4 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 30.891 | 16.828 | 67.243 |
0.5 | 35.953 | 16.733 | 67.470 |
0.9 | 31.078 | 16.672 | 67.006 |
Our method | Method in [38] | ||
α | M=8 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 4.97952×10−10 | 9.1909×10−5 | 5.1027×10−5 |
0.5 | 5.85998×10−10 | 8.4317×10−5 | 4.4651×10−5 |
0.9 | 4.62473×10−10 | 6.2864×10−5 | 4.0543×10−5 |
CPU time of our method | CPU time of method in [38] | ||
α | M=8 | h=15000, T=1128 | T=15000, h=1128 |
0.1 | 119.061 | 20.095 | 70.952 |
0.5 | 118.001 | 19.991 | 71.117 |
0.9 | 121.36 | 19.908 | 71.153 |
x | t=0.2 | t=0.4 | t=0.6 | t=0.8 |
0.1 | 7.82271×10−12 | 9.69765×10−11 | 1.48667×10−10 | 2.65085×10−10 |
0.2 | 4.24386×10−11 | 6.82703×10−11 | 2.34553×10−10 | 5.1182×10−10 |
0.3 | 4.48637×10−11 | 6.28317×10−11 | 2.69028×10−10 | 4.28024×10−10 |
0.4 | 2.57132×10−11 | 5.02944×10−11 | 1.45928×10−10 | 3.26067×10−10 |
0.5 | 6.59974×10−11 | 1.22092×10−11 | 4.38141×10−10 | 7.16844×10−10 |
0.6 | 1.11684×10−11 | 1.04731×10−10 | 1.78963×10−10 | 2.80989×10−10 |
0.7 | 4.19906×10−11 | 7.33454×10−11 | 2.70484×10−10 | 4.25895×10−10 |
0.8 | 2.97515×10−11 | 1.16961×10−10 | 2.70621×10−10 | 4.63116×10−10 |
0.9 | 1.0014×10−11 | 8.68311×10−11 | 1.43244×10−10 | 2.71797×10−10 |
x | t=0.2 | t=0.4 | t=0.6 | t=0.8 |
0.1 | 4.36556×10−8 | 6.4783×10−8 | 4.6896×10−8 | 3.07364×10−8 |
0.2 | 3.41326×10−8 | 5.29923×10−8 | 2.18292×10−8 | 6.69242×10−8 |
0.3 | 4.74795×10−8 | 5.70081×10−5 | 1.14413×10−7 | 1.69409×10−7 |
0.4 | 8.64528×10−8 | 1.11593×10−7 | 1.6302×10−7 | 1.69931×10−7 |
0.5 | 2.03915×10−8 | 2.95873×10−8 | 2.78558×10−8 | 2.04027×10−11 |
0.6 | 8.36608×10−8 | 1.07773×10−7 | 1.59124×10−7 | 1.70274×10−7 |
0.7 | 1.53354×10−8 | 1.00892×10−8 | 7.07611×10−8 | 1.68702×10−7 |
0.8 | 3.88458×10−8 | 6.00347×10−8 | 2.85788×10−8 | 6.72342×10−8 |
0.9 | 3.00922×10−8 | 4.49878×10−8 | 2.82622×10−8 | 3.06797×10−8 |
Our method | Method in [61] | |
α | M=7 | n=m=10 |
0.1 | 1.39197×10−11 | 2.176×10−9 |
0.3 | 1.34984×10−10 | 9.045×10−9 |
0.5 | 5.87711×10−11 | 1.516×10−8 |
0.7 | 8.43536×10−12 | 1.415×10−8 |
0.9 | 7.46064×10−12 | 5.749×10−9 |