Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Velocity clamping-assisted adaptive salp swarm algorithm: balance analysis and case studies


  • Received: 12 April 2022 Revised: 28 April 2022 Accepted: 16 May 2022 Published: 25 May 2022
  • Salp swarm algorithm (SSA) is a recently proposed, powerful swarm-intelligence based optimizer, which is inspired by the unique foraging style of salps in oceans. However, the original SSA suffers from some limitations including immature balance between exploitation and exploration operators, slow convergence and local optimal stagnation. To alleviate these deficiencies, a modified SSA (called VC-SSA) with velocity clamping strategy, reduction factor tactic, and adaptive weight mechanism is developed. Firstly, a novel velocity clamping mechanism is designed to boost the exploitation ability and the solution accuracy. Next, a reduction factor is arranged to bolster the exploration capability and accelerate the convergence speed. Finally, a novel position update equation is designed by injecting an inertia weight to catch a better balance between local and global search. 23 classical benchmark test problems, 30 complex optimization tasks from CEC 2017, and five engineering design problems are employed to authenticate the effectiveness of the developed VC-SSA. The experimental results of VC-SSA are compared with a series of cutting-edge metaheuristics. The comparisons reveal that VC-SSA provides better performance against the canonical SSA, SSA variants, and other well-established metaheuristic paradigms. In addition, VC-SSA is utilized to handle a mobile robot path planning task. The results show that VC-SSA can provide the best results compared to the competitors and it can serve as an auxiliary tool for mobile robot path planning.

    Citation: Hongwei Ding, Xingguo Cao, Zongshan Wang, Gaurav Dhiman, Peng Hou, Jie Wang, Aishan Li, Xiang Hu. Velocity clamping-assisted adaptive salp swarm algorithm: balance analysis and case studies[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7756-7804. doi: 10.3934/mbe.2022364

    Related Papers:

    [1] Wanwan Jia, Fang Li . Invariant properties of modules under smash products from finite dimensional algebras. AIMS Mathematics, 2023, 8(3): 6737-6748. doi: 10.3934/math.2023342
    [2] Ruifang Yang, Shilin Yang . Representations of a non-pointed Hopf algebra. AIMS Mathematics, 2021, 6(10): 10523-10539. doi: 10.3934/math.2021611
    [3] Yaguo Guo, Shilin Yang . Projective class rings of a kind of category of Yetter-Drinfeld modules. AIMS Mathematics, 2023, 8(5): 10997-11014. doi: 10.3934/math.2023557
    [4] Haicun Wen, Mian-Tao Liu, Yu-Zhe Liu . The counting formula for indecomposable modules over string algebra. AIMS Mathematics, 2024, 9(9): 24977-24988. doi: 10.3934/math.20241217
    [5] Pengcheng Ji, Jialei Chen, Fengxia Gao . Projective class ring of a restricted quantum group ¯Uq(sl2). AIMS Mathematics, 2023, 8(9): 19933-19949. doi: 10.3934/math.20231016
    [6] Huaqing Gong, Shilin Yang . The representation ring of a non-pointed bialgebra. AIMS Mathematics, 2025, 10(3): 5110-5123. doi: 10.3934/math.2025234
    [7] Damchaa Adiyanyam, Enkhbayar Azjargal, Lkhagva Buyantogtokh . Bond incident degree indices of stepwise irregular graphs. AIMS Mathematics, 2022, 7(5): 8685-8700. doi: 10.3934/math.2022485
    [8] Shiyu Lin, Shilin Yang . A new family of positively based algebras Hn. AIMS Mathematics, 2024, 9(2): 2602-2618. doi: 10.3934/math.2024128
    [9] Tazeen Ayesha, Muhammad Ishaq . Some algebraic invariants of the edge ideals of perfect [h,d]-ary trees and some unicyclic graphs. AIMS Mathematics, 2023, 8(5): 10947-10977. doi: 10.3934/math.2023555
    [10] Akbar Ali, Sadia Noureen, Akhlaq A. Bhatti, Abeer M. Albalahi . On optimal molecular trees with respect to Sombor indices. AIMS Mathematics, 2023, 8(3): 5369-5390. doi: 10.3934/math.2023270
  • Salp swarm algorithm (SSA) is a recently proposed, powerful swarm-intelligence based optimizer, which is inspired by the unique foraging style of salps in oceans. However, the original SSA suffers from some limitations including immature balance between exploitation and exploration operators, slow convergence and local optimal stagnation. To alleviate these deficiencies, a modified SSA (called VC-SSA) with velocity clamping strategy, reduction factor tactic, and adaptive weight mechanism is developed. Firstly, a novel velocity clamping mechanism is designed to boost the exploitation ability and the solution accuracy. Next, a reduction factor is arranged to bolster the exploration capability and accelerate the convergence speed. Finally, a novel position update equation is designed by injecting an inertia weight to catch a better balance between local and global search. 23 classical benchmark test problems, 30 complex optimization tasks from CEC 2017, and five engineering design problems are employed to authenticate the effectiveness of the developed VC-SSA. The experimental results of VC-SSA are compared with a series of cutting-edge metaheuristics. The comparisons reveal that VC-SSA provides better performance against the canonical SSA, SSA variants, and other well-established metaheuristic paradigms. In addition, VC-SSA is utilized to handle a mobile robot path planning task. The results show that VC-SSA can provide the best results compared to the competitors and it can serve as an auxiliary tool for mobile robot path planning.



    Let V denote a finite dimensional representation of a finite group G over a field F in characteristic p such that p||G|. Then, V is called a modular representation. We choose a basis {x1,,xn} for the dual space V. The action of G on V induces an action on V and it extends to an action by algebra automorphisms on the symmetric algebra S(V), which is equivalent to the polynomial ring

    F[V]=F[x1,,xn].

    The ring of invariants

    F[V]G:={fF[V]|gf=fgG}

    is an F-subalgebra of F[V]. F[V] as a graded ring has degree decomposition

    F[V]=d=0F[V]d

    and

    dimFF[V]d<

    for each d. The group action preserves degree, so F[V]d is a finite dimensional FG-module. A classical problem is to determine the structure of F[V]G, and the construction of generators of the invariant ring mainly relies on its Noether's bound, denoted by β(F[V]G), which is defined as follows:

    β(F[V]G)=min{d|F[V]Gisgeneratedbyhomogeneousinvariantsofdegreeatmostd}.

    The bound reduces the task of finding invariant generators to pure linear algebra. If char(F)>|G|, the famous "Noether bound" says that

    β(F[V]G)|G|(Noether [1]).

    Fleischmann [2] and Fogarty [3] generalized this result to all non-modular characteristic (|G|F), with a much simplified proof by Benson. However, at first shown by Richman [4,5], in the modular case (|G| is divisible by char(F)), there is no bound that depends only on |G|. Some results have implied that

    β(F[V]G)dim(V)(|G|1).

    It was conjectured by Kemper [6]. It was proved in the case when the ring of invariants is Gorenstein by Campbell et al. [7], then in the Cohen-Macaulay case by Broer [8]. Symonds [9] has established that

    β(F[V]G)max{dim(V)(|G|1),|G|}

    for any representation V of any group G. This bound cannot be expected to be sharp in most cases. The Noether bound has been computed for every representation of Cp in Fleischmann et al. [10]. It is in fact 2p3 for an indecomposable representation V with dim(V)>4. Also in Neusel and Sezer [11], an upper bound that applies to all indecomposable representations of Cp2 is obtained. This bound, as a polynomial in p, is of degree two. Sezer [12] provides a bound for the degrees of the generators of the invariant ring of the regular representation of Cpr.

    In the previous paper Zhang et al. [13], we extended the periodicity property of the symmetric algebra F[V] to the case

    GCp×H

    if V is a direct sum of m indecomposable G-modules such that the norm polynomials of the simple H-modules are the power of the product of the basis elements of the dual. Now, H permutes the power of the basis elements of simple H-modules, for example, H is a monomial group. For the cyclic group Cp, the periodicity property and the proof of degree bounds mainly relies on the fact that the unique indecomposable projective FCp-module Vp is isomorphic to the regular representation of Cp. Then, every invariant in VCpp is in the image of the transfer map (see Hughes and Kemper [14]). Inspired by this, with the assumption above, we find that every invariant in projective G-modules is in the image of the transfer. In this paper, since the periodicity leads to degree bounds for the generators of the invariant ring, we show that F[V]G is generated by m norm polynomials together with homogeneous invariants of degree at most m|G|dim(V) and transfer invariants, which yields the well-known degree bound dim(V)(|G|1). Moreover, we find that this bound gets less sharp as the dimensions of simple H-modules increase, which is presented in the end of the paper.

    Let G=Cp×H be a finite group, whose form is a direct sum of the cyclic group of order p, Cp, and a p-group H. Let F be an algebraically closed field in characteristic p. The complete set of indecomposable modules of Cp is well-known, which are exactly the Jordan blocks Vn of degree n, for 1np, with 1's in the diagonal. Let Sim(H) be the complete set of non-isomorphic simple FH-modules. Since p|H|, there is no difference between irreducibility and indecomposibility of FH-modules. Then, by Huppert and Blackburn [15, Chapter Ⅶ, Theorem 9.15], the FG-modules

    VnW(1np,WSim(H))

    form a complete set of non-isomorphic indecomposable FG-modules.

    Notice that the FH-module W is simple if and only if W is simple, i.e., 0wW, w generates W as an FH-module. For a fixed 0wW, let

    H={h1=e,h2,,h|H|}

    and

    {w1=w,w2=h2w,,wk=hkw}

    be a basis of W with dim(W)=k. The norm polynomial

    NH(w)=hHh(w)

    is an H-invariant polynomial.

    Lemma 2.1. ([13, Lemma 3.1]) Let W be a simple FH-module with a vector space basis {w1,w2,,wk} as above. Then, the norm polynomial NH(w1) is of the form (w1,w2,,wk)lf, where l1 and f is a polynomial in F[w1,w2,,wk] such that wif for 1ik.

    Choose the triangular basis {w11, w12, , w1k, , wn1, wn2, , wnk} for (VnW), where

    Vn=<v1,,vn>,

    such that

    Cp=<σ>,σ(vj)=vj+vj1,σ(v1)=v1,andwji=vjwi.

    Then, we obtain

    σ(wji)=wji+ϵjwj1,iwithϵj=1for2jn,ϵ1=0.

    Then,

    w∈<wn1,wn2,,wnk>

    is a distinguished variable in (VnW), which means that w generates the indecomposable FG-module (VnW). If

    k=|H|l

    in Lemma 2.1, then

    NH(wn1)=(wn1wn2wnk)l

    and

    Nn=NCp(NH(wn1))=NCp((wn1wn2wnk)l)F[VnW]G.

    Note that degwni(Nn)=lp for 1ik.

    Example 2.1. Consider the monomial group M generated by

    π=(010110),τ=(α100αk),

    where π is a k-rotation and αi are lth roots of unity in C. M acts on the module V=Ck and also on the symmetric algebra

    C[V]=C[x1,,xk]

    in the standard basis vectors xi of V. Then {xl1,,xlk} is an M-orbit and (x1,,xk)lC[V]M. For more details about degree bounds and Hilbert series of the invariant ring of monomial groups, it can be referred to Kemper [6] and Stanley [16].

    Let F[VnW] be the principal ideal of F[VnW] generated by Nn. The set {Nn} is a Gr¨obner basis for the ideal it generates. Then, we may divide any given f F[VnW] to obtain f = qNn + r for some q, r F[VnW] with degwni(r) < lp for at least one i.

    We define

    F[VnW]:={rF[VnW]|degwni(r)<lpforatleastonei}.

    Note that both F[VnW] and F[VnW] are vector spaces and that as vector spaces,

    F[VnW]=F[VnW]F[VnW].

    Moreover, they are G-stable. Therefore, we have the FG-module decomposition

    F[VnW]=F[VnW]F[VnW].

    Lemma 2.2. With the above notation, we have the FG-module direct sum decomposition

    F[VnW]=NnF[VnW]F[VnW].

    Proof. It is clear from the definitions of F[VnW] and F[VnW].

    Lemma 2.3. ([13, Lemma 3.2]) The FG-module F[VnW]d can be decomposed as a direct sum of indecomposable projective modules if the following conditions are satisfied:

    1) d+kn lkp+1;

    2) NH(w1)=(w1w2wk)l for some basis {w1,w2,,wk} of W.

    Theorem 2.1. ([13, Theorem 3.5]) Let G=Cp×H be a finite group described above. Let

    V=(Vn1W1)(Vn2W2)(VnmWm)

    be an FG-module such that the norm polynomial of the simple H-module Wi is the power of the product of the basis elements of the dual. Vni are indecomposable Cp-modules. Let d1,d2,dm be non-negative integers and write di = qi(likip) + ri, where 0 ri likip1 for i=1,2,,m. Then,

    F[V](d1,d2,,dm)F[V](r1,r2,,rm)(WSim(H)sWVpW)

    as FG-modules for some non-negative integers sW.

    A set

    {f1,f2,,fn}F[V]G

    of homogeneous polynomials is called a homogeneous system of parameters (in the sequel abbreviated by hsop) if the fi are algebraically independent over F and F[V]G as an F[f1,f2,,fn]-module is finitely generated. This implies n = dim(V).

    The next lemma provides a criterion about systems of parameters.

    Lemma 2.4. ([17, Proposition 5.3.7]) f1,f2,,fnF[z1,z2,,zn] are an hsop if and only if for every field extension ¯FF the variety

    V(f1,f2,,fn;¯F)={(x1,x2,,xn)¯F|fi(x1,x2,,xn)=0fori=1,2,,n}

    consists of the point (0,0,,0) alone.

    With the previous lemma, Dade's algorithm provides an implicit method to obtain an hsop. We refer to Neusel and Smith [18, p. 99-100] for the description of the existence of Dade's bases when F is infinite.

    Lemma 2.5. ([18, Proposition 4.3.1]) Suppose ρ: GGL(n,F) is a representation of a finite group G over a field F, and set V=Fn. Suppose that there is a basis z1,z2,,zn for the dual representation V that satisfies the condition

    zig1,,gi1GSpanF{g1z1,,gi1zi1},i=2,3,,n.

    Then the top Chern classes

    ctop([z1]),,ctop([zn])F[V]G

    of the orbits [z1],,[zn] of the basis elements are a system of parameters.

    An hsop exists in any invariant ring of a finite group, which is by no means uniquely determined. After an hsop has been chosen, it is important for subsequent computations to have an upper bound for the degrees of homogeneous generators of F[V]G as an F[f1,f2,,fn]-module. In the non-modular case, F[V]G is a Cohen-Macaulay algebra. It means that for any chosen hsop {f1,f2,,fn}, there exists a set {h1,h2,,hs} F[V]G of homogeneous polynomials such that

    F[V]Gsj=1F[f1,f2,,fn]hj,

    where

    s=dimF(Tot(FF[f1,f2,,fn]F[V]G)).

    Using Dade's construction to produce an hsop f1,f2,,fn of F[V]G, the following lemmas imply that in the non-modular case, F[V]G as F[f1,f2,,fn]-module is generated by homogeneous polynomials of degree less than or equal to dim(V)(|G|1). This result is very helpful to consider the degree bound for G=Cp×H in the modular case (see Corollary 2).

    Lemma 2.6. ([16, Proposition 3.8]) Suppose ρ: GGL(n,F) is a representation of a finite group G over a field F whose characteristic is prime to the order of G. Let

    F[V]Gsj=1F[f1,f2,,fn]hj,

    where deg(fi)=di, deg(hj)=ej, 0=e1e2es. Let μ be the least degree of a det1 relative invariant of G. Then

    es=ni=1(di1)μ.

    Lemma 2.7. ([17, Proposition 6.8.5]) With the notations of the preceding lemma, then

    esni=1(di1)

    with equality if and only if GSL(n,F).

    In this section, with the method of Hughes and Kemper [14], we proceed with the proof of degree bounds for the invariant ring.

    Throughout this section, let G=Cp×H be a direct sum of a cyclic group of prime order and a p-group, V any FG-module with a decomposition

    V=(Vn1W1)(Vn2W2)(VnmWm),

    where Wi's are simple H-modules satisfying that there is wi1Wi such that

    NH(wi1)=(wi1wi2wiki)li

    with ki=dim(Wi) and

    dim(VniWi)>1.

    Then {wlii1,wlii2,,wliiki} are H-orbits.

    Consider the Chern classes of

    Oi={wlii1,wlii2,,wliiki}.

    Set

    φOi(X)=kit=1(X+wliit)=kis=0cs(Oi)Xkis.

    Define classes cs(Oi)F[Wi]H, 1ski, the orbit Chern classes of the orbit Oi.

    Consider the twisted derivation

    △:F[V]F[V]

    defined as △=σId, where Cp is generated by σ. For a basis x1,xni of Vni such that

    σ(x1)=x1andσ(xni)=xni+xni1,

    and a basis y1,,yki of Wi, {xsyt|1sni,1tki} is a basis of VniWi. On the other hand, since xni is a generator of indecomposable Cp-module Vni and yt,1tki, are all generators of simple H-module Wi, then

    zit:=xniyt,1tki

    are all generators of the indecomposable G-module VniWi such that

    zji1:=j(zi1)=j(xni)y1=xnijy1,zjiki:=j(ziki)=j(xni)yki=xnijyki

    for 0jni1. Since for FG-modules dual is commutative with direct sum and tensor product, hence

    {zjit=j(zit)|0jni1,1im,1tki}

    can be considered as a vector space basis for V. Moreover,

    Ni=NCp((zi1zi2ziki)li)

    is the norm polynomial of (VniWi). Therefore for the H-orbits

    Bi={zlii1,zlii2,,zliiki},

    we have

    NCp(cs(Bi))F[V]G.

    Notice that

    NCp(cki(Bi))=Ni

    is the top Chern class of the orbit Bi.

    Consider the transfer

    TrG:F[V]F[V]G

    defined as

    fσGσ(f).

    Note that the transfer is an F[V]G-module homomorphism. The homomorphism is surjective in the non-modular case, while the image of transfer is a proper ideal of F[V]G in the modular case.

    Lemma 2.8. Let V be a projective FG-module, then VGImTrG.

    Proof. Since V is projective, then it has a direct sum decomposition

    V=WSim(H)sW(VpW)

    as FG-modules for some non-negative integers sW. It is easy to see that

    (VpW)G=(VpW)Cp×H=VCppWH.

    Since every invariant in Vp is a multiple of the sum over a basis which is permuted by Cp and WH=ImTrH, the claim is proved.

    The following result is mainly a consequence of Lemmas 2.2, 2.3 and 3.1.

    Theorem 3.1. In the above setting, F[V]G is generated as a module over the subalgebra F[N1,N2,,Nm] by homogeneous invariants of degree less than or equal to m|G|dim(V) and TrG(F[V]).

    Proof. Let MF[V]G be the F[N1,N2,,Nm]-module generated by all homogeneous invariants of degree less than or equal to m|G|dim(V) and TrG(F[V]). We will prove F[V]GdM by induction on d. So we can assume d>m|G|dim(V). By Lemma 2.2, there is a direct sum decomposition of F[V] as FG-module

    F[V]mi=1F[VniWi]mi=1(NiF[VniWi]F[VniWi])I{1,2,,m}(iINiF[VniWi]i¯IF[VniWi])

    with ¯I={1,2,,m}I. Therefore, any fF[V]Gd can be written as

    f=I{1,2,,m}fI

    and

    fI|I||G|+iIqi+i¯Iri=d(iINiF[VniWi]qii¯IF[VniWi]ri)G,

    where qi,ri are non-negative integers. For I, fI lies in M by the induction hypothesis. For I=, there is an i such that ri>|G|kini for each summand i¯IF[VniWi]ri, since otherwise one would have

    dmi=1(|G|kini)=m|G|dim(V),

    which contradicts the hypothesis. By Lemma 2.3, F[VniWi]ri is projective if

    ri>likipkini=|G|kini,

    and so by Alperin [19, Lemma 7.4] the summand i¯IF[VniWi]ri is projective. Then every invariant in it is in the image of transfer by Lemma 3.1.

    Corollary 3.1. Let G=Cp×H be a finite group, where H is a cyclic group such that p|H|,

    V=(Vn1W1)(Vn2W2)(VnmWm),

    a module over FG such that Wi's are permutation modules over FH. Then dim(Wi)=|H| and F[V]G is generated by N1,N2,,Nm together with homogeneous invariants of degree less than or equal to mi=1|H|(pni) and transfer invariants. Moreover, if

    V=(VpW1)(VpW2)(VpWm),

    such that Wi's are permutation modules over FH, then F[V]G is generated by N1,N2,,Nm together with transfer invariants.

    Corollary 3.2. Let G=Cp×H be a finite group,

    V=(Vn1W1)(Vn2W2)(VnmWm)

    be a finite-dimensional vector space in the setting of the beginning of this section. Assume that F is an infinite field. We have

    β(F[V]G)dim(V)(|G|1).

    Proof. Let zi1,zi2,,ziki be distinguished variables such that

    Ni=NCp((zi1zi2ziki)li)

    are the norm polynomials of VniWi for 1im. Let

    Bi={zlii1,zlii2,,zliiki},1im

    be H-orbits. We use Dade's algorithm to extend the set

    {NCp(cs(Bi))|1ski,1im}F[V]G

    to an hsop for F[V]G in the following way. We extend the sequence

    v1=z11,v2=z12,vk1=z1k1,vk1+k2++km1+1=zm1,vk1+k2++km1+2=zm2,vk1+k2++km=zmkm

    in V by vectors vk1++km+1,vk1++km+2,,vdim(V) such that

    vig1,,gi1GSpanF{g1v1,,gi1vi1}

    for all

    i{k1++km+1,k1++km+2,,dim(V)},

    and set

    fj=gGg(vj)

    for

    k1++km<jdim(V).

    Applying Lemmas 2.4 and 2.5, we see that NCp(cs(Bi)), 1ski,1im, together with fk1+k2++km+1,,fdim(V) form an hsop of F[V]G since their common zero in ¯Fdim(V) is the origin. Let A denote the polynomial algebra generated by the elements of this hsop. Since F[V] as an F[V]G-module is finitely generated, then we have that F[V] is a finitely generated A-module. View F[V] as the invariant ring of the trivial group. By Lemma 2.7 the upper degree bound of module generators satisfies that

    β(F[V]/A)s,ideg(NCp(cs(Bi)))+jdeg(fj)dim(V).

    Since the transfer preserves the degree of polynomials and it is clear that

    m|G|=mi=1deg(NCp(cki(Bi)))s,ideg(NCp(cs(Bi)))+jdeg(fj),

    we conclude from Theorem 3.1 that the upper degree bound of module generators of F[V]G as an A-module satisfies that

    β(F[V]G/A)s,ideg(NCp(cs(Bi)))+jdeg(fj)dim(V)=mi=1pli(1+2++ki)+|G|(dim(V)k1k2km)dim(V)=mi=1pliki(ki+1)2|G|mi=1ki+dim(V)(|G|1)=|G|mi=11ki2+dim(V)(|G|1)dim(V)(|G|1).

    Note that we have assumed that |G|p and dim(VniWi)>1. Since

    deg(NCp(cs(Bi))=psli|G|anddeg(fj)=|G|,

    we obtain

    β(A)|G|dim(V)(|G|1),

    which completes the proof.

    Remark 3.1. The proof of the previous corollary implies that Symonds' bound is far too large. Since

    β(F[V]G/A)|G|mi=11ki2+dim(V)(|G|1),

    it seems that this bound is less sharp as the dimensions of simple H-modules increase. Moreover, the construction of fj for k1++km<jdim(V) is more than necessary to obtain invariants for F[V]G. It is enough to take the product of the G-orbit of vj.

    In this paper, we consider degree bounds of the invariant rings of finite groups Cp×H with the projectivity property of symmetric algebras, and we show that this bound is sharper than Symonds' bound as the dimensions of simple H-modules increase.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Thanks to Dr. Haixian Chen for reminding us that the projectivity property of the symmetric powers leads to the degree bounds of the ring of invariants. Thanks to the referees for their helpful remarks. The authors are supported by the National Natural Science Foundation of China (Grant No. 12171194).

    The authors declare no conflicts of interest in this paper.



    [1] F. Cicirelli, A. Forestiero, A Giordano, C. Mastroianni, Transparent and efficient parallelization of swarm algorithms, ACM Trans. Auton. Adapt. Syst., 11 (2016), 1-26. https://doi.org/10.1145/2897373 doi: 10.1145/2897373
    [2] A. M. Lal, S. M. Anouncia, Modernizing the multi-temporal multispectral remotely sensed image change detection for global maxima through binary particle swarm optimization, J. King Saud Univ., Comput. Inf. Sci., 34 (2022), 95-103. https://doi.org/10.1016/j.jksuci.2018.10.010 doi: 10.1016/j.jksuci.2018.10.010
    [3] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
    [4] D. Sarkar, S. Choudhury, A. Majumder, Enhanced-Ant-AODV for optimal route selection in mobile ad-hoc network, J. King Saud Univ., Comput. Inf. Sci., 33 (2021), 1186-1201. https://doi.org/10.1016/j.jksuci.2018.08.013 doi: 10.1016/j.jksuci.2018.08.013
    [5] G. G. Wang, S. Deb, L. D. S. Coelho, Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems, Int. J. Bio-Inspired Comput., 12 (2018), 1-22. https://doi.org/10.1504/IJBIC.2018.093328 doi: 10.1504/IJBIC.2018.093328
    [6] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459-471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [7] Z. Wang, H. Ding, B. Li, L. Bao, Z. Yang, An energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networks, IEEE Access, 8 (2020), 133577-133596. https://doi.org/10.1109/ACCESS.2020.3010313 doi: 10.1109/ACCESS.2020.3010313
    [8] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228-249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
    [9] X. S. Yang, Firefly algorithm, in Engineering Optimization: An Introduction with Metaheuristic Applications, (2010), 221-230. https://doi.org/10.1002/9780470640425.ch17
    [10] Z. Wang, H. Ding, B. Li, L. Bao, Z. Yang, Q. Liu, Energy efficient cluster based routing protocol for WSN using firefly algorithm and ant colony optimization, Wireless Pers. Commun., 2022. https://doi.org/10.1007/s11277-022-09651-9 doi: 10.1007/s11277-022-09651-9
    [11] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [12] X. S. Yang, S. Deb, Cuckoo search: recent advances and applications, Neural Comput. Appl., 24 (2014), 169-174. https://doi.org/10.1007/s00521-013-1367-1 doi: 10.1007/s00521-013-1367-1
    [13] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [14] K. P. B. Resma, M. S. Nair, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ., Comput. Inf. Sci., 33 (2021), 528-541. https://doi.org/10.1016/j.jksuci.2018.04.007 doi: 10.1016/j.jksuci.2018.04.007
    [15] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849-872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [16] G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 1995-2014. https://doi.org/10.1007/s00521-015-1923-y doi: 10.1007/s00521-015-1923-y
    [17] S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application, Adv. Eng. Software, 105 (2017), 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004 doi: 10.1016/j.advengsoft.2017.01.004
    [18] W. Li, G. G.Wang, A. H. Alavi, Learning-based elephant herding optimization algorithm for solving numerical optimization problems, Knowl.-Based Syst., 195 (2020), 105675. https://doi.org/10.1016/j.knosys.2020.105675 doi: 10.1016/j.knosys.2020.105675
    [19] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300-323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [20] Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
    [21] I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079
    [22] J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 (2021), 674-710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y
    [23] I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, INFO: An efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. https://doi.org/10.1016/j.eswa.2022.116516 doi: 10.1016/j.eswa.2022.116516
    [24] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002
    [25] Z. Wang, H. Ding, Z. Yang, B. Li, Z. Guan, L. Bao, Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization, Appl. Intell., 52 (2022), 7922-7964. https://doi.org/10.1007/s10489-021-02776-7 doi: 10.1007/s10489-021-02776-7
    [26] A. A. Ewees, M. A. Al-qaness, M. Abd Elaziz, Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times, Appl. Math. Modell., 94 (2021), 285-305. https://doi.org/10.1016/j.apm.2021.01.017 doi: 10.1016/j.apm.2021.01.017
    [27] Q. Tu, Y. Liu, F. Han, X. Liu, Y. Xie, Range-free localization using reliable anchor pair selection and quantum-behaved salp swarm algorithm for anisotropic wireless sensor networks, Ad Hoc Networks, 113 (2021), 102406. https://doi.org/10.1016/j.adhoc.2020.102406 doi: 10.1016/j.adhoc.2020.102406
    [28] M. Tubishat, N. Idris, L. Shuib, M. A. Abushariah, S. Mirjalili, Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection, Expert Syst. Appl., 145 (2020), 113122. https://doi.org/10.1016/j.eswa.2019.113122 doi: 10.1016/j.eswa.2019.113122
    [29] B. Nautiyal, R. Prakash, V. Vimal, G. Liang, H. Chen, Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems, Eng. Comput., 2021. https://doi.org/10.1007/s00366-020-01252-z doi: 10.1007/s00366-020-01252-z
    [30] M. M. Saafan, E. M. El-Gendy, IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems, Expert Syst. Appl., 176 (2021), 114901. https://doi.org/10.1016/j.eswa.2021.114901 doi: 10.1016/j.eswa.2021.114901
    [31] D. Bairathi, D. Gopalani, An improved salp swarm algorithm for complex multi-modal problems, Soft Comput., 25 (2021), 10441-10465. https://doi.org/10.1007/s00500-021-05757-7 doi: 10.1007/s00500-021-05757-7
    [32] E. Çelik, N. Öztürk, Y. Arya, Advancement of the search process of salp swarm algorithm for global optimization problems, Expert Syst. Appl., 182 (2021), 115292. https://doi.org/10.1016/j.eswa.2021.115292 doi: 10.1016/j.eswa.2021.115292
    [33] Q. Zhang, Z. Wang, A. A. Heidari, W. Gui, Q. Shao, H. Chen, et al., Gaussian barebone salp swarm algorithm with stochastic fractal search for medical image segmentation: a COVID-19 case study, Comput. Biol. Med., 139 (2021), 104941. https://doi.org/10.1016/j.compbiomed.2021.104941 doi: 10.1016/j.compbiomed.2021.104941
    [34] H. Zhang, T. Liu, X. Ye, A. A. Heidari, G. Liang, H. Chen, et al., Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems, Eng. Comput., 2022. https://doi.org/10.1007/s00366-021-01545-x doi: 10.1007/s00366-021-01545-x
    [35] S. Zhao, P. Wang, X. Zhao, H. Tuiabieh, M. Mafarja, H. Chen, Elite dominance scheme ingrained adaptive salp swarm algorithm: a comprehensive study, Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01464-x doi: 10.1007/s00366-021-01464-x
    [36] J. Song, C. Chen, A. A. Heidari, J. Liu, H. Yu, H. Chen, Performance optimization of annealing salp swarm algorithm: frameworks and applications for engineering design, J. Comput. Des. Eng., 9 (2022), 633-669. https://doi.org/10.1093/jcde/qwac021 doi: 10.1093/jcde/qwac021
    [37] S. Zhao, P. Wang, A. A. Heidari, H. Chen, W. He, S. Xu, Performance optimization of salp swarm algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer microscopy, Comput. Biol. Med., 139 (2021), 105015. https://doi.org/10.1016/j.compbiomed.2021.105015 doi: 10.1016/j.compbiomed.2021.105015
    [38] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [39] J. J. Jena, S. C. Satapathy, A new adaptive tuned Social Group Optimization (SGO) algorithm with sigmoid-adaptive inertia weight for solving engineering design problems, Multimed Tools Appl., 2021. https://doi.org/10.1007/s11042-021-11266-4 doi: 10.1007/s11042-021-11266-4
    [40] A. Naik, S. C. Satapathy, A. S. Ashour, N. Dey, Social group optimization for global optimization of multimodal functions and data clustering problems, Neural Comput. Appl., 30 (2018), 271-287. https://doi.org/10.1007/s00521-016-2686-9 doi: 10.1007/s00521-016-2686-9
    [41] P. Sun, H. Liu, Y. Zhang, L. Tu, Q. Meng, An intensify atom search optimization for engineering design problems, Appl. Math. Modell., 89 (2021), 837-859. https://doi.org/10.1016/j.apm.2020.07.052 doi: 10.1016/j.apm.2020.07.052
    [42] W. Zhao, L. Wang, Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst., 163 (2019), 283-304. https://doi.org/10.1016/j.knosys.2018.08.030 doi: 10.1016/j.knosys.2018.08.030
    [43] L. Ma, C. Wang, N. Xie, M. Shi, Y. Ye, L. Wang, Moth-flame optimization algorithm based on diversity and mutation strategy, Appl. Intell., 51 (2021), 5836-5872. https://doi.org/10.1007/s10489-020-02081-9 doi: 10.1007/s10489-020-02081-9
    [44] Y. Li, Y. Zhao, J. Liu, Dynamic sine cosine algorithm for large-scale global optimization problems, Expert Syst. Appl., 177 (2021), 114950. https://doi.org/10.1016/j.eswa.2021.114950 doi: 10.1016/j.eswa.2021.114950
    [45] S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120-133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [46] W. Long, J. Jiao, X. Liang, T. Wu, M. Xu, S. Cai, Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection, Appl. Soft Comput., 103 (2021), 107146. https://doi.org/10.1016/j.asoc.2021.107146 doi: 10.1016/j.asoc.2021.107146
    [47] R. Salgotra, U. Singh, S. Singh, G. Singh, N. Mittal, Self-adaptive salp swarm algorithm for engineering optimization problems, Appl. Math. Modell., 89 (2021), 188-207. https://doi.org/10.1016/j.apm.2020.08.014 doi: 10.1016/j.apm.2020.08.014
    [48] H. Ren, J. Li, H. Chen, C. Li, Stability of salp swarm algorithm with random replacement and double adaptive weighting, Appl. Math. Modell., 95 (2021), 503-523. https://doi.org/10.1016/j.apm.2021.02.002 doi: 10.1016/j.apm.2021.02.002
    [49] G. I. Sayed, G. Khoriba, M. H. Haggag, A novel chaotic salp swarm algorithm for global optimization and feature selection, Appl. Intell., 48 (2018), 3462-3481. https://doi.org/10.1007/s10489-018-1158-6 doi: 10.1007/s10489-018-1158-6
    [50] M. H. Qais, H. M. Hasanien, S. Alghuwainem, Enhanced salp swarm algorithm: application to variable speed wind generators, Eng. Appl. Artif. Intell., 80 (2019), 82-96. https://doi.org/10.1016/j.engappai.2019.01.011 doi: 10.1016/j.engappai.2019.01.011
    [51] M. Braik, A. Sheta, H. Turabieh, H. Alhiary, A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm, Soft Comput., 25 (2021), 181-206. https://doi.org/10.1007/s00500-020-05130-0 doi: 10.1007/s00500-020-05130-0
    [52] A. G. Hussien, An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems, J. Ambient Intell. Humaniz. Comput., 13 (2022), 129-150. https://doi.org/10.1007/s12652-021-02892-9 doi: 10.1007/s12652-021-02892-9
    [53] F. A. Ozbay, B. Alatas, Adaptive salp swarm optimization algorithms with inertia weights for novel fake news detection model in online social media, Multimedia Tools Appl., 80 (2021), 34333-34357. https://doi.org/10.1007/s11042-021-11006-8 doi: 10.1007/s11042-021-11006-8
    [54] S. Kaur, L. K. Awasthi, A. L. Sangal, G. Dhiman, Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl. Artif. Intell., 90 (2020), 103541. https://doi.org/10.1016/j.engappai.2020.103541 doi: 10.1016/j.engappai.2020.103541
    [55] S. Dhargupta, M. Ghosh, S. Mirjalili, R. Sarkar, Selective opposition based grey wolf optimization, Expert Syst. Appl., 151 (2020), 113389. https://doi.org/10.1016/j.eswa.2020.113389 doi: 10.1016/j.eswa.2020.113389
    [56] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191 (2020), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190
    [57] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
    [58] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems, Appl. Intell., 51 (2021), 1531-1551. https://doi.org/10.1007/s10489-020-01893-z doi: 10.1007/s10489-020-01893-z
    [59] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An improved grey wolf optimizer for solving engineering problems, Expert Syst. Appl., 166 (2021), 113917. https://doi.org/10.1016/j.eswa.2020.113917 doi: 10.1016/j.eswa.2020.113917
    [60] W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, Y. Teng, Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis, Knowl.-Based Syst., 214 (2021), 106728. https://doi.org/10.1016/j.knosys.2020.106728 doi: 10.1016/j.knosys.2020.106728
    [61] X. Yu, W. Xu, C. Li, Opposition-based learning grey wolf optimizer for global optimization, Knowl.-Based Syst., 226 (2021), 107139. https://doi.org/10.1016/j.knosys.2021.107139 doi: 10.1016/j.knosys.2021.107139
    [62] B. S. Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait, Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems, Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01368-w doi: 10.1007/s00366-021-01368-w
    [63] I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: A new metaheuristic optimization algorithm, Inf. Sci., 540 (2020), 131-159. https://doi.org/10.1016/j.ins.2020.06.037 doi: 10.1016/j.ins.2020.06.037
    [64] P. R. Singh, M. A. Elaziz, S. Xiong, Modified spider monkey optimization based on Nelder-Mead method for global optimization, Expert Syst. Appl., 110 (2018), 264-289. https://doi.org/10.1016/j.eswa.2018.05.040 doi: 10.1016/j.eswa.2018.05.040
    [65] L. Gu, R. J. Yang, C. H. Tho, M. Makowskit, O. Faruquet, Y. Li, Optimisation and robustness for crashworthiness of side impact, Int. J. Veh. Des., 26 (2004), 348-360. https://doi.org/10.1504/IJVD.2001.005210 doi: 10.1504/IJVD.2001.005210
    [66] C. A. Coello, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41 (2000), 113-127. https://doi.org/10.1016/S0166-3615(99)00046-9 doi: 10.1016/S0166-3615(99)00046-9
    [67] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110-111 (2012), 151-166. https://doi.org/10.1016/j.compstruc.2012.07.010 doi: 10.1016/j.compstruc.2012.07.010
    [68] A. H. Gandomi, X. S. Yang, A. H. Alavi, Mixed variable structural optimization using firefly algorithm, Comput. Struct., 89 (2011), 2325-2336. https://doi.org/10.1016/j.compstruc.2011.08.002 doi: 10.1016/j.compstruc.2011.08.002
    [69] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci., 179 (2009), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [70] X. S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), (2010), 65-74. https://doi.org/10.1007/978-3-642-12538-6_6
    [71] M. Azizi, Atomic orbital search: A novel metaheuristic algorithm, Appl. Math. Modell., 93 (2021), 657-683. https://doi.org/10.1016/j.apm.2020.12.021 doi: 10.1016/j.apm.2020.12.021
    [72] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-verse optimizer: A nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495-513. https://doi.org/10.1007/s00521-015-1870-7 doi: 10.1007/s00521-015-1870-7
    [73] M. Y. Cheng, D. Prayogo, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput Struct., 139 (2014), 98-112. https://doi.org/10.1016/j.compstruc.2014.03.007 doi: 10.1016/j.compstruc.2014.03.007
    [74] S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015), 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010
    [75] H. Chickermane, H. Gea, Structural optimization using a new local approximation method, Int. J. Numer. Methods Eng., 39 (1996), 829-846. https://doi.org/10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
    [76] Z. Wang, Q. Luo, Y. Zhou, Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, Eng. Comput., 37 (2021), 3665-3698. https://doi.org/10.1007/s00366-020-01025-8 doi: 10.1007/s00366-020-01025-8
    [77] Y. J. Zheng, Water wave optimization: A new nature-inspired metaheuristic, Comput. Oper. Res., 55 (2015), 1-11. https://doi.org/10.1016/j.cor.2014.10.008 doi: 10.1016/j.cor.2014.10.008
    [78] P. Savsani, V. Savsani, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl. Math. Modell., 40 (2016), 3951-3978. https://doi.org/10.1016/j.apm.2015.10.040 doi: 10.1016/j.apm.2015.10.040
    [79] F. Gul, I. Mir, L. Abualigah, P. Sumari, A. Forestiero, A consolidated review of path planning and optimization techniques: technical perspectives and future directions, Electronics, 10 (2021), 2250. https://doi.org/10.3390/electronics10182250 doi: 10.3390/electronics10182250
    [80] Z. Wang, H. Ding, J. Yang, J. Wang, B. Li, Z. Yang, P. Hou, Advanced orthogonal opposition-based learning-driven dynamic salp swarm algorithm: framework and case studies, IET Control Theory Appl., 2022. https://doi.org/10.1049/cth2.12277 doi: 10.1049/cth2.12277
    [81] D. Agarwal, P. S. Bharti, Implementing modified swarm intelligence algorithm based on slime moulds for path planning and obstacle avoidance problem in mobile robots, Appl. Soft Comput., 107 (2021), 107372. https://doi.org/10.1016/j.asoc.2021.107372 doi: 10.1016/j.asoc.2021.107372
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3027) PDF downloads(143) Cited by(18)

Figures and Tables

Figures(18)  /  Tables(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog