Processing math: 100%
Research article

Impact of macroeconomic indicators on bankruptcy prediction models: Case of the Portuguese construction sector

  • Received: 05 April 2022 Revised: 22 June 2022 Accepted: 29 June 2022 Published: 11 July 2022
  • JEL Codes: C51, C52, C81, C82, G33

  • The importance of macroeconomic indicators on the performance of bankruptcy prediction models has been a contentious issue, due in part to a lack of empirical evidence. Most indicators are primarily centered around a company's internal environment, overlooking the impact of the economic cycle on the status of the company. This research brings awareness about the combination of microeconomic and macroeconomic factors. To do this, a new model based on logistic regression was combined with principal component analysis to determine the indicators that best explained the variations in the dataset studied. The sample used comprised data from 1,832 Portuguese construction companies from 2009 to 2019. The empirical results demonstrated an average accuracy rate of 90% up until three years before the bankruptcy. The microeconomic indicators with statistical significance fell within the category of liquidity ratios, solvency and financial autonomy ratios. Regarding the macroeconomic indicators, the gross domestic product and birth rate of enterprises proved to increase the accuracy of bankruptcy prediction more than using only microeconomic factors. A practical implication of the results obtained is that construction companies, as well as investors, government agencies and banks, can use the suggested model as a decision-support system. Furthermore, consistent use can lead to an effective method of preventing bankruptcy by spotting early warning indicators.

    Citation: Ana Sousa, Ana Braga, Jorge Cunha. Impact of macroeconomic indicators on bankruptcy prediction models: Case of the Portuguese construction sector[J]. Quantitative Finance and Economics, 2022, 6(3): 405-432. doi: 10.3934/QFE.2022018

    Related Papers:

    [1] Christian Winkel, Simon Neumann, Christina Surulescu, Peter Scheurich . A minimal mathematical model for the initial molecular interactions of death receptor signalling. Mathematical Biosciences and Engineering, 2012, 9(3): 663-683. doi: 10.3934/mbe.2012.9.663
    [2] Hong Yuan, Jing Huang, Jin Li . Protein-ligand binding affinity prediction model based on graph attention network. Mathematical Biosciences and Engineering, 2021, 18(6): 9148-9162. doi: 10.3934/mbe.2021451
    [3] Yuewu Liu, Mengfang Zeng, Shengyong Liu, Chun Li . Dynamics analysis of building block synthesis reactions for virus assembly in vitro. Mathematical Biosciences and Engineering, 2023, 20(2): 4082-4102. doi: 10.3934/mbe.2023191
    [4] Ronald Lai, Trachette L. Jackson . A Mathematical Model of Receptor-Mediated Apoptosis: Dying to Know Why FasL is a Trimer. Mathematical Biosciences and Engineering, 2004, 1(2): 325-338. doi: 10.3934/mbe.2004.1.325
    [5] Max-Olivier Hongler, Roger Filliger, Olivier Gallay . Local versus nonlocal barycentric interactions in 1D agent dynamics. Mathematical Biosciences and Engineering, 2014, 11(2): 303-315. doi: 10.3934/mbe.2014.11.303
    [6] Feng Rao, Carlos Castillo-Chavez, Yun Kang . Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064
    [7] Yutong Man, Guangming Liu, Kuo Yang, Xuezhong Zhou . SNFM: A semi-supervised NMF algorithm for detecting biological functional modules. Mathematical Biosciences and Engineering, 2019, 16(4): 1933-1948. doi: 10.3934/mbe.2019094
    [8] O. E. Adebayo, S. Urcun, G. Rolin, S. P. A. Bordas, D. Trucu, R. Eftimie . Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models. Mathematical Biosciences and Engineering, 2023, 20(9): 17446-17498. doi: 10.3934/mbe.2023776
    [9] Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie . Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences and Engineering, 2011, 8(4): 1135-1168. doi: 10.3934/mbe.2011.8.1135
    [10] Linlu Song, Shangbo Ning, Jinxuan Hou, Yunjie Zhao . Performance of protein-ligand docking with CDK4/6 inhibitors: a case study. Mathematical Biosciences and Engineering, 2021, 18(1): 456-470. doi: 10.3934/mbe.2021025
  • The importance of macroeconomic indicators on the performance of bankruptcy prediction models has been a contentious issue, due in part to a lack of empirical evidence. Most indicators are primarily centered around a company's internal environment, overlooking the impact of the economic cycle on the status of the company. This research brings awareness about the combination of microeconomic and macroeconomic factors. To do this, a new model based on logistic regression was combined with principal component analysis to determine the indicators that best explained the variations in the dataset studied. The sample used comprised data from 1,832 Portuguese construction companies from 2009 to 2019. The empirical results demonstrated an average accuracy rate of 90% up until three years before the bankruptcy. The microeconomic indicators with statistical significance fell within the category of liquidity ratios, solvency and financial autonomy ratios. Regarding the macroeconomic indicators, the gross domestic product and birth rate of enterprises proved to increase the accuracy of bankruptcy prediction more than using only microeconomic factors. A practical implication of the results obtained is that construction companies, as well as investors, government agencies and banks, can use the suggested model as a decision-support system. Furthermore, consistent use can lead to an effective method of preventing bankruptcy by spotting early warning indicators.



    Ligands, are biochemical modifiers of macromolecular structure and can impact biological function. These can be co-factors (iron, cobalt, copper, zinc), co-enzymes such as Nicotinamide- and Flavin- Adenine Dinucleotides (NAD, FAD) and full-length molecules with short binding sites [1,2]. Ligands, unlike substrates/co-substrates are either reversibly altered or not at all. The biochemical role of ligands, in vivo, is complex and can influence both, enzyme-mediated substrate catalysis and non-enzymatic association and dissociation interactions. Whilst, the interaction with competitive inhibitors, co-factors or co-enzymes involves definitive and direct modifications to the active site residues, the effect of a ligand can be allosteric and indirect [3,4,5]. The latter involves both long-distance conformational changes and non-covalent interactions (hydrogen, Van der Waals, hydrophobic, electrostatic) [6,7,8,9,10,11]. Empirical data suggests that the binding affinity or the strength-of-association of a macromolecule for its ligand is a critical determinant of function [7,8,9,10,11]. For example, 2, 3-Bisphophoglycerate is a potent modifier of Hemoglobin function and does so by shifting the oxygen-dissociation curve to the right. In its absence Hemoglobin retains high affinity for molecular oxygen (left-shift of the oxygen dissociation curve), an undesirable effect on its role as a transporter [10,11]. Similarly, Ascorbic acid maintains iron in its reduced state in the gastrointestinal tract and as part of the active site of non-haem iron (Ⅱ)- and 2-oxoglutarate-dependent dioxygenases [12,13]. Deficiency of Ascorbic acid is implicated in tardy iron absorption in the ileum as well as a range of collagen disorders such as scurvy (Prolyl- and Lysyl-hydroxylases) [14,15]. Conversely, proteins which are modified such as those that may originate from missense or amino acid substitutions and are secondary to genomic variants such as single nucleotide polymorphisms (SNPs) and insertions-deletions (indels), will also result in several clinical outcomes [16,17]. Here, too, enzyme catalysis is directly affected if these are present at the active site or is impacted indirectly (folding, stability, complex formation) when present elsewhere [16,17,18].

    There is a large volume of literature which describes macromolecules in terms of either residues (amino acids, nucleotides) interacting or an all atom-based interaction matrix. The proponent of the 2D approach is the Gaussian network model (GNM), while the Anisotropic network model (ANM) is representative of the 3D approach [19,20,21,22]. The fundamental premise of both these approaches is the elastic network model (ENM) [19]. Here, an atom or residue is modeled as an elastic mass and the interaction between a pair of atoms/residues is dependent on the selection of a pre-determined cut-off distance [22]. The force constant, although, not a parameter by definition, has also been studied and shows good correlation with B-factor data [23]. A major application of these studies is normal mode analysis (NMA), which has been used to glean valuable insights into the structural dynamics of the investigated macromolecule and into B-factor distribution [23,24]. Despite this success, there are significant limitations of this approach, including inadequate descriptors for the type of interactions computed by the Hessian matrix and data points that are dependent on a preselected cut-off distance (5–10 Ang, GNM; 10–15 Ang, ANM) [20,22,25]. Parameter-free versions of the ENM (pfENM), GNM (pfGNM) and ANM (pfANM), to resolve the latter, have been described and compared to establish B-factor distribution (isotropic, anisotropic) [25]. Additionally, many of these studies have focused on inferring biophysical characteristics such as cross-correlational fluctuations and mean square displacements. From a functional standpoint, however, it is not clear whether these data can be utilized to derive/study parameters such as the Michaelis-Menten constant (Km) or the association/dissociation (Ka/Kd). Since, these depend on the presence of an organic or inorganic modifier, i.e., ligand/substrate/co-factor/co-substrate, in addition to the modeled macromolecule, its exclusion is another major lacuna of these studies.

    Despite the availability of clinical, empirical, analytical and computational data, a mathematically rigorous explanation for the heterogeneity in biochemical function, for a ligand-macromolecular complex, is missing. The work presented models a ligand and macromolecule as a homo- or hetero-dimer and subsumes a finite and equal number of atoms/residues per monomer. The pairwise interactions of the resulting square matrix will be chosen randomly from a standard uniform distribution. The resulting eigenvalues will be analyzed and modeled in accordance with known literature on biochemical reactions to generate biologically viable and usable dissociation constants. The theoretical results will be complemented by numerical studies where applicable. Additionally, and through various theorems, lemmas and corollaries, a schema to partition ligands into high- and low-affinity variants will also be discussed. The suitability of the transition-state dissociation constants as a model for ligand-macromolecular interactions will be inferentially assessed by analyzing the clinical outcomes of amino acid substitutions of selected enzyme homodimers. The relevance of the model to biochemical function will be discussed by examining the ligand-macromolecular complex for known ligands of non-haem iron (Ⅱ)- and 2-oxoglutarate-dependent dioxygenases (Fe2OG) and the major histocompatibility complex (Ⅰ) (MHC1).

    The general outline of the manuscript includes an initial section where the system to be modeled, rationale for this study, and formal definitions are introduced (Section 2). The model is analyzed, formulated and presented as theorems, lemmas and corollaries (Section 3). This section also includes a numerical study to demonstrate and validate the theoretical assertions made. The biological relevance of these findings are discussed with an analysis of clinical outcomes of enzyme sequence variants and case studies of enzyme- and non-enzymatic complex formation (Section 4). A brief conclusion that summarizes the presented study, limitations and future directions is included at the end of the manuscript (Section 5). Details of all proofs are included after the conclusions (Section 6).

    Consider the generic interaction between macromolecule (c) and ligand (μ),

    cμrfrbc+μRXN(1)

    We can represent this interaction/reaction, at a steady state, with the rate equations [26],

    Rd(cμ)=rf.[cμ]Lcμ0 (1)
    Ra(cμ)=rb.[c]Lc0[μ]Lμ0 (2)

    At steady state,

    Rd(cμ)=Ra(cμ) (3)
    rfrb=[c]Lc0.[μ]Lμ0[cμ]Lcμ0 (4)
    rfrb=Kd(cμ) (5)

    Here,

    c:=Macromolecule
    μ:=Ligand
    [.]:=Molarconcentrationofreactantinstandardform(M)
    Ra(cμ):=Rateofassociationofcomplex(Ms1)
    Rd(cμ):=Rateofdissociationofcomplex(Ms1)
    rf:=Rateconstantsofforwardreaction(s1)
    rb:=Rateconstantsofreversereaction(M1s1)
    L:=Stoichiometryofreactant(s)
    Kd(cμ):=Dissociationconstantforligandmacromolecularcomplex(M)

    It is clear that a ligand-macromolecular complex may exist in one of three distinct states. These include: a) perfect association, b) perfect dissociation and c) an intermediate- or transition-state; and can be represented in terms of the dissociation constant,

    Case (1)     Perfectassociation      Def. (1)

    1rb;rf0 (6, 7)
    Kd(cμ)0 (8)

    Case (2)    Perfectdisassociation    Def. (2)

    rf>>>rb (9)
    Kd(cμ)1 (10)

    Case (3)    Transientstatedisassociationconstant    Def. (3)

    rfrb (11)
    Kd(cμ)R(0,1) (12)

    Consider an atom/residue-based representation (amino acids/nucleotides) of a generic set of monomeric macromolecules, C={protein,DNA,RNA}, with z=1,2,.,Z components each with i-indexed (i=1,2,.,I) c-atoms/residues,

    cCzC|c=[c1c2.ci=I]T,IN (13)

    The analogous model of a monomer ligand, L={smallmolecule,peptide,oligonucleotide}, with j-indexed (j=1,2,,J) μ-atoms/residues is,

    μL|μμ=[μ1μ2.μj=J],JN (14)

    It is also assumed that the ligand-macromolecular complex is a homo- or hetero-dimer with an equal number of atoms/residues (I=J) per monomer. The interaction matrix is,

    c|μ=[c1c2..ci=I]T×[μ1μ2..μj=J]=Czμ=(ciμj)RI×J (15)

    The numerical values of this matrix are chosen randomly from the standard uniform distribution,

    Czμ=(ciμj)U[0,1] (16)

    The rationale for this choice is that each pairwise interaction is subsumed to be a function of an arbitrary number of non-bonded interactions (long- and short-range) and is therefore, unique. Clearly, this implies the existence of {I,J}-linear independent vectors,

    rank(Czμ)={I,J} (17)

    Since Czμ is diagonalizable there exists a diagonal matrix, KCzμ,

    KCzμ=X1CzμX (18)
    zi=j=zdiag(KCzμ)C (19)

    Czμ, is non-symmetric the computed eigenvalues of the modeled ligand-macromolecular interaction matrix can have positive and negative real parts,

    {αij=Re(z)Kd(Czμ)R|i=j,zC} (20)
    {αij=Re(z)Kd(Czμ)R|i=j,zC} (20.1)

    A further subdivision can be made in accordance with established literature,

    {αij=Re(z)Kd(Czμ)R|i=j,zC}ω=Kd(cμ)1 (21)
    PerfectassociationReverseω0=Kd(cμ)=0 (22)

    This selection generates the set,

    ω=αijKd(Czμ)R(0,1) (23)
    ωKd(cμ)Def.(4)
    #Kd(cμ)=A (23.1)

    We can combine these to get a preliminary definition of the transition-state disassociation constants. These are the strictly positive real part of all complex eigenvalues that characterize a ligand-macromolecular complex with an equal number of atoms/residues per monomer and belong to the open interval (0, 1),

    {ω=Re(z)Kd(cμ)Kd(Czμ)R(0,1)|zC} (Def.(5a))

    Whilst, the states of perfect association and dissociation are key determinants of whether a reaction will occur or not, the transition-state dissociation constants may offer insights into the origins of threshold values, feedback mechanisms and other regulatory checkpoints. However, in order to ascribe biological relevance to these findings we must establish various bounds which can then be utilized to assess and thence assay the function of a ligand-macromolecular complex.

    Theorem 1 (T1): The linear map between the transition-state dissociation constants and the eigenvalues that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecular complex is the injection,

    g:ωKd(cμ)Kd(Czμ) (24)

    Theorem 2 (T2): The transition-state dissociation constants that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecular complex is a monotonic and non-increasing sequence,

    {ωa}aa+1|ωKd(cμ) (25)

    Theorem 3 (T3): The transition-state dissociation constants that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecule complex are monotonic, bounded and therefore, convergent,

    lima{ωa}aa+1={0,1}|ωKd(cμ) (26)

    Corollary 1 (C1): The transition-state dissociation constants that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecule complex is a sequence with defined greatest-lower and least-upper -bounds,

    inf{ωa}aa+1<{ωa}aa+1<sup{ωa}aa+1 (27)

    Corollary 2 (C2; without proof): The cardinality of the set of transition-state dissociation constants that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecule complex is finite,

    #Kd(cμ)=A<#Kd(Czμ)={I,J} (28)

    Using T1–T3 and C1, C2 we can refine our definition of the transition-state dissociation constants for the modeled ligand-macromolecular complex,

    {ωa}aa+1|ωKd(cμ);a=1,2A (Def.(5b))

    where,

    ω=Re(z)Kd(Czμ)R(0,1)|zC

    It is clear from the above results that the eigenvalue-based transition-state dissociation constants are continuous and can potentially model the multiplicity of intermediate- or transient-states that a ligand-macromolecular complex may adopt. It should therefore, be possible to partition the transition-state dissociation constants into functionally distinct subsets and will be characteristic for a specific ligand-macromolecular complex.

    Theorem 4 (T4): The transition-state dissociation constants that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecule complex is a proper subset of the complete set of the real part of all complex eigenvalues that comprise the interaction matrix,

    Kd(cμ)Kd(Czμ) (29)

    Corollary 3 (C3): The distribution of the transition-state dissociation constants that characterize the interactions of the homo- or hetero-dimer form of the modeled ligand-macromolecule complex will result in a schema by which we can annotate the ligand as a high (μhigh)- or low (μlow)-affinity variant,

    μ={μhigh,μlow} (30)

    Biologically relevant macromolecular complexes are characterized by heterogeneity and high-order (Z2). This multimer-form of a macromolecule is formed around a primary molecule and its interactions. These may be protein-protein, DNA/RNA-protein or DNA-RNA-protein.

    The multimer-form of ligand-macromolecular complex is easily modeled using the mathematical framework defined earlier. Here, the ligand-macromolecular complex is considered as a set of interacting monomers and the binding to a ligand occurs via a single unique monomer,

    {CzC|C1=C2=Cz=Z|Z2} (Def.(6a))

    where,

    CzCzμμCz (Def.(6b))

    Here,

    μ:=Ligand
    Cz:=Uniquemonomerofamacromoleculethatassociateswithaligand
    μCz:=Ligandmacromolecularcomplex

    On the basis of these definitions we can re-index the remaining monomers, i.e., after excluding the unique monomer that binds to the ligand,

    {Cy˜C=C{Cz}|y=1,2Y;Y=Z1} (Def.(7))

    We now derive an expression for the multimer (higher-order)-form of a ligand-macromolecular complex.

    Theorem 5 (T5): The multimer-form of a ligand-macromolecular complex comprising identical monomer units and with an arbitrary unit associating with a ligand is,

    y=Yy=1Cz.Cy=Cz.CyY|y=1,2Y;Y=Z1;Z2;z=1,2Z (31)

    Rewriting, this result in terms of the definition of the multimer form of a ligand-macromolecular complex,

    Cz.CYμCz.CY (Def.(8))

    Theorem 6 (T6): The linear map between the transition-state dissociation constants that characterize the interactions of the monomer- and multimer-forms of a ligand-macromolecular complex is a bijection,

    h1h:ωKd(cμ)uKd(μCz) (32)

    Theorem 7 (T7): The linear map between the transition-state dissociation constants and the eigenvalues that characterize the multimer-form of a ligand-macromolecular complex is a composition and an injection,

    gh1h:uKd(μCz.CY)Kd(Czμ) (33)

    The aforementioned theoretical results establish the mathematical rigor behind the definition and development of the transition-state dissociation constants as a model for ligand-macromolecular interactions (T1–T7, C1–C3). These assertions are complemented and numerically validated in R-4.1.2. Here, the R-packages, "ConvergenceConcepts" and "pracma" are utilized to investigate and analyze the stochastic convergence of the eigenvalues generated by the interaction matrix of a ligand-macromolecular complex (Supplementary Text 1) [27]. The R-scripts to establish convergence along with data processing are developed in-house (Supplementary Text 2). The stepwise algorithm to compute and numerically validate the transition-state dissociation constants is presented (Figure 1).

    Figure 1.  Numerical studies of ligand-macromolecular interactions as eigenvalue-based transition-state dissociation constants.

    Step 1: A ligand and macromolecule with an equal number of atoms/residues (n=25) is chosen. Whilst, the complex can be modeled as a perfect homodimer, imperfect forms such as alternatively spliced isoenzymes are prevalent and commonly observed. Alternatively, the ligand can be modeled as a different macromolecule altogether.

    Step 2: Populate the square interaction matrix with values randomly chosen from a uniform distribution, U[0,1]. These will represent one of three potential states for each interacting pair of atoms/residues of the modeled ligand-macromolecular complex (association, complete disassembly, transition-state).

    Step 3: Compute the complex eigenvalues of this matrix and extract the real part of each.

    Step 4: Form a sequence of the subset comprising those values that are strictly positive and belong to the open interval (0,1).

    Step 5: Establish the stochastic convergence in distribution and/or probability of the terms of this sequence to the expected upper (tsup)- and lower (tinf)-bounds, i.e., 0 and 1.

    Step 5.1: Construct a sequence of random numbers, X, whose elements are uniquely mapped to the eigenvalue-based transition-state dissociation constants and represent intermediate- or transition-states of the modeled ligand-macromolecular complex,

    {XaXKd(cμ)R(0,1)|a=1,2A} (Def.(9))

    Here,

    A=#(XKd(cμ)) (34)

    Step 5.2: Establish convergence of this set of random numbers. Here, weak convergence will suffice (distribution, probability),

    lima(Xa){tinf,tsup}={0,1} (35)

    The parameters to accomplish this numerically are,

    nmax:=NumberofvaluestoanalyseM:=Numberofpathsε:=Thresholdvaluetinf:=Lowerlimitofintervaltoestablishconvergencetsup:=Upperlimitofintervaltoestablishconvergence

    The values of these parameters for the numerically studied example are,

    nmax=A=11 (35.1)
    M=500 (35.2)
    ε=0.01 (35.3)
    tinf=0 (35.4)
    tsup=1 (35.5)

    The eigenvalue-based model of transition-state dissociation constants of a ligand-macromolecular complex asserts that there are several intermediate- or transition-states of a complex and that each of these has the potential to modify the biochemical process that the complex participates in.

    Ligand-macromolecular complexes, in vivo, possess a finite and in most cases, an incomparable number of atoms/residues. The theoretical results establish definition(s), bounds and metrics to assess biochemical function for both, monomer (T1–T4, C1–C3)- and multimer (T5–T7)-forms. The numerical data suggests that the set of transition-state dissociation constants can be finite, converge and retain statistical relevance (Figure 1).

    Proposition (P): The transition-state dissociation constants for the monomer (z=Z=1)- and multimer (Z2)-forms of a ligand-macromolecular complex with a finite number of atoms/residues of each (I,J) per monomer,

    {uKd(μCz.CY)|CzC,μL;z=1,2Z;A={I,J}} (Def.(10))

    is the finite set,

    Kd(μCz.CY)Kd(Czμ)

    Here,

    I=#Cz|CzC (36)
    J=#μ|μL (37)

    where,

    Kd(.):=Setofconstrainedeigenvaluebasedtransitionstatedissociationconstants
    I:=Finitenumberofatomsorresiduesofmacromolecule
    J:=Finitenumberofatomsorresiduesofligand
    Cμz.CY:=Multimerformofligandmacromolecularcomplex

    Enzyme-mediated catalysis, or lack thereof, results in metabolic enzyme disorders and may be inherited (inborn errors of metabolism) or acquired [28]. In order to assess the biomedical relevance of modeling ligand-macromolecule interactions as transition-state dissociation constants, the clinical outcomes of amino acid substitutions of selected enzyme homo- or hetero-dimers are examined (Table 1). These outcomes, i.e., benign, likely benign, pathologic, likely pathologic, conflicting, uncertain significance, are defined in accordance with the prevalent nomenclature of the ClinVar database [16]. Here, the data annotated as "uncertain significance" are those sequence variants with a high likelihood (9095%) of being "benign" or "pathogenic" [17]. This means they are likely to classified as "true positive", and if ignored will result in a "false negative". On the other hand, an outcome designated as with a "conflicting interpretation" is likely to be due to unresolved contradictory findings in the presence or absence of confounding factors. If we assume perfect contradiction, i.e., 50%, and couple this with the previous result, we get a 7073% possibility that the variant of interest is a "true positive". This means, that here too, if missed a "false negative" will result. The metric of choice is the Recall (R) percentage,

    R=TPTP+FN×100 (38)
    R:=Recall
    TP:=Knownpositives(benign,likelybenign,pathogenic,likelypathogenic) (Def.(12))
    FN:=Likelypositives(conflictingdata,uncertainsignificance) (Def.(13))
    Table 1.  Analysis of clinical outcomes of amino acid substitutions of selected enzyme homo- and hetero-dimer forms present in ClinVar.
    Enzyme EC CV SNP M Co US B LB P LP FN TP R (%)
    1 Glucokinase 2.7.1.2 778 619 370 49 157 4 4 65 113 206 186 47.45
    2 Pyruvate kinase 2.7.1.40 1239 629 209 14 135 7 7 30 20 149 64 30.05
    3 Cathepsin A 3.4.16.x 1776 1270 501 20 382 26 23 26 34 402 109 21.33
    4 Pyruvate dehydrogenase 1.2.4.1 2317 1591 584 25 391 35 46 62 43 416 186 30.9
    5 Phosphofructokinase 1 2.7.1.11 165 32 10 2 4 2 1 1 1 6 5 45.45
    6 Phosphofructokinase 2 2.7.1.105 206 76 23 1 17 1 1 2 1 18 5 21.74
    7 Cystathione beta-synthase 4.2.1.22 930 744 255 21 172 3 4 46 32 193 85 30.58
    8 DNA topoisomerase Ⅱ 5.6.2.2 466 319 152 0 122 11 14 3 1 122 29 19.21
    9 Guanylate cyclase 1 4.6.1.2 1572 1117 576 29 417 11 10 34 59 446 114 20.36
    10 Phenylalanine hydroxylase 1.14.16.1 1314 1102 631 5 182 0 3 161 254 187 418 69.09
    Note: EC: Enzyme commission number; CV: Number of clinical variants; SNP: Single nucleotide polymorphisms; M: Missense mutations; Co: Conflicting data; US: Uncertain significance; B: Benign; LB: Likely; P: Pathogenic; LP: Likely pathogenic; FN: False negative (Co + US); TP: True positive (B + LB + P + LP); R: Recall (TPTP+FN×100).

     | Show Table
    DownLoad: CSV

    It is clear from these data that amino acid substitutions (nature, type), either alone or in combination, comprise distinct transition-states and are significant contributors to the biochemical function of each enzyme dimer (Recall1970%). Since each of these states will result in a distinct Kd, it is easily inferred that the transition-state dissociation constants, for a complex, may be more representative of biochemical function (T1–T4, C1–C3).

    The discussion, vide supra, presents and highlights the biomedical relevance of modeling ligand-macromolecular interactions as transition-state dissociation constants. The results for monomer- and multimer-forms of ligand-macromolecular complexes are mathematically rigorous and have been validated, in silico. The results are now examined in context of biochemical function (enzyme, non-enzyme) for selected cases.

    Case 1: Oxygen sensitive variants of non-haem iron (II)- and 2-oxoglutarate-dependent dioxygenases

    The non-haem iron (Ⅱ)- and 2-oxoglutarate-dependent dioxygenases (EC1.14.x.y), comprise a large superfamily of enzymes, are present in all kingdoms of life and is chemically diverse (variable reaction chemistry, multiple substrates) [12,13,29]. Clinically relevant members include Phytanoyl-CoA dioxygenase (PHYT), Lysine Hydroxylases, and the Proline 4-Hydroxylases (P4H) amongst several others [12,13,14,15,29]. These enzymes have important roles in Phytanic acid metabolism and collagen maturation, with sub-optimal activities contributing to diseases such as Refsum and the Ehlers-Danlos (ED)-syndrome [14,15,30]. Here, too, the outcomes (clinical, non-clinical) associated with substitution mutations for PHYT suggest that modeling ligand-macromolecular interactions as transition-state dissociation constants may be a better index of biochemical function (T1T4, C1C3, P) [31].

    P4Hs, are classified as being either hypoxia-sensitive (HP4HHP4H;EC1.14.11.29) or collagen transforming (CP4HCP4H;EC1.14.11.2) [28]. These reactions may be written,

    HP4HHIF+O2+2OG+ProlinerfrbHydroxyproline+SA+CO2RXN(2)CP4H+O2+2OG+ProlinerfrbHydroxyproline+SA+CO2RXN(3)
    rf,rb:=RateconstantsforforwardandbackwardreactionsatsteadystateHP4H:=HypoxiainduciblefactordependentProline4HydroxylaseHIFμhigh:=Hypoxiainduciblefactor(highaffinitymodifier)2OG:=2oxoglutarateSA:=SuccinicacidCO2:=Carbondioxide

    The amino acid identity between HP4H and CP4H notwithstanding, there are significant differences between the molecular biology that they exhibit. This implies that despite the similarity of co-factor (iron(II)), substrate (LProline) and co-substrate (2oxoglutarate), the binding affinities for molecular dioxygen vary considerably [7,32],

    KmHP4H=0.10.76mM (39)
    KmCP4H=0.031.5mM (40)

    The turnover numbers for the cognate substrate, too, differ significantly [7],

    KcatHP4H=0.0150.733s1 (41)
    KcatCP4H=0.01880.02s1 (42)

    Clearly, a plausible explanation for these disparate empirical observations is the binding of the hypoxia-inducible factors (HIF) to P4H. The hypoxia-inducible factors (HIFs), are a family (n=3) of transcription factors which sense hypoxia and trigger the upregulation of hypoxia-dependent genes [32,33,34]. Here, although hypoxia-inducible factor, is a full length protein, the actual binding site is the C-terminal end of HP4H [7,35].

    Kd0.0000160.023mM (43)

    Some of these observations may be inferred from the partitioning of the transition-state dissociation constants into distinct subsets (Table 2):

    Table 2.  Ligand-macromolecular biochemistry as a function of its transition-state dissociation constants.
    Case 1 Case 2
    Ligand (μL) Hypoxia-inducible factor Peptide
    Macromolecule (cCzC) HP4H, CP4H M1β
    Primary complex c|μ
    High-affinity variant :=Kd(μhighCz)
    Low-affinity variant :=Kd(μhighCz)
    HP4H|μ, CP4H|μ
    Kd(HP4H|μhigh)=Kd(μhighHP4H)
    Kd(CP4H|μlow)=Kd(μlowCP4H)
    M1β|μ
    Kd(M1β|μhigh)=Kd(μhighM1β)
    Kd(M1β|μlow)=Kd(μlowM1β)
    Higher-order complex c|μ.Cy
    High-affinity variant :=Kd(μhighCz.Cy)
    Low-affinity variant :=Kd(μlowCz.Cy)
    ---
    ---

    ---
    M1β|μ.PLC
    Kd(M1β|μhigh.PLC)=Kd(μhighM1β.PLC)
    Kd(M1β|μlow.PLC)=Kd(μlowM1β.PLC)
    Functional relevance RHP4H(t)RCP4H(t) M1β|μhigh.PLCαM1β (Anterograde)
    M1β|μlow.PLCrM1β (Retrograde)
    Note: Czμ: All pairwise-atom/residue based square interaction matrix of ligand and macromolecule, c|μ; KCzμ: Diagonal matrix of the interactions of a ligand and macromolecule; zi=j=z: Set of eigenvalues of KCzμ where zdiag(KCzμ)C; Kd(cμ): Set of eigenvalue-based transition-state dissociation constants for monomer- and multimer-forms of ligand-macromolecular complexes, {ωKd(cμ)=αi=j=Re(z)Kd(Czμ)(0,1)}; μhigh,μlow: High- and low-affinity variants of an arbitrary ligand, μ={μhigh,μlow}L; μCz.Cy: Higher-order complex of ligand and macromolecule; Kinf: Subset of transition-state dissociation constants of ligand-macromolecular interaction; Ksup:Subset of transition-state dissociation constants of ligand-macromolecular interaction; R(t): Rate of reaction; HP4H: Hypoxia stimulated- and Collagen Proline 4-Hydroxylase; CP4H: M1β: Heterodimer of major histocompatibility complex I (MHC1) with beta-2 microglobulin; PLC: Peptide loading complex.

     | Show Table
    DownLoad: CSV

    In particular, binding of HIF restricts the range of the binding affinity of HP4H for molecular oxygen significantly,

    ΔKmHP4HΔKmCP4H×10045% (44)

    Here, the set of conformers of HP4H once bound to HIF ensures that the catalytic activity of HP4H for HIF is significantly reduced in the presence of hypoxia. This will extend the half-life of HIF and facilitate transcription of HIF-responsive genes [36,37]. In contrast, CP4H exhibits no such differential activity. Furthermore, there is a significant variation in the catalytic activity (turnover number) of these enzymes for their cognate substrate (L-Proline),

    max(KcatHP4H)min(KcatHP4H)max(KcatCP4H)min(KcatCP4H)=ΔKcatHP4HΔKcatCP4H600 (45)

    These data suggest that a ligand when bound to a macromolecule can affect the rate at which the resulting complex assembles or disassembles and thereby influence biochemical function. Hence, partitioning the transition-state dissociation constants of the ligand-macromolecular complex into distinct subsets may offer valuable insights into the in vivo function of enzymes in physiological and pathological states (T4, C2, C3).

    Case 2: Generic model of MHC1-mediated high-affinity peptide export

    The peptide loading complex (PLC) is a higher-order (Z>2;Tapasin,ERp57,MHC1) complex that assembles at the endoplasmic reticulum (ER)-membrane and functions to transport cytosolic peptides into the ER-lumen en route to the plasma membrane [38,39]. Whilst, regulation of this process, by Tapasin is well studied, the role of peptides and the possible mechanism(s) of action is unclear [40,41,42,43]. A low-affinity peptide-driven (LAPD)-model of the MHC1-mediated export of high-affinity peptides to the plasma membrane of nucleated cells has been proposed and investigated in silico [44]. A major proponent of this study was simulating the differential disassembly of PLC in response to peptides with varying affinities (high, low) for the MHC1-β2-microglobulin [44]. In fact, data from the simulations suggested that low-affinity peptides may not only actively participate in the transport of high-affinity peptide export, but could also regulate the same [44]. Another interesting observation discussed was the role of low-affinity peptides in priming the MHC1-export apparatus, such that irrespective of the nature of the cellular insult (acute, chronic), export of high-affinity peptides was rapid, continuous and efficient [44].

    Utilizing the partition schema for the transition-state dissociation constants from the current analysis (Table 2), we can model and rewrite the differential disassembly of the PLC,

    M1β|μhigh.PLCrfrbTapasinERp57+aM1βRXN(4)M1β|μlow.PLCrfrbTapasinERp57μlow+rM1βRXN(5)
    rf,rb:=RateconstantsforforwardandbackwardreactionsatsteadystateM1β:=HeterodimerofMHC1withbeta2microglobulinμlow:=Lowaffinitypeptideμhigh:=HighaffinitypeptideM1β|μlow:=SetofpeptideswithlowaffinityforMHC1andincomplexwithMHC1M1β|μhigh:=SetofpeptideswithhighaffinityforMHC1andincomplexwithMHC1eM1β:=NetexportablecomplexofhighaffinitypeptidewithMHC1aM1β:=AnterogradederivedexportablecomplexofhighaffinitypeptidewithMHC1rM1β:=RetrogradederivedexportablecomplexofhighaffinitypeptidewithMHC1PLC:=PeptideloadingcomplexERp57:=Endoplasmicreticulumproteindisulfideisomerase

    The appropriate dissociation constants are,

    (46)
    (47)

    Rewriting these equations in terms of the peptide-bound MHC1,

    KdRXN4=ζ[M1β|μhigh]LM1β|μhigh0 (48)

    where,

    ζ=[TapasinERp57][aM1β][PLC]LPLC0 (48.1)
    KdRXN5=ζ[M1β|μlow]LM1β|μlow0 (49)

    where,

    ζ=[TapasinERp57μlow][rM1β][PLC]LPLC0 (49.1)

    Clearly,

    KdRXN41[M1β|μhigh]LM1β|μhigh0 (50)
    KdRXN51[M1β|μlow]LM1β|μlow0 (51)

    These results suggest that,

    KdRXN41.0(Perfectdisassociation)and[aM1β] (52)
    KdRXN50.0(Perfectassociation)and[rM1β]0 (53)

    and is in accordance with existing empirical and simulation data,

    [μhigh]<<<[μlow],[aM1β]>>>[rM1β] (54)

    Here, the partitioning of transition-state dissociation constants into low- and high-affinity peptides for the MHC1 can provide valuable insights into the underlying molecular biology of MHC1-mediated high-affinity peptide transport under physiological and pathological conditions (T5–T7, P) [42,43,44].

    The work presented models ligand-macromolecular interactions as eigenvalue-based transition-state disassociation constants. The interaction matrix is an all-atom/residue pairwise comparison between the ligand and macromolecule and comprises numerical values drawn randomly from a standard uniform distribution. The transition-state dissociation constants are the strictly positive real part of all complex eigenvalues of this ligand-macromolecular interaction matrix, belong to the open interval (0, 1) and form a sequence whose terms are finite, monotonic, non-increasing and convergent. The findings are rigorous, numerically robust and can be extended to higher-order complexes. The study, additionally, suggests a schema by which a ligand may be partitioned into high- and low-affinity variants. This study, although theoretical offers a plausible explanation into the underlying biochemistry (enzyme-mediated substrate catalysis, assembly/disassembly and inhibitor kinetics) of ligand-macromolecular complexes. Future investigations may include assigning weights to each interaction, investigating origins of co-operativity in enzyme catalysis and inhibitory kinetics amongst others.

    This section provides formal proofs for the included theorems, corollaries and proposition.

    Proof (T1):

    From Defs. (4) and (5),

    For everyωKd(cμ)g(ω)Kd(Czμ)|g1g(ω)=ω (55)

    Let,

    ωx,ωyKd(cμ)|g(ωx),g(ωy)Kd(Czμ);xy;{x,y}A

    If,

    g(ωx)=g(ωy) (56)

    then,

    g1g(ωx)=g1g(ωy) (57)
    ωx=ωy (58)

    If,

    t=0|tKd(Czμ) (59)

    From (55),

    g1g(t)=0Kd(cμ) (60)

    Similarly, For,

    t1|tKd(Czμ) (61)

    From (55),

    g1g(ω)1Kd(cμ) (62)

    From (58), (60) and (62),

    Proof (T2): (By induction)

    For a=1,

    ωa=max(Kd(cμ))<1          (By Def. (5)), (63)

    Assume a=A1,

    ωaωA1 (64)

    Then a=A,

    ωaωA1ωA (65)

    For a=1,

    ωa=min(Kd(cμ))>0          (By Def. (5)), (66)
    ωaωA1 (67)
    0<{ωa}aa+1Kd(cμ)<1ω

    Proof (T3):

    From (T2),

    {ωa}aa+1<1

    Choose εR+,ε0,

    εa>A<|ωa>A1|<ε

    For every a>A,

    |limaωa>A1|<εlima|ωa>A1|<ε   limaωa>A=1 (69)

    Similarly,

    {ωa}aa+1>0

    Choose εR+,ε0,

    1ε>|ωa>A0|>ε

    For every a>A,

    |limaωa>A0|>εlima|ωa>A0|>εlimaωa>A=0 (70)

    From (69) and (70),

    lima{ωa}aa+1={0,1}

    Proof (C1):

    Assume,

    sup{ωa}aa+1=max{ωa}aa+1=ωa=1

    Choose εR+,ε0

    then for any a=1,2..A, we can find,

    εA.ωa=1ωa=1 (71)
    εA.ωa=1ωa=A (72)
    ωa=1ωa=A.(1εA) (73)

    Let δR+,δ0,

    ωa=1δ<ωa=A.(1εA) (74)

    Assume,

    inf{ωa}aa+1=min{ωa}aa+1=ωa=A

    Choose εR+,ε0

    then for any a=1,2..A, we can find,

    εA.ωa=A<ωa=A (75)
    ωa=Aωa=A.(1εA) (76)
    ωa=1ωa=1.(1εA) (77)

    Let δR+,δ0,

    ωa=1<ωa=1.(1εA)+δ (78)

    From (74) and (78),

    Proof (T4):

    From (T2 and T3), (C1 and C2)

    Case (1)

    If

    {ωa}a>A=KsupKd(Czμ)

    then,

    {ωa}aAKinfKd(cμ) (79)

    Case (2)

    If

    {ωa}a>A=KinfKd(Czμ)

    then,

    {ωa}aAKsupKd(cμ) (80)

    From (79) and (80),

    KinfKsup={} (81)

    Since,

    Kd(Czμ)(KinfKsup)(KinfKsup)

    From (79)–(81),

    Kd(Czμ)KinfKsup     Kd(cμ)Kd(Czμ) (82)

    Proof (C3):

    If,

    μL|#Ksup>>>#Kinfa

    Then,

    μμlow (83)

    Similarly, if,

    μL|#Kinf>>>#Ksupa

    Then,

    μμhigh (84)

    From (83) and (84),

    Proof (T5) (By induction)

    Assume z=1;Z2, y=1;Z=2,

    C1.y=Y=Z1y=1Cy=C1.y=1y=1Cy (85)
    =C1.CY (85.1)
    =C1.CY (85.2)

    Assume truth for y=Y1,

    C1.y=Y=Z1y=1Cy=Cz.(C1.CY) (86)
    =C1.CY (86.1)

    For y=Y+1,

    C1.y=Y+1y=1Cy=C1.y=Y+1y=1Cy (87)
    =C1.(y=Yy=1Cy).(y=1y=1Cy) (87.1)
    =C1.CYY.C11 (87.2)
    =C1.CY+1 (87.3)

    From (85)–(87),

    Proof (T6):

    From Defs. (6–8),

    μCz.CYμCzc|μ (88)
    Kd(μCz.CY)Kd(cμ) (89)
    Kd(μCz.CY)Kd(cμ) (90)

    From Def. (5),

    ωa[1,A](Kd(μCz.CY)Kd(cμ)) (91)
    (ωa[1,A]Kd(μCz.CY))(ωa[1,A]Kd(cμ)) (92)

    From (T2–T4), (C1–C3),

    a(ωa=1,2AKd(μCz.CY))(ωa=1,2AKd(cμ)) (93)
    ({ωa}a=1,2AKd(μCz.CY))({ωa}a=1,2AKd(cμ)) (94)

    Conversely, let,

    uKd(μCz.CY);ωKd(cμ)

    From (92) and (94),

    ωKd(cμ)uKd(μCz.CY)|u=h(ω) (95)
    uKd(μCz.CY)ωKd(cμ)|ω=h1(u)=h1(h(ω)) (96)

    From (95) and (96),

    Proof (T7):

    From (T6),

    h1h:ωKd(cμ)

    From (T1), Def. (4)

    g:ωKd(cμ)Kd(cμ)R=Kd(Czμ)

    Rewriting,

    g:ωKd(Czμ) (97)
    g(h1(u))Kd(Czμ) (98)
    gh1(h(ωu))Kd(Czμ) (99)
    gh1h(ω)Kd(Czμ) (100)

    Proof (P):

    From (T1–T7) and Defs. (4–8, 10),

    For z=Z=1,

    μCz.CY=μCz (101)
    gh1(uKd(μCz))Kd(Czμ)R (102)
    gh1h(ω)Kd(Czμ) (102.1)
    Kd(μCz)Kd(Czμ) (103)

    For Z2,

    gh1(uKd(μCz.CY))Kd(Czμ)R (104)
    gh1h(ω)Kd(Czμ) (104.1)
    Kd(μCz.CY)Kd(Czμ) (105)

    From (103) and (105),

    This work is funded by an early career intramural grant (Code No. A-766) awarded to SK by the All India Institute of Medical Sciences (AIIMS, New Delhi, INDIA).

    The author declare there is no conflict of interest.



    [1] Abdallah FDM (2018) Statistical Modelling of Categorical Outcome with More than Two Nominal Categories. Am J Appl Math Stat 6: 262–265. https://doi.org/10.12691/ajams-6-6-7 doi: 10.12691/ajams-6-6-7
    [2] Acosta-González E, Fernández-Rodríguez F (2014) Forecasting Financial Failure of Firms via Genetic Algorithms. Comput Econ 43: 133–157. https://doi.org/10.1007/s10614-013-9392-9 doi: 10.1007/s10614-013-9392-9
    [3] Acosta-González E, Fernández-Rodríguez F, Ganga H (2019) Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data. Comput Econ 53: 227–257. https://doi.org/10.1007/s10614-017-9737-x doi: 10.1007/s10614-017-9737-x
    [4] Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Financ 23: 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x doi: 10.1111/j.1540-6261.1968.tb00843.x
    [5] Altman EI (1983) Why businesses fail. J Bus Strat 3: 15–21. https://doi.org/10.1108/eb038985 doi: 10.1108/eb038985
    [6] Altman EI, Hotchkiss E (2006) Corporate Financial Distress and Bankruptcy (3rd ed.), John Wiley & Sons, Inc.
    [7] Asuero AG, Sayago A, González AG (2006) The correlation coefficient: An overview. Crit Rev Anal Chem 36: 41–59. https://doi.org/10.1080/10408340500526766 doi: 10.1080/10408340500526766
    [8] Barboza F, Kimura H, Altman E (2017) Machine learning models and bankruptcy prediction. Expert Syst Appl 83: 405–417. https://doi.org/10.1016/j.eswa.2017.04.006 doi: 10.1016/j.eswa.2017.04.006
    [9] Beaver WH (1966) Financial Ratios As Predictors of Failure. J Account Res 4: 71–111. https://doi.org/10.2307/2490171 doi: 10.2307/2490171
    [10] Beaver W, McNichols M, Rhie JW (2005) Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Rev Account Stud 10: 93–122. https://doi.org/10.1007/s11142-004-6341-9 doi: 10.1007/s11142-004-6341-9
    [11] Bellovary J, Giacomino D, Akers MD (2007) A Review of Bankruptcy Prediction Studies: 1930–Present. J Financ Educ 33: 1–42. https://www.jstor.org/stable/41948574
    [12] Boratyńska K (2016) Corporate bankruptcy and survival on the market: Lessons from evolutionary economics. Oecon Copernic 7: 107–129. https://doi.org/10.12775/OeC.2016.008 doi: 10.12775/OeC.2016.008
    [13] Boritz JE, Kennedy DB (1995) Effectiveness of neural network types for prediction of business failure. Expert Syst Appl 9: 503–512. https://doi.org/10.1016/0957-4174(95)00020-8 doi: 10.1016/0957-4174(95)00020-8
    [14] Bowers AJ, Zhou X (2019) Receiver Operating Characteristic (ROC) Area Under the Curve (AUC): A Diagnostic Measure for Evaluating the Accuracy of Predictors of Education Outcomes. J Educ Stud Placed Risk 24: 20–46. https://doi.org/10.1080/10824669.2018.1523734 doi: 10.1080/10824669.2018.1523734
    [15] Carneiro P, Braga AC, Barroso M (2017) Work-related musculoskeletal disorders in home care nurses: Study of the main risk factors. Int J Ind Ergonom 61: 22–28. https://doi.org/10.1016/j.ergon.2017.05.002 doi: 10.1016/j.ergon.2017.05.002
    [16] Carvalho PV, Curto JD, Primor R (2020) Macroeconomic determinants of credit risk: Evidence from the Eurozone. Int J Financ Econ, 1–19. https://doi.org/10.1002/ijfe.2259 doi: 10.1002/ijfe.2259
    [17] Chen JH, Su MC, Annuerine B (2016) Exploring and weighting features for financially distressed construction companies using Swarm Inspired Projection algorithm. Adv Eng Inform 30: 376–389. https://doi.org/10.1016/j.aei.2016.05.003 doi: 10.1016/j.aei.2016.05.003
    [18] Cheng MY, Hoang ND (2015) Evaluating contractor financial status using a hybrid fuzzy instance based classifier: Case study in the construction industry. IEEE T Eng Manage 62: 184–192. https://doi.org/10.1109/TEM.2014.2384513 doi: 10.1109/TEM.2014.2384513
    [19] Choi H, Son H, Kim C (2018) Predicting financial distress of contractors in the construction industry using ensemble learning. Expert Syst Appl 110: 1–10. https://doi.org/10.1016/j.eswa.2018.05.026 doi: 10.1016/j.eswa.2018.05.026
    [20] Correia C (2012) Previsão da insolvência: evidência no setor da construção [Dissertação de Mestrado, Universidade de Aveiro]. Repositório Institucional da Universidade de Aveiro. http://hdl.handle.net/10773/9573
    [21] Costa HA (2014) Modelo de previsão de falência: o caso da construção civil em Portugal [Dissertação de Mestrado, Universidade do Algarve, Repositório da Universidade do Algarve]. http://hdl.handle.net/10400.1/8321
    [22] Cuthbertson K, Hudson J (1996) The determinants of compulsory liquidations in the U.K. Manch Sch 64: 298–308. https://doi.org/10.1111/j.1467-9957.1996.tb00487.x doi: 10.1111/j.1467-9957.1996.tb00487.x
    [23] Daoud JI (2017) Multicollinearity and Regression Analysis. J Phys (Conference Series) 949: 1–6. https://doi.org/10.1088/1742-6596/949/1/012009 doi: 10.1088/1742-6596/949/1/012009
    [24] Dimitras AI, Zanakis SH, Zopounidis C (1996) A survey of business failures with an emphasis on prediction methods and industrial applications. Eur J Oper Res 90: 487–513. https://doi.org/10.1016/0377-2217(95)00070-4 doi: 10.1016/0377-2217(95)00070-4
    [25] Etemadi H, Rostamy AAA, Dehkordi HF (2009) A genetic programming model for bankruptcy prediction: Empirical evidence from Iran. Expert Sys Appl 36: 3199–3207. https://doi.org/10.1016/j.eswa.2008.01.012 doi: 10.1016/j.eswa.2008.01.012
    [26] European Commission (2021 October) European Construction Sector Observatory. Available from: https://ec.europa.eu/docsroom/documents/47918/attachments/1/translations/en/renditions/native
    [27] Giriūniene G, Giriūnas L, Morkunas M, et al. (2019) A comparison on leading methodologies for bankruptcy prediction: The case of the construction sector in Lithuania. Economies 7: 1–20. https://doi.org/10.3390/economies7030082 doi: 10.3390/economies7030082
    [28] Gotts SJ, Gilmore AW, Martin A (2020) Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics. NeuroImage 205: 1–17. https://doi.org/10.1016/j.neuroimage.2019.116289 doi: 10.1016/j.neuroimage.2019.116289
    [29] Habib A, Costa MD, Huang HJ, et al. (2020) Determinants and consequences of financial distress: review of the empirical literature. Account Financ 60: 1023–1075. https://doi.org/10.1111/acfi.12400 doi: 10.1111/acfi.12400
    [30] Hair JF, Black WC, Babin BJ, et al. (2019) Multivariate Data Analysis (8th ed.), Cengage Learning.
    [31] Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Int Med 4: 627–635. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/
    [32] Heo J, Yang JY (2014) AdaBoost based bankruptcy forecasting of Korean construction companies. Appl Soft Comput 24: 494–499. https://doi.org/10.1016/j.asoc.2014.08.009 doi: 10.1016/j.asoc.2014.08.009
    [33] Horta IM, Camanho AS (2013) Company failure prediction in the construction industry. Expert Syst Appl 40: 6253–6257. https://doi.org/10.1016/j.eswa.2013.05.045 doi: 10.1016/j.eswa.2013.05.045
    [34] Hudson J (1986) An analysis of company liquidations. Appl Econ 18: 219–235. https://doi.org/10.1080/00036848600000025 doi: 10.1080/00036848600000025
    [35] ben Jabeur S, Mefteh-Wali S, Carmona P (2021) The impact of institutional and macroeconomic conditions on aggregate business bankruptcy. Struct Change Econ D 59: 108–119. https://doi.org/10.1016/j.strueco.2021.08.010 doi: 10.1016/j.strueco.2021.08.010
    [36] Ben Jabeur S, Stef N, Carmona P (2022) Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering. Comput Econ, 1–27. https://doi.org/10.1007/s10614-021-10227-1 doi: 10.1007/s10614-021-10227-1
    [37] Jones S, Wang T (2019) Predicting private company failure: A multi-class analysis. J Int Financ Mark Inst Money 61: 161–188. https://doi.org/10.1016/j.intfin.2019.03.004 doi: 10.1016/j.intfin.2019.03.004
    [38] Kapliński O (2008) Usefulness and credibility of scoring methods in construction industry. J Civil Eng Manage 14: 21–28. https://doi.org/10.3846/1392-3730.2008.14.21-28 doi: 10.3846/1392-3730.2008.14.21-28
    [39] Karas M, Režňáková M (2017a) Predicting the bankruptcy of construction companies: A CART-based model. Eng Econ 28: 145–154. https://doi.org/10.5755/j01.ee.28.2.16353 doi: 10.5755/j01.ee.28.2.16353
    [40] Karas M, Režňáková M (2017b) The potential of dynamic indicator in development of the bankruptcy prediction models: The case of construction companies. Acta Univ Agr Silviculturae Mendelianae Brunensis 65: 641–652. https://doi.org/10.11118/actaun201765020641 doi: 10.11118/actaun201765020641
    [41] Karas M, Režňáková M (2017c) The stability of bankruptcy predictors in the construction and manufacturing industries at various times before bankruptcy. Ekonomika Manage 20: 116–133. https://doi.org/10.15240/tul/001/2017-2-009 doi: 10.15240/tul/001/2017-2-009
    [42] Karas M, Srbová P (2019) Predicting bankruptcy in construction business: Traditional model validation and formulation of a new model. J Int Stud 12: 283–296. https://doi.org/10.14254/2071-8330.2019/12-1/19 doi: 10.14254/2071-8330.2019/12-1/19
    [43] Karels GV, Prakash AJ (1987) Multivariate Normality and Forecasting of Business Bankruptcy. J Bus Financ Account 14: 573–593. https://doi.org/10.1111/j.1468-5957.1987.tb00113.x doi: 10.1111/j.1468-5957.1987.tb00113.x
    [44] Karminsky A, Burekhin R (2019) Comparative analysis of methods for forecasting bankruptcies of Russian construction companies. Bus Inf 13: 52–66. https://doi.org/10.17323/1998-0663.2019.3.52.66 doi: 10.17323/1998-0663.2019.3.52.66
    [45] Kim YJ, Cribbie RA (2018) ANOVA and the variance homogeneity assumption: Exploring a better gatekeeper. British J Math Stat Psychol 71: 1–12. https://doi.org/10.1111/bmsp.12103 doi: 10.1111/bmsp.12103
    [46] Koksal A, Arditi D (2004) Predicting Construction Company Decline. J Constr Eng Manage 130: 799–807. https://doi.org/10.1061/(asce)0733-9364(2004)130:6(799) doi: 10.1061/(asce)0733-9364(2004)130:6(799)
    [47] Kuběnka M, Myšková R (2019) Obvious and hidden features of corporate default in bankruptcy models. J Bus Econ Manage 20: 368–383. https://doi.org/10.3846/jbem.2019.9612 doi: 10.3846/jbem.2019.9612
    [48] Kwak SG, Kim JH (2017) Central limit theorem: The cornerstone of modern statistics. Korean J Anesthesiology 70: 144–156. https://doi.org/10.4097/kjae.2017.70.2.144 doi: 10.4097/kjae.2017.70.2.144
    [49] Kwak SG, Park SH (2019) Normality Test in Clinical Research. J Rheumatic Dis 26: 5–11. https://doi.org/10.4078/jrd.2019.26.1.5 doi: 10.4078/jrd.2019.26.1.5
    [50] Lafi SQ, Kaneene JB (1992) An explanation of the use of principal-components analysis to detect and correct for multicollinearity. Prev Vet Med 13: 261–275. https://doi.org/10.1016/0167-5877(92)90041-D doi: 10.1016/0167-5877(92)90041-D
    [51] Lagesh MA, Srikanth M, Acharya D (2018) Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms. Global Bus Rev 19: 1–14. https://doi.org/10.1177/0972150918788740 doi: 10.1177/0972150918788740
    [52] Lee KC, Han I, Kwon Y (1996) Hybrid neural network models for bankruptcy predictions. Decis Support Syst 18: 63–72. https://doi.org/10.1016/0167-9236(96)00018-8 doi: 10.1016/0167-9236(96)00018-8
    [53] Lee S, Choi WS (2013) A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Syst Appl 40: 2941–2946. https://doi.org/10.1016/j.eswa.2012.12.009 doi: 10.1016/j.eswa.2012.12.009
    [54] Lessmann S, Baesens B, Seow HV, et al. (2015) Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. Eur J Oper Res 247: 124–136. https://doi.org/10.1016/j.ejor.2015.05.030 doi: 10.1016/j.ejor.2015.05.030
    [55] Ling CX, Huang J, Zhang H (2003) AUC: A better measure than accuracy in comparing learning algorithms [Paper presentation]. Conference of the Canadian Society for Computational Studies of Intelligence, Berlin, Heidelberg. Available from: https://doi.org/10.1007/3-540-44886-1_25
    [56] Liu J (2004) Macroeconomic determinants of corporate failures: Evidence from the UK. Appl Econ 36: 939–945. https://doi.org/10.1080/0003684042000233168 doi: 10.1080/0003684042000233168
    [57] Liu RX, Kuang J, Gong Q, et al. (2003) Principal component regression analysis with SPSS. Comput Meth Prog Biomed 71: 141–147. https://doi.org/10.1016/S0169-2607(02)00058-5 doi: 10.1016/S0169-2607(02)00058-5
    [58] Liu W, Jiang Q, Sun C, Liu S, et al. (2022) Developing a 5-gene prognostic signature for cervical cancer by integrating mRNA and copy number variations. BMC Cancer 22: 1–16. https://doi.org/10.1186/s12885-022-09291-z doi: 10.1186/s12885-022-09291-z
    [59] Lucanera JP, Fabregat-Aibar L, Scherger V, et al. (2020) Can the SOM analysis predict business failure using capital structure theory? Evidence from the subprime crisis in Spain. Axioms 9: 1–13. https://doi.org/10.3390/AXIOMS9020046 doi: 10.3390/AXIOMS9020046
    [60] Lydersen S (2015) Statistical review: Frequently given comments. Ann Rheumat Dis 74: 323–325. https://doi.org/10.1136/annrheumdis-2014-206186 doi: 10.1136/annrheumdis-2014-206186
    [61] Ma J, Li C (2021) A comparison of Logit and Probit models using Monte Carlo simulation [Paper presentation]. 2021 40th Chinese Control Conference (CCC), Shanghai, China. Available from: https://doi.org/10.23919/CCC52363.2021.9550250
    [62] Manel S, Ceri Williams H, Ormerod SJ (2001) Evaluating presence-absence models in ecology: The need to account for prevalence. J Appl Ecology 38: 921–931. https://doi.org/10.1046/j.1365-2664.2001.00647.x doi: 10.1046/j.1365-2664.2001.00647.x
    [63] Mbaluka MK, Muriithi DK, Njoroge GG (2022) Application of Principal Component Analysis and Hierarchical Regression Model on Kenya Macroeconomic Indicators. Eur J Math Stat 3: 26–38. https://doi.org/10.24018/ejmath.2022.3.1.74 doi: 10.24018/ejmath.2022.3.1.74
    [64] Min SH, Lee J, Han I (2006) Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Syst Appl 31: 652–660. https://doi.org/10.1016/j.eswa.2005.09.070 doi: 10.1016/j.eswa.2005.09.070
    [65] Mselmi N, Lahiani A, Hamza T (2017) Financial distress prediction: The case of French small and medium-sized firms. Int Rev Financ Anal 50: 67–80. https://doi.org/10.1016/j.irfa.2017.02.004 doi: 10.1016/j.irfa.2017.02.004
    [66] Murphy KR (2021) In praise of Table 1: The importance of making better use of descriptive statistics. Ind Organ Psychol 14: 461–477. https://doi.org/10.1017/IOP.2021.90 doi: 10.1017/IOP.2021.90
    [67] Neves JCD (2012) Análise e Relato Financeiro—Uma visão integrada de gestão (5th ed.), Texto Editores, Lda.
    [68] Ng ST, Wong JM, Zhang J (2011) Applying Z-score model to distinguish insolvent construction companies in China. Habitat Int 35: 599–607. https://doi.org/10.1016/j.habitatint.2011.03.008 doi: 10.1016/j.habitatint.2011.03.008
    [69] Nouri BA, Soltani M (2016) Designing a bankruptcy prediction model based on account, market and macroeconomic variables (Case Study: Cyprus Stock Exchange). Iranian J Manage Stud 9: 125–147. https://doi.org/10.22059/ijms.2016.55038 doi: 10.22059/ijms.2016.55038
    [70] Obradović DB, Jakaić D, Rupić IB, et al. (2018) Insolvency prediction model of the company: The case of the republic of serbia. Econ Res-Ekon Istraz 31: 138–157. https://doi.org/10.1080/1331677X.2017.1421990 doi: 10.1080/1331677X.2017.1421990
    [71] OECD Statistics (2022) SDBS Business Demography Indicators (ISIC Rev. 4) : Birth rate of enterprises. Available from: https://stats.oecd.org/index.aspx?queryid=81074
    [72] Ohlson JA (1980) Financial Ratios and the Probabilistic Prediction of Bankruptcy. J Account Res 18: 109–131. https://doi.org/10.2307/2490395 doi: 10.2307/2490395
    [73] Oliveira MPG (2014) A insolvência empresarial na indústria transformadora portuguesa: as determinantes financeiras e macroeconómicas [Dissertação de Mestrado, Universidade do Porto]. Repositório Aberto da Universidade do Porto. Available from: https://repositorio-aberto.up.pt/handle/10216/77110
    [74] Pacheco L, Rosa R, Oliveria Tavares F (2019) Risco de Falência de PME: Evidência no setor da construção em Portugal. Innovar 29: 143–157. https://doi.org/10.15446/innovar.v29n71.76401 doi: 10.15446/innovar.v29n71.76401
    [75] Perboli G, Arabnezhad E (2021) A Machine Learning-based DSS for mid and long-term company crisis prediction. Expert Syst Appl 174: 1–12. https://doi.org/10.1016/j.eswa.2021.114758 doi: 10.1016/j.eswa.2021.114758
    [76] Pham Vo Ninh B, Do Thanh T, Vo Hong D (2018) Financial distress and bankruptcy prediction: An appropriate model for listed firms in Vietnam. Econ Syst 42: 616–624. https://doi.org/10.1016/j.ecosys.2018.05.002 doi: 10.1016/j.ecosys.2018.05.002
    [77] Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 doi: 10.1016/j.ecolmodel.2005.03.026
    [78] da Pimenta IC (2015) Modelos de previsão de falência - análise econométrica do setor da construção civil na UE [Dissertação de Mestrado, Universidade do Porto]. Repositório Aberto da Universidade do Porto. Available from: https://repositorio-aberto.up.pt/handle/10216/81446
    [79] Platt HD, Platt MB (1994) Business cycle effects on state corporate failure rates. J Econ Bus 46: 113–127. https://doi.org/10.1016/0148-6195(94)90005-1 doi: 10.1016/0148-6195(94)90005-1
    [80] Platt HD, Platt MB (2002) Predicting corporate financial distress: Reflections on choice-based sample bias. J Econ Financ 26: 184–199. https://doi.org/10.1007/bf02755985 doi: 10.1007/bf02755985
    [81] Pompe PPM, Bilderbeek J (2005) The prediction of bankruptcy of small- and medium-sized industrial firms. J Bus Venturing 20: 847–868. https://doi.org/10.1016/j.jbusvent.2004.07.003 doi: 10.1016/j.jbusvent.2004.07.003
    [82] PORDATA (2022) Taxa de mortalidade das empresas: total e por sector de actividade económica. Available from: https://www.pordata.pt/Portugal/Taxa+de+mortalidade+das+empresas+total+e+por+sector+de+actividade+económica-2888
    [83] da Rosa RFC (2017) Risco de falência de PME: evidência no setor da construção em Portugal [Dissertação de Mestrado, Universidade de Aveiro]. Repositório Institucional da Universidade de Aveiro. Available from: http://hdl.handle.net/10773/23050
    [84] Sánchez-Lasheras F, De Andrés J, Lorca P, et al. (2012) A hybrid device for the solution of sampling bias problems in the forecasting of firms' bankruptcy. Expert Syst Appl 39: 7512–7523. https://doi.org/10.1016/j.eswa.2012.01.135 doi: 10.1016/j.eswa.2012.01.135
    [85] dos Santos AR, Silva N (2019) Sectoral concentration risk in Portuguese banks' loan exposures to non-financial firms. Banco Portugal Econ Stud, 1–17. https://www.bportugal.pt/en/paper/sectoral-concentration-risk-portuguese-banks-loan-exposures-non-financial-firms
    [86] Serrano-Cinca C, Gutiérrez-Nieto B, Bernate-Valbuena M (2019) The use of accounting anomalies indicators to predict business failure. Eur Manage J 37: 353–375. https://doi.org/10.1016/j.emj.2018.10.006 doi: 10.1016/j.emj.2018.10.006
    [87] Shi Y, Li X (2019) An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intang Cap 15: 114–127. https://doi.org/10.3926/ic.1354 doi: 10.3926/ic.1354
    [88] Shumway T (2001) Forecasting bankruptcy more accurately: A simple hazard model. J Bus 74: 101–124. https://doi.org/10.1086/209665 doi: 10.1086/209665
    [89] Silva AFR (2014) Bankruptcy forecasting models civil construction [Dissertação de Mestrado, Instituto Universitário de Lisboa]. Repositório do Iscte—Instituto Universitário de Lisboa. Available from: http://hdl.handle.net/10071/10978
    [90] Succurro M, Arcuri G, Costanzo GD (2019) A combined approach based on robust PCA to improve bankruptcy forecasting. Rev Account Financ 18: 296–320. https://doi.org/10.1108/RAF-04-2018-0077 doi: 10.1108/RAF-04-2018-0077
    [91] Sulaiman MS, Abood MM, Sinnakaudan SK, et al. (2021) Assessing and solving multicollinearity in sediment transport prediction models using principal component analysis. ISH J Hydraul Eng 27: 343–353. https://doi.org/10.1080/09715010.2019.1653799 doi: 10.1080/09715010.2019.1653799
    [92] Taffler RJ (1984) Empirical models for the monitoring of UK corporations. J Bank Financ 8: 199–227. https://doi.org/10.1016/0378-4266(84)90004-9 doi: 10.1016/0378-4266(84)90004-9
    [93] Tinoco MH, Holmes P, Wilson N (2018) Polytomous response financial distress models: The role of accounting, market and macroeconomic variables. International Review of Financial Analysis, 59, 276–289. https://doi.org/10.1016/j.irfa.2018.03.017 doi: 10.1016/j.irfa.2018.03.017
    [94] Tinoco MH, Wilson N (2013) Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. Int Rev Financ Anal 30: 394–419. https://doi.org/10.1016/j.irfa.2013.02.013 doi: 10.1016/j.irfa.2013.02.013
    [95] Tserng HP, Chen PC, Huang WH, et al. (2014) Prediction of default probability for construction firms using the logit model. J Civ Eng Manag 20: 247–255. https://doi.org/10.3846/13923730.2013.801886 doi: 10.3846/13923730.2013.801886
    [96] Tserng HP, Liao HH, Jaselskis EJ, et al. (2012) Predicting Construction Contractor Default with Barrier Option Model. J Constr Eng M 138: 621–630. https://doi.org/10.1061/(asce)co.1943-7862.0000465 doi: 10.1061/(asce)co.1943-7862.0000465
    [97] Uthayakumar J, Metawa N, Shankar K, et al. (2020) Financial crisis prediction model using ant colony optimization. Int J Inf Manage 50: 538–556. https://doi.org/10.1016/j.ijinfomgt.2018.12.001 doi: 10.1016/j.ijinfomgt.2018.12.001
    [98] Vieira ES, Pinho C, Correia C (2013) Insolvency prediction in the Portuguese construction industry. Marmara J Eur Stud 21: 143–164. Available from: https://www.researchgate.net/publication/263037318_Insolvency_prediction_in_the_Portuguese_construction_industry
    [99] Vo DH, Pham BNV, Ho CM, et al. (2019) Corporate Financial Distress of Industry Level Listings in Vietnam. J Risk Financ Manage 12: 1–17. https://doi.org/10.3390/jrfm12040155 doi: 10.3390/jrfm12040155
    [100] Wellek S, Blettner M (2012) On the Proper Use of the Crossover Design in Clinical Trials. Dtsch Arztebl Int 109: 276–281. https://doi.org/10.3238/arztebl.2012.0276 doi: 10.3238/arztebl.2012.0276
    [101] Wood MD, Simmatis LER, Jacobson JA, et al. (2021) Principal Components Analysis Using Data Collected From Healthy Individuals on Two Robotic Assessment Platforms Yields Similar Behavioral Patterns. Front Hum Neurosci 15: 1–12. https://doi.org/10.3389/fnhum.2021.652201 doi: 10.3389/fnhum.2021.652201
    [102] Wu CH, Tzeng GH, Goo YJ, et al. (2007) A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 32: 397–408. https://doi.org/10.1016/j.eswa.2005.12.008 doi: 10.1016/j.eswa.2005.12.008
    [103] Wu T (2021) Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecol Indic 129: 1–12. https://doi.org/10.1016/j.ecolind.2021.108006 doi: 10.1016/j.ecolind.2021.108006
    [104] Yan D, Chi G, Lai KK (2020) Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models. Mathematics 8: 1–29. https://doi.org/10.3390/math8081275 doi: 10.3390/math8081275
    [105] Young G (1995) Company liquidations, interest rates and debt. Manch Sch Econ Soc Stud 63: 57–69. https://doi.org/10.1111/j.1467-9957.1995.tb01448.x doi: 10.1111/j.1467-9957.1995.tb01448.x
    [106] Zavgren CV (1985) Assessing the Vulnerability to failure of American Industrial Firms: a Logistic Analysis. J Bus Financ Account 12: 19–45. https://doi.org/10.1111/j.1468-5957.1985.tb00077.x doi: 10.1111/j.1468-5957.1985.tb00077.x
    [107] Zhang Z (2016) Variable selection with stepwise and best subset approaches. Ann Transl Med 4: 1–6. https://doi.org/10.21037/atm.2016.03.35 doi: 10.21037/atm.2016.03.35
    [108] Žiković IT (2016) Modelling the impact of macroeconomic variables on aggregate corporate insolvency: Case of Croatia. Econ Res-Ekon Istraz 29: 515–528. https://doi.org/10.1080/1331677X.2016.1175727 doi: 10.1080/1331677X.2016.1175727
    [109] Zoričák M, Gnip P, Drotár P, et al. (2020) Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets. Econ Model 84: 165–176. https://doi.org/10.1016/j.econmod.2019.04.003 doi: 10.1016/j.econmod.2019.04.003
  • This article has been cited by:

    1. Siddhartha Kundu, ReDirection: an R-package to compute the probable dissociation constant for every reaction of a user-defined biochemical network, 2023, 10, 2296-889X, 10.3389/fmolb.2023.1206502
    2. Siddhartha Kundu, A mathematically rigorous algorithm to define, compute and assess relevance of the probable dissociation constants in characterizing a biochemical network, 2024, 14, 2045-2322, 10.1038/s41598-024-53231-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5349) PDF downloads(645) Cited by(7)

Figures and Tables

Figures(3)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog