Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Seismic response of RC frames equipped with buckling-restrained braces having different yielding lengths

  • Buckling-restrained braces (BRBs) have proven to be a valuable earthquake resisting system. They demonstrated substantial ability in providing structures with ductility and energy dissipation. However, they are prone to exhibit large residual deformations after earthquake loading because of their low post-yield stiffnesses. In this study, the seismic response of RC frames equipped with BRBs has been investigated. The focus of this research work is on evaluating the effect of the BRB yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames. This is achieved by performing inelastic static pushover and dynamic time-history analyses on three- and nine-story X-braced RC frames having yielding-core length ratios of 25%, 50%, and 75% of the total brace length. The effects of the yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames have been evaluated. Also, the safety of the short-yielding-core BRBs against fracture failures has been checked. An empirical equation has been derived for estimating the critical length of the BRB yielding cores. The results indicated that the high strain hardening capability of reduced length yielding-cores improves the post-yield stiffness and consequently reduces the maximum and residual drifts of the braced RC frames.

    Citation: Mohamed Meshaly, Hamdy Abou-Elfath. Seismic response of RC frames equipped with buckling-restrained braces having different yielding lengths[J]. AIMS Materials Science, 2022, 9(3): 359-381. doi: 10.3934/matersci.2022022

    Related Papers:

    [1] Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106
    [2] Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174
    [3] Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670
    [4] Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan . Some new dynamic Steffensen-type inequalities on a general time scale measure space. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240
    [5] Tingting Guan, Guotao Wang, Haiyong Xu . Initial boundary value problems for space-time fractional conformable differential equation. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312
    [6] Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
    [7] Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777
    [8] Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575
    [9] Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534
    [10] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
  • Buckling-restrained braces (BRBs) have proven to be a valuable earthquake resisting system. They demonstrated substantial ability in providing structures with ductility and energy dissipation. However, they are prone to exhibit large residual deformations after earthquake loading because of their low post-yield stiffnesses. In this study, the seismic response of RC frames equipped with BRBs has been investigated. The focus of this research work is on evaluating the effect of the BRB yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames. This is achieved by performing inelastic static pushover and dynamic time-history analyses on three- and nine-story X-braced RC frames having yielding-core length ratios of 25%, 50%, and 75% of the total brace length. The effects of the yielding-core length on both the maximum and the residual lateral deformations of the braced RC frames have been evaluated. Also, the safety of the short-yielding-core BRBs against fracture failures has been checked. An empirical equation has been derived for estimating the critical length of the BRB yielding cores. The results indicated that the high strain hardening capability of reduced length yielding-cores improves the post-yield stiffness and consequently reduces the maximum and residual drifts of the braced RC frames.



    Riemann-Liouville fractional integral given by

    Iαa+ξ()=1Γ(α)χa(χ)α1ξ()dt.

    Many different concepts of fractional derivative maybe found in [9,10,11]. In [12] studied a conformable derivative:

    αf()=limϵ0f(+ϵ1α)f()ϵ.

    The time scale conformable derivatives was introduced by Benkhettou et al. [17].

    Further, in recent years, numerous mathematicians claimed that non-integer order derivatives and integrals are well suited to describing the properties of many actual materials, such as polymers. Fractional derivatives are a wonderful tool for describing memory and learning. a variety of materials and procedures inherited properties is one of the most significant benefits of fractional ownership. For more concepts and definition on time scales see [13,14,15,16,17,18,19,33,34,35].

    Continuous version of Steffensen's inequality [7] is written as: For 0g()1 on [a,b]. Then

    bbλf()dtbaf()g()dta+λaf()dt, (1.1)

    where λ=bag()dt.

    Supposing f is nondecreasing gets the reverse of (1.1).

    Also, the discrete inequality of Steffensen [6] is: For λ2n=1g()λ1. Then

    n=nλ2+1f()n=1f()g()λ1=1f(). (1.2)

    Recently, a large number of dynamic inequalities on time scales have been studied by a small number of writers who were inspired by a few applications (see [1,2,3,4,8,28,29,30,31,32,36,37,40,41,42,44,48,49,50,51,52,53]).

    In [5] Jakšetić et al. proved that, if ˆμ([c,d])=[a,b]g()dˆμ(), where [c,d][a,b]. Then

    [a,b]f()g()dˆμ()[c,d]f()g()dˆμ()+[a,c](f()f(d))g()dˆμ(),

    and

    [c,d]f()dˆμ()[d,b](f(c)f())g()dˆμ()[a,b]f()g()dˆμ().

    Anderson, in [3], studied the inequality:

    bbλϕ()baϕ()ψ()a+λaϕ(), (1.3)

    In [47] the authors have proved, for

    m+λ1mζ()d=kmζ()g()d,

    and

    nnλ2ζ()d=nkζ()g()d.

    If there exists a constant A such that r()/ζ()At is monotonic on the intervals [m,k], [k,n], and

    nmtq()g()d=m+λ1mtq()d+nnλ2tq()d,

    then

    nmr()g()dm+λ1mr()d+nnλ2r()d.

    In particularly, Anderson [3] proved

    nnλr()nmr()g()m+λmr().

    where m,nTκ with m<n, r, g:[m,n]TR are -integrable functions such that r is of one sign and nonincreasing and 0g()1 on [m,n]T and λ=nmg(), nλ,m+λT.

    We prove the next two needed results:

    Theorem 1.1. Assume q>0 with 0g()ζ() [m,n]T and λ is given from nmg()Δα=m+λmζ()Δα, then

    nmr()g()Δαm+λmr()ζ()Δα. (1.4)

    Also, provided with 0g()ζ() and nnλζ()Δα=nmg()Δα, we have

    nnλr()ζ()Δαnmr()g()Δα. (1.5)

    We get the reverse inequalities of (1.4) and (1.5) when assuming r/ζ is nondecreasing.

    Theorem 1.2. Assume ψ is integrable on time scales interval [m,n], with ζ()ψ()g()ψ()0[m,n]T and m+λmζ()Δα=nmg()Δα=nnλζ()Δα and g, r and ζ are Δα-integrable functions, ζ()g()0, we have

    nnλr()ζ()Δα+nm|(r()r(nλ))ψ()|Δαnmr()g()Δαm+λmr()ζ()Δαnm|(r()r(m+λ))ψ()|Δα, (1.6)

    and

    nnλr()ζ()Δαnnλ[r()ζ()(r()r(nλ))][ζ()g()]Δαnmr()g()Δαm+λm[r()ζ()(r()r(m+λ))][ζ()g()]Δαm+λmr()ζ()Δα. (1.7)

    Proof. The proof techniques of Theorems 1.6 and 1.7 are like to that in [4] and is removed.

    Several authors proved conformable Hardy's inequality [20,21], conformable Hermite-Hadamard's inequality [22,23,24], conformable inequality of Opial's [26,27] and conformable inequality of Steffensen's [25]. In [45] Anderson proved the followong results:

    Theorem 1.3. [45] Suppose α(0,1] and r1, r2R such that 0r1r2. Suppose :[r1,r2][0,) and Γ:[r1,r2][0,1] are α-fractional integrable functions on [r1,r2] with Π is decreasing, we get

    r2r2Π(ζ)dαζr2r1Π(ζ)Γ(ζ)dαζr1+r1Π(ζ)dαζ,

    where =α(r2r1)rα2rα1r2r1Γ(ζ)dαζ[0,r2r1].

    In [46] the authors gave an extension for Theorem 1.8:

    Theorem 1.4. Assume α(0,1] and r1, r2R such that 0r1r2. Suppose ,Γ,Σ:[r1,r2][0,) are integrable on [r1,r2] with the decreasing function Π and 0ΓΣ, we get

    r2r2Σ(ζ)Π(ζ)dαζr2r1Π(ζ)Γ(ζ)dαζr1+r1Σ(ζ)Π(ζ)dαζ,

    where =(r2r1)r2r1Σ(ζ)dαζr2r1Γ(ζ)dαζ[0,r2r1].

    In this paper, we prove and explore several novel speculations of the Steffensen inequality obtained in [47] through the conformable integral containing time scale concept. We furthermore recover certain known results as special cases of our results.

    Lemma 2.1. Assume ζ>0 is rd-continuous function on [m,n]T, g, r be rd-continuous on [m,n]T such that r/ζ nonincreasing function and 0g()1 [m,n]T. Then

    (Λ1)

    nmr()g()Δαm+λmr()Δα, (2.1)

    where λ is given by

    nmζ()g()Δα=m+λmζ()Δα.

    (Λ2)

    nnλr()Δαnmr()g()Δα, (2.2)

    such that

    nnλζ()Δα=nmζ()g()Δα.

    (2.1) and (2.2) are reversed when r/ζ is nondecreasing.

    Proof. Putting g()ζ()g() and r()r()/ζ() in (1.4), (1.5) to get (Λ1) and (Λ2) simultaneously.

    Lemma 2.2. Under the same hypotheses of Lemma 2.1. with ψ be integrable functions on [m,n]T and 0ψ()g()1ψ() for all [m,n]T. Then

    nnλr()Δα+nm|(r()ζ()r(nλ)ζ(nλ))ζ()ψ()|Δαnmr()g()Δαm+λmr()Δαnm|(r()ζ()r(m+λ)ζ(m+λ))ζ()ψ()|Δα,

    where λ is obtained from

    m+λmh()Δα=nmζ()g()Δα=nnλζ()Δα.

    Proof. Putting g()ζ()g(), r()r()/h() and ψ()ζ()ψ() in (1.6).

    Lemma 2.3. Under the same conditions of Lemma 2.1. Then

    nnλr()Δαnnλ(r()[r()ζ()r(nλ)ζ(nλ)]ζ()[1g()])Δαnmr()g()Δαm+λm(r()[r()ζ()r(a+λ)ζ(m+λ)]ζ()[1g()])Δαm+λmr()Δα,

    where λ is obtained from

    m+λmζ()Δα=nmg()Δα=nnλζ()Δα.

    Proof. Taking g()ζ()g() and r()r()/ζ() in (1.7).

    Theorem 2.1. Under the same conditions of Lemma 2.3 such that k(m,n) and λ1, λ2 are given from

    (Λ3)

    m+λ1mζ()Δα=kmζ()g()Δα,
    nnλ2ζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=m+λ1mϕ()ζ()Δα+nnλ2ϕ()ζ()Δα, (2.3)

    then

    nmrσ()g()Δαm+λ1mrσ()Δα+nnλ2rσ()Δα. (2.4)

    (2.4) is reversed if rσ/ζAHk2[m,n] and (2.3).

    (Λ4)

    kkλ1ζ()Δα=kmζ()g()Δα,
    k+λ2kζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=k+λ2kλ1ϕ()ζ()Δα, (2.5)

    then

    nmrσ()g()Δαk+λ2kλ1rσ()Δα. (2.6)

    If rσ/ζAHk2[m,n] and (2.5) satisfied, then we reverse (2.6).

    (Λ5) If λ1, λ2 be the same as in (Λ3) and rσ/ζAHk1[m,n] so that

    nmϕ()ζ()g()Δα=m+λ1m(ϕ()ζ()[ϕ()mλ1]ζ()[1g()])Δα+nnλ2(ϕ()ζ()[ϕ()n+λ2]ζ()[1g()])Δα, (2.7)

    then

    nmrσ()g()Δαm+λ1m(rσ()|rσ()ζ()rσ(m+λ1)ζ(m+λ1)|ζ()[1g()])Δα+nnλ2(rσ()|rσ()ζ()rσ(nλ2)ζ(nλ2)|ζ()[1g()])Δα. (2.8)

    If rσ/ζAHk2[m,n] and (2.7) satisfied, the inequality in (2.8) is reversed.

    (Λ6) If λ1, λ2 be defined as in (Λ4) and rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=kkλ1(ϕ()ζ()[ϕ()k+λ1]ζ()[1g()])Δα=m+λ1m(ϕ()ζ()[ϕ()k+λ2]ζ()[1g()])Δα, (2.9)

    then

    nmrσ()g()Δαkkλ1(rσ()[rσ()ζ()rσ(kλ1)ζ(kλ1)]ζ()[1g()])Δα+k+λ2k(rσ()[rσ()ζ()rσ(k+λ2)ζ(k+λ2)]ζ()[1g()])Δα. (2.10)

    If rσ/ζAHk2[m,n] and (2.9) satisfied, we reverse (2.10).

    Proof. (Λ3) Consider rσ/ζAHk1[m,n], and R1()=rσ()Aϕ()ζ(), since A is given in Definition 2.1. Since R1/ζ:[m,k]TR, using Lemma 2.1(Λ1), we deduce

    0m+λ1mR1()ΔαkmR1()g()Δα=m+λ1mrσ()Δαkmrσ()g()ΔαA(m+λ1mϕ()ζ()Δαkmϕ()ζ()g()Δα). (2.11)

    As R1/ζ:[k,n]TR is nondecreasing, using Lemma 2.1(Λ2), we obtain

    0nkR1()g()Δαnnλ2R1()Δα=nkrσ()g()Δαnnλ2rσ()ΔαA(nkϕ()ζ()g()Δαnnλ2ϕ()ζ()Δα). (2.12)

    (2.11) and (2.12) imply that

    m+λ1mrσ()Δα+nnλ2rσ()Δαnmrσ()g()ΔαA(m+λ1mϕ()ζ()Δα+nnλ2ϕ()ζ()Δαnmϕ()ζ()g()Δα)

    Hence, if (2.3) is hold, then (2.4) holds. For rσ/ζAHk2[m,n], we get the some steps.

    (Λ4) Let rσ/ζAHk1[m,n], also R1(x)=rσ(x)Aϕ(x)ζ(x), where A as in Definition 2.1. R1/ζ:[m,k]TR is nonincreasing, so from Lemma 2.1(Λ1) we obtain

    0kmrσ()g()Δαkkλ1rσ()ΔαA(kmϕ()h()g()Δαkcλ1ϕ()ζ()Δα). (2.13)

    Using Lemma 2.1(Λ1) we have

    0k+λ2krσ()Δαnkrσ()g()ΔαA(k+λ2kϕ()ζ()Δαnkϕ()ζ()g()Δα). (2.14)

    Thus, from (2.13), (2.14), we get

    nmrσ()g()Δαk+λ2kλ1rσ()ΔαA(nmϕ()ζ()g()Δαk+λ2kλ1ϕ()ζ()Δα)

    Therefore, if nmϕ()ζ()g()Δα=k+λ2kλ1ϕ()ζ()Δα is satisfied, then (2.8) holds. Follow the same steps for rσ/ζAHk2[m,n].

    Using Lemma 2.3 and repeat the steps of Theorem 2.1(Λ3) and Theorem 2.1(Λ4) in the proof of (Λ5) and (Λ6) respectively.

    Corollary 2.1. The inequalities (2.4), (2.6), (2.8) and (2.10) of Theorem 2.1 letting T=R takes

    (i)nmfσ()g()dαm+λ1mrσ()dα+nnλ2rσ()dα. (2.15)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()dα. (2.16)
    (iii)nmrσ()g()dαm+λ1m(rσ()[rσ()ζ()rσ(m+λ1)ζ(m+λ1)]ζ()[1g()])dα+nnλ2(rσ()[rσ()ζ()rσ(nλ2)ζ(nλ2)]ζ()[1g()])dα. (2.17)
    (iv)nmrσ()g()dαkkλ1(rσ()[rσ()ζ()rσ(kλ1)ζ(kλ1)]ζ()[1g()])dα+k+λ2k(rσ()[rσ()ζ()rσ(k+λ2)ζ(k+λ2)]ζ()[1g()])dα. (2.18)

    Corollary 2.2. We get [47,Theorems 8,10,21 and 22], if we put α=1 and ϕ()= in Corollary 2.1 [(i),(ii),(iii),(iv)] simultaneously.

    Corollary 2.3. In Corollary 2.1 taking T=Z, the results (2.15)–(2.18) will be equivalent to

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)+n1=nλ2r(+1)α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)α1.
    (iii)n1=mr(+1)g()α1m+λ11=m(r(+1)[r(+1)ζ()r(a+λ1+1)ζ(m+λ1)]ζ()[1g()])α1+n1=nλ2(r(+1)[r(+1)ζ()r(nλ2+1)ζ(nλ2)]ζ()[1g()])α1.
    (iv)n1=mr(+1)g())α1k1=kλ1(r(+1)[r(+1)ζ()r(kλ1+1)ζ(kλ1)]ζ()[1g()]))α1+k+λ21=k(r(+1)[r(+1)ζ()r(k+λ2+1)ζ(k+λ2)]ζ()[1g()]))α1.

    Theorem 2.2. Under the assumptions in Lemma 2.1 with 0g()ζ() and λ1, λ2 be defined as

    (Λ7)

    m+λ1mζ()Δα=kmg()Δα,
    nnλ2ζ()Δα=nkg()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()g()Δα=m+λ1mϕ()ζ()Δα+nnλ2ϕ()ζ()Δα, (2.19)

    then

    nmrσ()g()Δαm+λ1mrσ()ζ()Δα+nnλ2rσ()ζ()Δα. (2.20)

    (Λ8)

    kkλ1ζ()Δα=kmg()Δα,
    k+λ2kζ()Δα=nkg()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()g()Δα=k+λ2kλ1ϕ()ζ()Δα, (2.21)

    then

    nmrσ()g()Δαk+λ2kλ1rσ()ζ()Δα. (2.22)

    If rσ/ζAHk2[m,n] and (2.19), (2.21) satisfied, we get the reverse of (2.20) and (2.22).

    Proof. By using Theorem 2.1 [(Λ3),(Λ4)] and by putting gg/h and ffh, we get the proof of (Λ7) and (Λ8).

    Corollary 2.4. In Theorem 2.2 [(Λ7),(Λ8)], assuming T=R, the following results obtains:

    (i)nmrσ()g()dαm+λ1mrσ()ζ()dα+nnλ2rσ()ζ()dα. (2.23)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()ζ()dα. (2.24)

    Corollary 2.5. In Corollary 2.4 [(i),(ii)], when we put α=1 and ϕ()= then [47,Theorems 16 and 17] gotten.

    Corollary 2.6. In (2.23) and (2.24) letting T=Z, gets

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)h()+n1=nλ2r(+1)h()α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)ζ()α1.

    Theorem 2.3. Using the same conditions in Lemma 2.3. Letting w:[m,n]TR be integrable with 0g()w() [m,n]T and

    (Λ9)m+λ1mw()ζ()Δα=kmζ()g()Δα,
    nnλ2w()ζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=m+λ1mϕ()w()ζ()Δα+nnλ2ϕ()w()ζ()Δα, (2.25)

    then

    nmrσ()g()Δαm+λ1mrσ()w()Δα+nnλ2rσ()w()Δα. (2.26)
    (Λ10)kkλ1w()ζ()Δα=kmζ()g()Δα,
    k+λ2kw()ζ()Δα=nkζ()g()Δα.

    If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=k+λ2kλ1ϕ()w()ζ()Δα, (2.27)
    nmrσ()g()Δαk+λ2kλ1rσ()w()Δα. (2.28)

    The inequalities in (2.26) and (2.28) are reversible if rσ/ζAHc2[a,b] and (2.25), (2.27) hold.

    Proof. In Theorem 2.1 [(Λ3),(Λ4)], ζ changes wq, g changes g/w and r changes rw.

    Corollary 2.7. In (2.26) and (2.28). Letting T=R, we have

    (i)nmrσ()g()dαm+λ1mrσ()w()dα+nnλ2rσ()w()dα. (2.29)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()w()dα. (2.30)

    Corollary 2.8. In Corollary 2.7 [(i),(ii)], letting α=1 and ϕ()= we get [47,Theorems 18 and 19].

    Corollary 2.9. In (2.29) and (2.30), crossing T=Z, gets

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)w()+n1=nλ2r(+1)w()α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)w()α1.

    Theorem 2.4. Using the same conditions in Lemma 2.1, and Theorem 2.1 [(Λ3),(Λ4)] with ψ:[m,n]TR be a integrable: 0ψ()g()1ψ().

    (Λ11) If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=m+λ1mϕ()ζ()Δαkm|ϕ()mλ1|ζ()ψ()Δα+nnλ2ϕ()ζ()Δα+nk|ϕ()n+λ2|ζ()ψ()Δα, (2.31)

    then

    nmrσ()g()Δαm+λ1mrσ()Δαkm|rσ()ζ()rσ(m+λ1)ζ(m+λ1)|ζ()ψ()Δα+nnλ2rσ()Δα+nk|rσ()ζ()rσ(nλ2)ζ(nλ2)|ζ()ψ()Δα. (2.32)

    (Λ12) If rσ/ζAHk1[m,n] and

    nmϕ()ζ()g()Δα=kkλ1ϕ()ζ()Δαkm|ϕ()k+λ1|ζ()ψ()Δα+nk|ϕ()kλ1|ζ()ψ()Δα, (2.33)

    then

    nmrσ()g()Δαk+λ2kλ1rσ()Δα+km|rσ()ζ()rσ(kλ1)ζ(kλ1)|ζ()ψ()Δαnk|rσ()ζ()rσ(k+λ2)ζ(k+λ2)|ζ()ψ()Δα. (2.34)

    If rσ/ζAHk2[m,n] and (2.31) and (2.33) satisfied, we get the reverse of (2.32) and (2.34).

    Proof. The same steps of Theorem 2.1 [(Λ3),(Λ4)] with Lemma 2.1, R1/ζ:[m,k]TR nonincreasing, R1/ζ:[k,n]TR nondecreasing.

    Corollary 2.10. In Theorem 2.4 [(Λ11),(Λ12)], letting T=R we get:

    (i)nmrσ()g()dαm+λ1mrσ()dαkm|rσ()ζ()rσ(m+λ1)ζ(m+λ1)|ζ()ψ()dα+nnλ2rσ()dα+nk|rσ()ζ()rσ(nλ2)ζ(nλ2)|ζ()ψ()dα. (2.35)
    (ii)nmrσ()g()dαk+λ2kλ1rσ()dα+km|rσ()ζ()rσ(kλ1)ζ(kλ1)|ζ()ψ()dαnk|rσ()ζ()rσ(k+λ2)ζ(k+λ2)|ζ()ψ()dα. (2.36)

    Corollary 2.11. In (2.35) and (2.36), we put α=1, with ϕ()= we get [47,Theorems 23 and 24].

    Corollary 2.12. Our results (2.35) and (2.36), by using T=Z gets

    (i)n1=mr(+1)g()α1m+λ11=mr(+1)α1k1=m|r(+1)ζ()r(m+λ1+1)ζ(m+λ1)|ζ()ψ()ˆ+n1=nλ2r(+1)α1+n1=k|r(+1)ζ()r(nλ2+1)ζ(nλ2)|ζ()ψ()α1.
    (ii)n1=mr(+1)g()α1k+λ21=kλ1r(+1)α1+k1=m|r(+1)ζ()r(kλ1+1)ζ(kλ1)|ζ()ψ()α1n1=k|r(+1)ζ()r(k+λ2+1)ζ(k+λ2)|h()ψ()α1.

    In this work, we explore new generalizations of the integral Steffensen inequality given in [38,39,43] by the utilization of the α-conformable derivatives and integrals, A few of these results are generalised to time scales. We also obtained the discrete and continuous case of our main results, in order to gain some fresh inequalities as specific cases.

    The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no conflict of interest.



    [1] Iwata Y, Sugimoto H, Kuwamura H (2006) Reparability limit of steel buildings based on the actual data of the Hyogoken-Nanbu earthquake, Proceedings of the 38th Joint Panel. Wind and Seismic effects, NIST Special Publication, 1057: 23-32.
    [2] McCormick J, Aburano H, Ikenaga M, et al. (2008) Permissible residual deformation levels for building structures considering both safety and human elements, Proceedings of the 14th world conference on earthquake engineering, China: Seismological Press Beijing, 12-17.
    [3] Kasai K, Fu Y, Watanabe A (1998) Passive control systems for seismic damage mitigation. J Struct Eng 124: 501-512. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(501) doi: 10.1061/(ASCE)0733-9445(1998)124:5(501)
    [4] Black CJ, Makris N, Aiken ID (2002) Component testing, stability analysis and characterization of buckling-restrained braces. PEER 2002/08, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
    [5] Fahnestock LA, Sause R, Ricles JM, et al. (2003) Ductility demands on buckling restrained braced frames under earthquake loading. Earthq Eng Eng Vib 2: 255-268. https://doi.org/10.1007/s11803-003-0009-5 doi: 10.1007/s11803-003-0009-5
    [6] Sabelli R, Mahin S, Chang C (2003) Seismic demands on steel braced frame buildings with buckling-restrained braces. Eng Struct 25: 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X doi: 10.1016/S0141-0296(02)00175-X
    [7] Newell J, Uang CM, Benzoni G (2006) Subassemblage testing of core brace buckling restrained braces (G Series). TR-06/01, University of California, San Diego.
    [8] Tremblay R, Bolduc P, Neville R, et al. (2006) Seismic testing and performance of buckling restrained bracing systems. Can J Civil Eng 33: 183-198. https://doi.org/10.1139/l05-103 doi: 10.1139/l05-103
    [9] Naghavi M, Rahnavard R, Robert J (2019) Numerical evaluation of the hysteretic behavior of concentrically braced frames and buckling restrained brace frame systems. J Build Eng 22: 415-428. https://doi.org/10.1016/j.jobe.2018.12.023 doi: 10.1016/j.jobe.2018.12.023
    [10] MacRae G, Kimura Y, Roeder C (2004) Effect of column stiffness on braced frame seismic behavior. J Struct Eng 130: 381-391. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(381) doi: 10.1061/(ASCE)0733-9445(2004)130:3(381)
    [11] Zaruma S, Fahnestock LA (2018) Assessment of design parameters influencing seismic collapse performance of buckling restrained braced frames. Soil Dyn Earthq Eng 113: 35-46. https://doi.org/10.1016/j.soildyn.2018.05.021 doi: 10.1016/j.soildyn.2018.05.021
    [12] Kiggins S, Uang CM (2006) Reducing residual drift of buckling-restrained braced frames as a dual system. Eng Struct 28: 1525-1532. https://doi.org/10.1016/j.engstruct.2005.10.023 doi: 10.1016/j.engstruct.2005.10.023
    [13] Erochko J, Christopoulos C, Tremblay R, et al. (2011) Residual drift response of SMRFs and BRB Frames in steel buildings designed according to ASCE 7-05. J Struct Eng 137: 589-599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296 doi: 10.1061/(ASCE)ST.1943-541X.0000296
    [14] Ariyaratana CA, Fahnestock LA (2011) Evaluation of buckling-restrained braced frame seismic performance considering reserve strength. Eng Struct 33: 77-89. https://doi.org/10.1016/j.engstruct.2010.09.020 doi: 10.1016/j.engstruct.2010.09.020
    [15] Hoveidae N, Tremblay R, Rafezy B, et al. (2015) Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces. J Constr Steel Res 114: 89-99. https://doi.org/10.1016/j.jcsr.2015.06.005 doi: 10.1016/j.jcsr.2015.06.005
    [16] Pandikkadavath M, Sahoo DR (2016) Analytical investigation on cyclic response of buckling-restrained braces with short yielding core segments. Int J Steel Struct 16: 1273-1285. https://doi.org/10.1007/s13296-016-0083-y doi: 10.1007/s13296-016-0083-y
    [17] Hoveidae N, Radpour S (2021) A novel all-steel buckling restrained brace for seismic drift mitigation of steel frames. B Earthq Eng 19: 1537-1567. https://doi.org/10.1007/s10518-020-01038-0 doi: 10.1007/s10518-020-01038-0
    [18] Mazzolani F (2008) Innovative metal systems for seismic upgrading of RC structures. J Constr Steel Res 64: 882-895. https://doi.org/10.1016/j.jcsr.2007.12.017 doi: 10.1016/j.jcsr.2007.12.017
    [19] Yooprasertchai E, Warnitchai P (2008) Seismic retrofitting of low-rise nonductile reinforced concrete buildings by buckling-restrained braces, Proceedings of 14th World Conference on Earthquake Engineering, Beijing.
    [20] Dinu F, Bordea S, Dubina D (2011) Strengthening of non-seismic reinforced concrete frames of buckling restrained steel braces, Behaviour of Steel Structures in Seismic Areas, 1 Ed., CRC Press.
    [21] Mahrenholtz C, Lin P, Wu A, et al. (2015) Retrofit of reinforced concrete frames with buckling-restrained braces. Earthqu Eng Struct D 44: 59-78. https://doi.org/10.1002/eqe.2458 doi: 10.1002/eqe.2458
    [22] Abou-Elfath H, Ramadan M, Alkanai FO (2017) Upgrading the seismic capacity of existing RC buildings using buckling restrained braces. Alex Eng J 56: 251-262. https://doi.org/10.1016/j.aej.2016.11.018 doi: 10.1016/j.aej.2016.11.018
    [23] Ozcelik R, Erdil EE (2019) Pseudodynamic test of a deficient RC frame strengthened with buckling restrained braces. Earthqu Spectra 35: 1163-1187. https://doi.org/10.1193/122317EQS263M doi: 10.1193/122317EQS263M
    [24] Al-Sadoon ZA, Saatcioglu M, Palermo D (2020) New buckling-restrained brace for seismically deficient reinforced concrete frames. J Struct Eng 146: 04020082. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002439 doi: 10.1061/(ASCE)ST.1943-541X.0002439
    [25] Sutcu F, Bal A, Fujishita K, et al. (2020) Experimental and analytical studies of sub‑standard RC frames retrofitted with buckling‑restrained braces and steel frames. B Earthq Eng 18: 2389-2410. https://doi.org/10.1007/s10518-020-00785-4 doi: 10.1007/s10518-020-00785-4
    [26] Castaldo P, Tubaldi E, Selvi F, et al. (2021) Seismic performance of an existing RC structure retrofitted with buckling restrained braces. J Build Eng 33: 101688. https://doi.org/10.1016/j.jobe.2020.101688 doi: 10.1016/j.jobe.2020.101688
    [27] Xu ZD, Shen YP, Guo YQ (2003) Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart Mater Struct 12: 80-87. https://doi.org/10.1088/0964-1726/12/1/309 doi: 10.1088/0964-1726/12/1/309
    [28] Dai J, Xu ZD, Gai PP, et al. (2021) Optimal design of tuned mass damper inerter with a Maxwell element for mitigating the vortex-induced vibration in bridges. Mech Syst Signal Pr 148: 107180. https://doi.org/10.1016/j.ymssp.2020.107180 doi: 10.1016/j.ymssp.2020.107180
    [29] American Institute of Steel Construction (AISC) (2016) Seismic provisions for structural steel buildings. ANSI/AISC 341-16.
    [30] Dehghani M, Tremblay R (2012) Development of standard dynamic loading protocol for buckling-restrained braced frames. International Specialty Conference on Behaviour of Steel Structures in Seismic Area (STESSA 2012), Santiago de Chile
    [31] Razavi, SA, Mirghaderi, SR, Seini, A, et al. (2012) Reduced length buckling restrained brace using steel plates as restraining segment, Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
    [32] Nakamura H, Maeda Y, Sasaki T, et al. (2000) Fatigue properties of practical-scale unbonded braces. Nippon Steel Tech Rep 82: 51-57.
    [33] Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12: 159-164. https://doi.org/10.1115/1.4009458 doi: 10.1115/1.4009458
    [34] Usami T, Wang C, Funayama J (2011) Low-cycle fatigue tests of a type of buckling restrained braces. Procedia Eng 14: 956-964. https://doi.org/10.1016/j.proeng.2011.07.120 doi: 10.1016/j.proeng.2011.07.120
    [35] Tabatabaei SAR, Mirghaderi SR, Hosseini A (2014) Experimental and numerical developing of reduced length buckling-restrained braces. Eng Struct 77: 143-160. https://doi.org/10.1016/j.engstruct.2014.07.034 doi: 10.1016/j.engstruct.2014.07.034
    [36] Pandikkadavath MS, Sahoo DR (2020) Development and subassemblage cyclic testing of hybrid buckling-restrained steel braces. Earthq Eng Eng Vib 19: 967-983. https://doi.org/10.1007/s11803-020-0607-5 doi: 10.1007/s11803-020-0607-5
    [37] Sabelli R (2001) Research on Improving the Design and Analysis of Earthquake-Resistant Steel Braced Frames, California: Earthquake Engineering Research Institute.
    [38] SeismoStruct, 2022. A computer program for static and dynamic nonlinear analysis of framed structures. Available from: http://www.seismosoft.com/SeismoStruct.
    [39] Mander JB, Priestley MJN, Park R (1988) Theoretical stress-strain model for confined concrete. J Struct Eng 114: 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804) doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [40] Martinez-Rueda JE, Elnashai AS (1997) Confined concrete model under cyclic load. Mater Struct 30: 139-147. https://doi.org/10.1007/BF02486385 doi: 10.1007/BF02486385
    [41] American Concrete Institute (ACI) Committee 318 (2019) Building code requirements for structural concrete. ACI 318-19.
    [42] International code council (2018) 2018 International Building Code. Available from: https://codes.iccsafe.org/content/IBC2018/copyright.
    [43] Kiggins K, Uang CM (2006) Reducing residual drift of buckling-restrained braced frames as a dual system. Eng Struct 28: 1525-1532. https://doi.org/10.1016/j.engstruct.2005.10.023
    [44] Kiggins K and Uang CM (2006) Reducing residual drift of buckling-restrained braced frames as a dual system. Eng Struct 28: 1525-1532. https://doi.org/10.1016/j.engstruct.2005.10.023 doi: 10.1016/j.engstruct.2005.10.023
    [45] Vamvatsikos D, Cornell CA (2004) Applied incremental dynamic analysis. Earthq Spectra 20: 523-553. https://doi.org/10.1193/1.1737737 doi: 10.1193/1.1737737
    [46] Kitayama S, Constantinou MC (2018) Collapse performance of seismically isolated buildings designed by the procedures of ASCE/SEI 7. Eng Struct 164: 243-258. https://doi.org/10.1016/j.engstruct.2018.03.008 doi: 10.1016/j.engstruct.2018.03.008
    [47] Kitayama S, Constantinou MC (2019) Probabilistic seismic performance assessment of seismically isolated buildings designed by the procedures of ASCE/SEI 7 and other enhanced criteria. Eng Struct 179: 566-582. https://doi.org/10.1016/j.engstruct.2018.11.014 doi: 10.1016/j.engstruct.2018.11.014
    [48] Castaldo P, Amendola G (2021) Optimal DCFP bearing properties and seismic performance assessment in nondimensional form for isolated bridges. Earthq Eng Struct D 50: 2442-2461. https://doi.org/10.1002/eqe.3454 doi: 10.1002/eqe.3454
    [49] Castaldo P, Amendola G (2021) Optimal sliding friction coefficients for isolated viaducts and bridges: A comparison study. Struct Control Hlth e2838. https://doi.org/10.1002/stc.2838
    [50] Applied Technology Council (2009) Quantification of Building Seismic Performance Factors, Washington: Federal Emergency Management Agency.
    [51] Federal Emergency Management Agency (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Washington, DC, USA.
  • This article has been cited by:

    1. Ahmed A. El-Deeb, Clemente Cesarano, On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales, 2022, 11, 2075-1680, 336, 10.3390/axioms11070336
    2. Ahmed A. El-Deeb, Dumitru Baleanu, Jan Awrejcewicz, (Δ∇)∇-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications, 2022, 14, 2073-8994, 1867, 10.3390/sym14091867
    3. Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim, On some dynamic inequalities of Hilbert's-type on time scales, 2023, 8, 2473-6988, 3378, 10.3934/math.2023174
    4. Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu, Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales, 2022, 7, 2473-6988, 14099, 10.3934/math.2022777
    5. Ahmed A. El-Deeb, Dumitru Baleanu, Clemente Cesarano, Ahmed Abdeldaim, On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales, 2022, 14, 2073-8994, 1421, 10.3390/sym14071421
    6. Hassan M. El-Owaidy, Ahmed A. El-Deeb, Samer D. Makharesh, Dumitru Baleanu, Clemente Cesarano, On Some Important Class of Dynamic Hilbert’s-Type Inequalities on Time Scales, 2022, 14, 2073-8994, 1395, 10.3390/sym14071395
    7. Ahmed A. El-Deeb, Alaa A. El-Bary, Jan Awrejcewicz, On Some Dynamic (ΔΔ)∇- Gronwall–Bellman–Pachpatte-Type Inequalities on Time Scales and Its Applications, 2022, 14, 2073-8994, 1902, 10.3390/sym14091902
    8. Asfand Fahad, Saad Ihsaan Butt, Josip Pečarić, Marjan Praljak, Generalized Taylor’s Formula and Steffensen’s Inequality, 2023, 11, 2227-7390, 3570, 10.3390/math11163570
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3977) PDF downloads(208) Cited by(0)

Figures and Tables

Figures(16)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog