Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Voluntary carbon information disclosures, corporate-level environmental sustainability efforts, and market value

  • Based on global 500 companies, this study examines whether the market incorporates the corporations' voluntary carbon emissions disclosures as part of their environmental sustainability efforts, thus increasing their market value. Proxies used to measure the corporations' ecological sustainability efforts include the choice of voluntary carbon disclosures, carbon emissions amounts, carbon intensity, and carbon disclosure quality. During the study period, those companies that chose to disclose their carbon information to the Carbon Disclosure Project (CDP), saw the market value their efforts towards environmental sustainability by increasing their market value. This study also compared the market value of disclosing and non-disclosing firms and found that non-disclosing companies had higher market value than did disclosing firms. However, this relationship was statistically insignificant. This study uses the more extensive data set, extended period, and more robust econometric approach (Difference GMM) and extends the boundaries of accounting research to incorporate environmental-related disclosures. Therefore, this most recent study can provide new insights to researchers, investors, and policymakers in the present context of environmental sustainability and business sustainability.

    Citation: Jaspreet K. Sra, Annie L. Booth, Raymond A. K. Cox. Voluntary carbon information disclosures, corporate-level environmental sustainability efforts, and market value[J]. Green Finance, 2022, 4(2): 179-206. doi: 10.3934/GF.2022009

    Related Papers:

    [1] Xiaowei Fang . A derivative-free RMIL conjugate gradient method for constrained nonlinear systems of monotone equations. AIMS Mathematics, 2025, 10(5): 11656-11675. doi: 10.3934/math.2025528
    [2] Xuejie Ma, Songhua Wang . A hybrid approach to conjugate gradient algorithms for nonlinear systems of equations with applications in signal restoration. AIMS Mathematics, 2024, 9(12): 36167-36190. doi: 10.3934/math.20241717
    [3] Habibu Abdullahi, A. K. Awasthi, Mohammed Yusuf Waziri, Issam A. R. Moghrabi, Abubakar Sani Halilu, Kabiru Ahmed, Sulaiman M. Ibrahim, Yau Balarabe Musa, Elissa M. Nadia . An improved convex constrained conjugate gradient descent method for nonlinear monotone equations with signal recovery applications. AIMS Mathematics, 2025, 10(4): 7941-7969. doi: 10.3934/math.2025365
    [4] Xiyuan Zhang, Yueting Yang . A new hybrid conjugate gradient method close to the memoryless BFGS quasi-Newton method and its application in image restoration and machine learning. AIMS Mathematics, 2024, 9(10): 27535-27556. doi: 10.3934/math.20241337
    [5] Yixin Li, Chunguang Li, Wei Yang, Wensheng Zhang . A new conjugate gradient method with a restart direction and its application in image restoration. AIMS Mathematics, 2023, 8(12): 28791-28807. doi: 10.3934/math.20231475
    [6] Abdulkarim Hassan Ibrahim, Poom Kumam, Auwal Bala Abubakar, Umar Batsari Yusuf, Seifu Endris Yimer, Kazeem Olalekan Aremu . An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration. AIMS Mathematics, 2021, 6(1): 235-260. doi: 10.3934/math.2021016
    [7] Rabiu Bashir Yunus, Ahmed R. El-Saeed, Nooraini Zainuddin, Hanita Daud . A structured RMIL conjugate gradient-based strategy for nonlinear least squares with applications in image restoration problems. AIMS Mathematics, 2025, 10(6): 14893-14916. doi: 10.3934/math.2025668
    [8] Sani Aji, Poom Kumam, Aliyu Muhammed Awwal, Mahmoud Muhammad Yahaya, Kanokwan Sitthithakerngkiet . An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery. AIMS Mathematics, 2021, 6(8): 8078-8106. doi: 10.3934/math.2021469
    [9] Jamilu Sabi'u, Ibrahim Mohammed Sulaiman, P. Kaelo, Maulana Malik, Saadi Ahmad Kamaruddin . An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection. AIMS Mathematics, 2024, 9(1): 642-664. doi: 10.3934/math.2024034
    [10] Maulana Malik, Ibrahim Mohammed Sulaiman, Auwal Bala Abubakar, Gianinna Ardaneswari, Sukono . A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection. AIMS Mathematics, 2023, 8(1): 1-28. doi: 10.3934/math.2023001
  • Based on global 500 companies, this study examines whether the market incorporates the corporations' voluntary carbon emissions disclosures as part of their environmental sustainability efforts, thus increasing their market value. Proxies used to measure the corporations' ecological sustainability efforts include the choice of voluntary carbon disclosures, carbon emissions amounts, carbon intensity, and carbon disclosure quality. During the study period, those companies that chose to disclose their carbon information to the Carbon Disclosure Project (CDP), saw the market value their efforts towards environmental sustainability by increasing their market value. This study also compared the market value of disclosing and non-disclosing firms and found that non-disclosing companies had higher market value than did disclosing firms. However, this relationship was statistically insignificant. This study uses the more extensive data set, extended period, and more robust econometric approach (Difference GMM) and extends the boundaries of accounting research to incorporate environmental-related disclosures. Therefore, this most recent study can provide new insights to researchers, investors, and policymakers in the present context of environmental sustainability and business sustainability.



    Systems of nonlinear equations are fundamental to a diverse range of applications, including power flow analysis [1], economic equilibrium modeling [2], the development of generalized Bregman distance proximal point methods [3], and traffic assignment [4]. Meanwhile, these systems also involve monotone variational inequalities [5,6] and compression sensing problems [7,8]. Given the ubiquity and significance of such problems across these varied domains, the study and development of numerical methods to efficiently solve systems of nonlinear equations are of considerable practical importance. In this paper, we focus on a specific class of systems of nonlinear equations subject to convex constraints, which can be formulated as follows:

    θ(a)=0,aΘ, (1.1)

    where ΘRn is a non-empty, and closed convex set. The function θ:RnRn is assumed to possess monotonicity and continuous differentiability, satisfying the following condition:

    θ(a)θ(b),ab0,a,bRn.

    Generally, the gradient-type method generates a sequence {ak}, defined as follows:

    ak+1=ak+tkdk,k0,

    where tk is the step length, and dk denotes the search direction. The choice of the search direction dk gives rise to various gradient-type methods, such as the steepest descent methods, Newton's methods, and quasi-Newton methods [9,10]. Newton's and quasi-Newton methods, along with their numerous variants, have been extensively studied due to their strong local linear convergence properties. For instance, Mahdavi et al. [11] proposed and analyzed a nonmonotone quasi-Newton algorithm for strongly convex multiobjective optimization, demonstrating its global convergence and local superlinear convergence rate under certain conditions. Sihwail et al. [12] proposed a novel hybrid method, Newton-Harris hawks optimization, which combines Newton's methods and Harris hawks optimization to effectively solve systems of nonlinear equations. Moreover, Krutikov et al. [13] demonstrated that quasi-Newton methods, when applied to strongly convex functions with a Lipschitz gradient, achieve geometric convergence without relying on local quadratic approximations. However, despite these advantages, Newton's and quasi-Newton methods involve the computation of the Hessian matrix or its approximation value at each iteration, which significantly increases computational complexity. This requirement can be a limiting factor, particularly for large-scale problems where the Hessian matrix is difficult to compute and store efficiently.

    The conjugate gradient method [14,15] is one of the most effective approaches in the field of the gradient-type methods. It is highly recognized for its efficiency, simplicity, lower storage requirements, and reliable convergence properties. These characteristics make it particularly well-suited for solving large-scale systems of nonlinear equations [16,17]. The method's search direction is typically defined as follows:

    dk={θk,k=0,θk+βkdk1,k1,

    where θkθ(ak) and βk is known as the conjugate parameter. The choice of βk differentiates various conjugate gradient methods. Several advancements have been made in the development of conjugate gradient methods with different conjugate parameters [18]. For instance, Ma et al. [19] proposed a modified inertial three-term conjugate gradient method for solving nonlinear monotone equations with convex constraints. This method is notable for its global and Q-linear convergence properties, and has demonstrated superior numerical performance in applications such as sparse signal recovery and image restoration in compressed sensing. Furthermore, Liu et al. [20] introduced a spectral conjugate gradient method with an inertial factor for solving nonlinear pseudo-monotone equations over a convex set. Additionally, Sabiu et al. [21] developed an optimal scaled Perry conjugate gradient method for solving large-scale systems of monotone nonlinear equations. This method ensures global convergence under the conditions of monotonicity and Lipschitz continuity.

    Inspired by the classical Liu-Story (LS) [22] and Rivai-Mohamad-Ismail-Leong (RMIL) [23] conjugate parameters, as well as incorporating the hybrid technique (e.g, [24,25]) and the projection approach, we develop a modified LS-RMIL-type conjugate gradient projection algorithm. The proposed algorithm is specifically designed for solving systems of nonlinear equations with convex constraints. In this paper, and , represent the Euclidean norm and the inner product of vectors, respectively.

    In this section, we refine and enhance the search direction employed in the optimization processes of the LS and RMIL methods. Specifically, Liu et al. [22] and Rivai et al. [23] introduced conjugate parameters, defined respectively as:

    βLSk=θk,yk1θk1,dk1,βRMILk=θk,yk1dk12.

    Based on the insights derived from these parameters, we adopt the hybrid technique (e.g., [24,25]) that combines their key features. This leads to the formulation of a new conjugate parameter, which is subsequently incorporated into the framework of a three-term search direction. Our primary objective is to construct a novel search direction that ensures both the sufficient descent and trust-region properties, which are critical for the robustness and efficiency of the optimization process. To accomplish this, we carefully design a novel search direction tailored to meet these requirements. The designed search direction dk is defined as follows:

    dk={θk,k=0,θk+βkdk1+ϖkyk1,k1, (2.1)

    where the conjugate parameter βk and the scalar parameter ϖk are given by

    βk=θk,yk1ckyk12θk,dk1c2kandϖk=νkθk,dk1ck, (2.2)

    with yk1=θkθk1. One scalar parameter ck is crucial for maintaining stability in the iterative process, and is defined by

    ck=max

    where \mu is a positive constant. Another scalar parameter \nu_k is introduced to fine-tune the adjustment of the search direction. It is defined as \nu_k = \min\{\tilde{\nu}, \max\{\bar{\nu}_k, 0\}\} with 0 < \tilde{\nu} < 1 , and \bar{\nu}_k = \frac{\langle \theta_k, y_{k-1} - s_{k-1} \rangle}{\|\theta_k\|^2}, where s_{k-1} = a_k - a_{k-1} represents the difference between the iterative points a_k and a_{k-1} of the optimization variable.

    Before delving into the sufficient descent and trust-region properties of the designed search direction (2.1), we can deduce some important bounds from the definition of \beta_k and \varpi_k . We consider the bound for \beta_k :

    |\beta_k| \leq \frac{\|\theta_k\| \|y_{k-1}\|}{c_k} + \frac{\|y_{k-1}\|^2 \|\theta_k\| \|d_{k-1}\|}{c_k^2},

    which can be further bounded by

    |\beta_k| \leq \frac{\|\theta_k\| \|y_{k-1}\|}{\mu \|d_{k-1}\| \|y_{k-1}\|} + \frac{\|y_{k-1}\|^2 \|\theta_k\| \|d_{k-1}\|}{\mu^2 \|d_{k-1}\|^2 \|y_{k-1}\|^2}.

    Simplifying this, we obtain

    \begin{equation} |\beta_k| \leq \left( \frac{1}{\mu}+\frac{1}{\mu^2} \right) \frac{\|\theta_k\|}{\|d_{k-1}\|}. \end{equation} (2.3)

    Next, we consider the bound for \varpi_k :

    \begin{equation} |\varpi_k| \leq \frac{\nu_k \|\theta_k\| \|d_{k-1}\|}{c_k} \leq \frac{\tilde{\nu}_k \|\theta_k\| \|d_{k-1}\|}{\mu \|d_{k-1}\| \|y_{k-1}\|} = \frac{\tilde{\nu}}{\mu} \frac{\|\theta_k\|}{\|y_{k-1}\|}. \end{equation} (2.4)

    Lemma 1. The search direction d_k generated by (2.1) satisfies the sufficient descent property:

    \langle \theta_k, d_k \rangle \leq -M \|\theta_k\|^2,

    where M = 1 - \frac{1}{4} (1 + \tilde{\nu})^2 .

    Proof. For k = 0 , the conclusion is straightforward, which implies \langle \theta_0, d_0 \rangle = - \|\theta_0\|^2 \leq -M \|\theta_0\|^2 . For k \geq 1 , together with the search direction generated by (2.1), we have:

    \begin{equation} \begin{array}{lll} \langle \theta_k, d_k \rangle & = & \langle \theta_k, -\theta_k + \beta_k d_{k-1} + \varpi_k y_{k-1} \rangle \\ & = & -\|\theta_k\|^2 + \frac{\langle \theta_k, y_{k-1} \rangle \langle \theta_{k}, d_{k-1} \rangle}{c_k} - \frac{\|y_{k-1}\|^2 \langle \theta_{k}, d_{k-1} \rangle^2}{c_k^2} + \frac{\nu_k \langle \theta_k, y_{k-1} \rangle \langle \theta_{k}, d_{k-1} \rangle}{c_k} \\ & = & -\|\theta_k\|^2 + (1+\nu_k) \frac{\langle \theta_k, y_{k-1} \rangle \langle \theta_{k}, d_{k-1} \rangle}{c_k} - \frac{\|y_{k-1}\|^2 \langle \theta_{k}, d_{k-1} \rangle^2}{c_k^2} . \end{array} \end{equation} (2.5)

    By applying the inequality \langle e_k, g_k \rangle \leq \frac{1}{2} (\|e_k\|^2+\|g_k\|^2) , where e_k = (1 + \nu_k) \theta_k / \sqrt{2} and g_k = \sqrt{2} \langle \theta_k, d_{k-1} \rangle y_{k-1} / c_k , we obtain the following result:

    \begin{equation} \frac{(1+\nu_k)\langle \theta_k, y_{k-1} \rangle \langle \theta_{k}, d_{k-1} \rangle}{c_k} \leq \frac{1}{4} (1+\nu_k)^2 \|\theta_k\|^2 + \frac{\langle \theta_k, d_{k-1} \rangle^2 \|y_{k-1}\|^2 }{c_k^2}. \end{equation} (2.6)

    Substituting (2.6) into (2.5), we obtain

    \langle \theta_k, d_k \rangle \leq -\|\theta_k\|^2 + \frac{1}{4} (1 + \tilde{\nu}_k)^2 \|\theta_k\|^2 \leq -\left(1-\frac{1}{4}(1+\tilde{\nu})^2\right) \|\theta_k\|^2.

    Thus, the result holds.

    Lemma 2. The search direction d_k generated by (2.1) satisfies the trust-region property:

    M \|\theta_k\| \leq \|d_k\| \leq N \|\theta_k\|,

    where N = 1 + \frac{1}{\mu} + \frac{1}{\mu^2} + \frac{\tilde{\nu}}{\mu} .

    Proof. From Lemma 1, we have -\|\theta_k\| \|d_k\| \leq \langle \theta_k, d_k \rangle \leq -M \|\theta_k\|^2 , which implies:

    \|d_k\| \geq M \|\theta_k\|.

    Additionally, together with (2.1), we obtain:

    \|d_k\| = \|- \theta_k + \beta_k d_{k-1} + \varpi_k y_{k-1}\| \leq \|\theta_k\| + |\beta_k| \|d_{k-1}\| + |\varpi_k| \|y_{k-1}\|.

    Substituting the inequalities |\beta_k| and |\varpi_k| defined in (2.3) and (2.4), respectively, into the above equality, we have

    \|d_k\| \leq \left( 1 + \frac{1}{\mu} + \frac{1}{\mu^2} + \frac{\tilde{\nu}}{\mu} \right) \|\theta_k\|.

    Thus, the result holds.

    Before delving into the specifics of our proposed algorithm, it is essential to first clarify the line search approach, the projection operator, and the iterative update rule employed in the proposed algorithm. These foundational components play a crucial role in the overall efficacy of the proposed algorithm.

    First, in the proposed algorithm, the line search approach is used to determine an appropriate step length t_k = \eta \rho^{i_k} . Specifically, this step length is computed based on the following procedure, where i_k = \{i: i = 0, 1, \ldots\} is the smallest non-negative integer i that satisfies the following inequality:

    \begin{equation} -\langle \theta(a_k + \eta \rho^i d_k), d_k \rangle \geq \sigma \eta \rho^i \| \theta(a_k + \eta \rho^i d_k) \| \|d_k\|^2, \end{equation} (2.7)

    where \eta > 0 , \rho \in (0, 1) , and \sigma > 0 are algorithmic parameters.

    Furthermore, the projection operator P_{\Theta}[\cdot] is a critical component that ensures the iterative points remain within the feasible region \Theta . Specifically, the projection of a point a \in \mathbb{R}^n onto the set \Theta is defined as

    P_{\Theta}[a] = \arg\min \{\|a - b\| : b \in \Theta\}, \quad a \in \mathbb{R}^n.

    This operator identifies the point in \Theta closest to a in the Euclidean norm. Moreover, the projection operator is non-expansive, meaning it satisfies the property:

    \begin{equation} \| P_{\Theta}[a]-P_{\Theta}[b] \| \leq \| a-b \|. \end{equation} (2.8)

    Finally, the iterative update rule forms the core of the proposed algorithm, indicating how the next iterative point a_{k+1} is computed from the current iterative point a_k . Specifically, the update is performed by using the following formula:

    \begin{equation} a_{k+1} = P_{\Theta}\left[ a_k - \gamma w_k \theta(z_k) \right], \quad w_k = \frac{\langle \theta(z_k), a_k-z_k\rangle}{||\theta(z_k)||^2}, \end{equation} (2.9)

    where z_k = a_k + t_k d_k and \gamma \in (0, 2) . This projection-based update ensures that the new iterative point remains feasible and moves towards reducing the objective function.

    With the foundational components described above, we now present the detailed steps of an improved LS-RMIL-type conjugate gradient projection algorithm (Abbr. ILR algorithm), which is described as Algorithm 1.

    Algorithm 1 An improved LS-RMIL-type conjugate gradient projection algorithm
      1: Initialization: a_0\in \mathbb{R}^n , \mu > 0 , \tilde{\nu}\in(0, 1) , \eta, \sigma > 0 , \rho\in(0, 1) , \tau > 0 , and set k: = 0 .
      2: while \|\theta_k\| > \tau do
      3:        Evaluate two parameters \beta_k and \varpi_k from (2.2) and search direction d_k from (2.1).
      4:        Evaluate the step length t_k from (2.7) and set the trial point z_k = a_k+t_kd_k .
      5:        if z_k\in\Theta and \|\theta(z_k)\| < \tau then
      6:                break.
      7:        else
      8:                Evaluate the next iterative point a_{k+1} from (2.9).
      9:        end if
    10:        Set k: = k+1 .
    11: end while

    In this section, we provide a comprehensive analysis of the global convergence properties of the ILR algorithm. To facilitate this analysis, we introduce the following key assumptions.

    Assumption B:

    (B1) The solution set \Theta_* of problem (1.1) is non-empty.

    (B2) The function \theta(a) exhibits a monotonicity property, i.e.,

    \langle \theta(a) - \theta(b), a - b \rangle \geq 0, \quad \forall a, b \in \mathbb{R}^n.

    These assumptions are fundamental in establishing the convergence behavior of the ILR algorithm as they ensure that the iterative process converges to a solution within the feasible region of problem (1.1).

    The following lemma demonstrates that the line search approach defined in (2.7) of the ILR algorithm is indeed well-defined and can be successfully applied in the iterative process.

    Lemma 3. Consider the sequence \{t_k\} generated by the ILR algorithm. Then, there exists a step length t_k at each iteration that satisfies the line search approach defined in (2.7).

    Proof. We proceed by contradiction and assume that inequality (2.7) does not hold. Specifically, suppose there exists a positive index k_0 such that, for all i \in \{0\} \cup \mathbb{N} , the following inequality is satisfied:

    \begin{equation*} - \langle \theta(a_{k_0} + \eta \rho^i d_{k_0}), d_{k_0} \rangle < \sigma \eta \rho^i \| \theta(a_{k_0} + \eta \rho^i d_{k_0}) \| \|d_{k_0}\|^2. \end{equation*}

    By utilizing the continuity of \theta and taking the limit as i \to \infty , the above inequality yields:

    \begin{equation} - \langle \theta(a_{k_0}), d_{k_0} \rangle \leq 0. \end{equation} (3.1)

    On the other hand, invoking Lemma 1 and again taking the limit as i \to \infty , we obtain:

    \begin{equation*} -\langle \theta(a_{k_0}), d_{k_0} \rangle \geq M \| \theta(a_{k_0}) \|^2 > 0, \end{equation*}

    which clearly contradicts inequality (3.1). This contradiction implies that the initial assumption must be false, and therefore inequality (2.7) must hold.

    The following lemma establishes that the sequence \{a_k\} generated by the ILR algorithm exhibits monotonic behavior with respect to the solutions set \Theta_* of problem (1.1).

    Lemma 4. Consider the sequences \{a_k\} and \{z_k\} generated by the ILR algorithm. Then, the following properties hold:

    (i) The sequence \{a_k\} is bounded, meaning that there exists a constant D > 0 such that \|a_k\|\leq D for all k \geq 0 .

    (ii) The sequence \{z_k\} converges to the sequence \{a_k\} , i.e., \lim\limits_{k \to \infty} \|z_k-a_k\| = 0 .

    Proof. From the definition of the projection operator P_{\Theta}[\cdot] and the non-expensive property defined in (2.8), we can derive the following inequality:

    \begin{equation} \begin{array}{lll} \|a_{k+1} - a_\ast \|^2 & = & \| P_\Theta\left[ a_k - \gamma w_k \theta(z_k) \right] - P_\Theta[a_\ast]\|^2 \\ & \leq & \|a_k - \gamma w_k \theta(z_k) - a_\ast \|^2 \\ & = & \|a_k - a_\ast \|^2 - 2 \gamma w_k \langle \theta(z_k), a_k - a_\ast \rangle + \gamma^2 w_k^2 \|\theta(z_k)\|^2, \end{array} \end{equation} (3.2)

    where a_* denotes a solution of problem (1.1). Next, starting from Assumption B2, the definition of z_k , and the line search approach (2.7), we can further establish the following inequality:

    \begin{equation} \begin{array}{lll} \langle \theta(z_k), a_k - a_\ast \rangle & = & \langle \theta(z_k), a_k - z_k \rangle + \langle \theta(z_k), z_k - a_\ast \rangle - \langle \theta(a_*), z_k-a_* \rangle \\ & \geq & \langle \theta(z_k), a_k - z_k \rangle \\ & \geq & \sigma t_k^2 \|\theta(z_k)\| \|d_k\|^2. \end{array} \end{equation} (3.3)

    Combining with (3.2), (3.3), and the definition of w_k , we can derive

    \begin{equation} \begin{array}{lll} \|a_{k+1} - a_\ast \|^2 & \leq & \|a_k - a_\ast \|^2 - 2 \gamma w_k \langle \theta(z_k), a_k - z_k \rangle + \gamma^2 w_k^2 \|\theta(z_k)\|^2, \\ & = & \|a_k - a_\ast \|^2 - 2 \gamma w_k^2 \|\theta(z_k)\|^2 + \gamma^2 w_k^2 \|\theta(z_k)\|^2, \\ & = & \|a_k - a_\ast \|^2 - (2\gamma-\gamma^2) w_k^2 \|\theta(z_k)\|^2, \end{array} \end{equation} (3.4)

    Given the definition of w_k and (3.3), we have

    \|\theta(z_k)\|^2 w_k = \langle \theta(z_k), a_k - z_k \rangle \geq \sigma t_k^2 \|\theta(z_k)\| \|d_k\|^2,

    which implies that \|\theta(z_k)\| w_k \geq \sigma t_k^2 \|d_k\|^2 . Substituting this into (3.4), we obtain

    \begin{equation} \begin{array}{lll} \|a_{k+1} - a_\ast \|^2 & \leq & \|a_k - a_\ast \|^2 - (2\gamma-\gamma^2) (\sigma t_k^2 \|d_k\|^2)^2, \\ & = & \|a_k - a_\ast \|^2 - (2\gamma-\gamma^2) \sigma^2 t_k^4 \|d_k\|^4, \\ & = & \|a_k - a_\ast \|^2 - (2\gamma-\gamma^2) \sigma^2 \|a_k-z_k\|^4. \end{array} \end{equation} (3.5)

    This result indicates that the sequence \{\|a_k-a_*\|\} is monotonically decreasing, meaning that it consistently reduces as k increases. Hence, the sequence \{a_k\} is bounded.

    By reorganizing the formula defined in (3.5), we obtain

    \begin{equation} \begin{array}{lll} (2\gamma-\gamma^2) \sigma^2 \sum\limits_{k = 0}^{\infty} \|a_k-z_k\|^4 & \leq & \sum\limits_{k = 0}^{\infty} \left(\|a_k - a_\ast \|^2 - \|a_{k+1} - a_\ast \|^2\right) \\ & \leq & \|a_0 - a_* \|. \end{array} \end{equation} (3.6)

    This implies that \lim\limits_{k \to \infty} \|z_k-a_k\| = 0.

    Theorem 1. Consider the sequence \{\theta_k\} generated by the ILR algorithm. Then, the following conclusion is satisfied:

    \begin{equation} \lim\limits_{k \to \infty} \| \theta_k \| = 0. \end{equation} (3.7)

    Proof. To demonstrate the desired result, we begin by assuming the contrary. Suppose that there exists a constant A_1 > 0 such that \|\theta_k\| > A_1 for all k\geq0 . This assumption, combined with Lemma 2, gives us the following relation \|d_k\| \geq M \|\theta_k\| > M \ A_1 for all k\geq0 . Given the continuity of the function \theta(a) and the boundedness of the sequence \{a_k\} , it follows that the sequence \{\theta_k\} is also bounded. In other words, there exists a non-negative constant A_2 such that \|\theta_k\| \leq A_2 for all \(k \geq 0\). By incorporating this bound with Lemma 2, we obtain \|d_k\| \leq N\|\theta_k\| \leq N A_2 for all k\geq0 . The two inequalities derived above imply that the sequence \{d_k\} is bounded. Together with Lemma 4(ii) and the definition of z_k , we have \lim_{k \to \infty} \|z_k-a_k\| = \lim_{k \to \infty} \|a_k + t_k d_k-a_k\| = \lim_{k \to \infty} t_k \| d_k\| = 0 , which leads to the conclusion that \lim_{k \to \infty} t_k = 0 with the boundedness of the sequence \{d_k\} .

    Since the sequences \{a_k\} and \{d_k\} are both bounded, we can extract two convergent subsequences, \{a_{k_i}\} and \{d_{k_i}\} , such that \lim_{i \to \infty, i \in \mathcal{K}} a_{k_i} = \bar{a} and \lim_{i \to \infty, i \in \mathcal{K}} d_{k_i} = \bar{d} , where \mathcal{K} denotes an infinite index set. Utilizing Lemma 1, we have -\langle \theta_{k_i}, d_{k_i} \rangle \geq M \|\theta_{k_i}\|^2. Taking the limit as i \to \infty in the above inequality and invoking the continuity of \theta(a) , we obtain

    -\langle \theta(\bar{a}), \bar{d} \rangle \geq M\|\theta(\bar{a})\|^2 \geq M A_1^2 > 0.

    Furthermore, we adopt the line search approach defined in (2.7), which implies the following inequality holds: -\langle \theta(a_{k_i} + (\eta\rho)^{-1}t_{k_i}d_{k_i}), d_{k_i} \rangle < \sigma \eta (\eta\rho)^{-1} t_{k_i}\|\theta(a_{k_i} + (\eta\rho)^{-1} t_{k_i}d_{k_i})\|\|d_{k_i}\|^2 . Taking the limit as i \to \infty in the above inequality, and using the continuity of \theta(a) , we conclude

    -\langle \theta(\bar{a}), \bar{d} \rangle \leq 0.

    These two results directly contradict each other. Therefore, the assumption that \|\theta_k\| > A_1 for all \(k \geq 0\) must be false, and the desired result follows.

    In this section, we evaluate the effectiveness of the proposed ILR algorithm through a comprehensive set of numerical experiments. These experiments are designed to solve large-scale systems of nonlinear equations with convex constraints, thereby assessing the algorithm's computational efficiency. For benchmarking purposes, we compare the ILR algorithm with two established methods (e.g., VRMILP and DFPRPMHS) across various test problems, initial points, and dimensional settings.

    In this section, we utilize the ILR algorithm to address large-scale systems of nonlinear equations with convex constraints. We then compare it with two existing algorithms: the VRMILP algorithm [26] and the DFPRPMHS algorithm [27]. All experimental codes are executed on a 64-bit Ubuntu 20.04.2 LTS operating system with an Intel(R) Xeon(R) Gold 5115 2.40GHz CPU. The parameters for the ILR algorithm are set as follows:

    \mu = 0.02, \quad \tilde{\nu} = 0.105, \quad \eta = 1, \quad \sigma = 10^{-4}, \quad \rho = 0.74, \quad \tau = 10^{-5}.

    For the VRMILP and DFPRPMHS algorithms, we adhere to the parameter settings provided in their respective original works. Seven test problems are selected for evaluation, with problem dimensions set at {5,000 10,000 50,000 100,000 150,000}. Each test problem is initialized by the following points: a_1 = \left(\frac{1}{2}, \frac{1}{2^2}, \ldots, \frac{1}{2^n}\right) , a_2 = \left(0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\right) , a_3 = (1, \frac{1}{2}, \ldots, \frac{1}{n}) , a_4 = \left(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right) , a_5 = \left(\frac{1}{3}, \frac{1}{3^2}, \ldots, \frac{1}{3^n}\right) , a_6 = (2, 2, \ldots, 2) a_7 = \left(1-\frac{1}{n}, 1-\frac{2}{n}, \ldots, 1-\frac{n}{n}\right) , a_8 \in [0, 1]^n . The stopping criteria for all algorithms is set to either \theta_k \leq \tau or a maximum of 3000 iterations. Here, \theta(a) = (\theta_1(a), \theta_2(a), \ldots, \theta_n(a))^\text{T} with a = (a_1, a_2, \ldots, a_n)^\text{T} . The seven test problems are described as follows:

    Problem 1 [7]:

    \theta_i(a) = e^{a_i}-1,\; \; \; \text{for}\; \; i = 1,2,\ldots,n,

    with the constraint set \Theta = \mathbb{R}^n_+ . The unique solution is a_* = (0, 0, \ldots, 0)^\text{T} .

    Problem 2 [7]:

    \theta_i(a) = \frac{i}{n}e^{a_i}-1,\; \; \; \text{for}\; \; i = 1,2,\ldots,n,

    with the constraint set \Theta = \mathbb{R}^n_+ .

    Problem 3 [5]:

    \theta_i(a) = \log(a_i+1)-\frac{a_i}{n},\; \; \; \text{for}\; i = 1,2,\ldots,n,

    with the constraint set \Theta = [-1, +\infty) .

    Problem 4 [5]:

    \theta_i(a) = (e^{a_i})^2+3\sin(a_i)\cos(a_i)-1,\; \; \; \text{for}\; i = 1,2,\ldots,n,

    with the constraint set \Theta = \mathbb{R}^n_+ .

    Problem 5 [5]:

    \begin{eqnarray*} \theta_1(a) & = & 2a_1+\sin(a_1)-1, \\ \theta_i(a) & = & 2a_{i-1}+2a_i+\sin(a_i)-1,\; \; \; \text{for}\; \; i = 2,3,\ldots,n-1, \\ \theta_n(a) & = & 2a_n+\sin(a_n)-1, \end{eqnarray*}

    with the constraint set \Theta = \mathbb{R}^n_+ .

    Problem 6 [7]:

    \theta_i(a) = \frac{1}{n}e^{a_i}-1,\; \; \; \text{for}\; \; i = 1,2,\ldots,n,

    with the constraint set \Theta = \mathbb{R}^n_+ .

    Problem 7 [5]:

    \theta_i(a) = a_i-2\sin(|a_i-1|),\; \; \; \text{for}\; \; i = 1,2,\ldots,n,

    with the constraint set \Theta = \mathbb{R}^n_+ .

    The performance of the ILR, VRMILP, and DFPRPMHS algorithms are systematically evaluated through a series of test problems, with the numerical results presented in Tables 17. In these tables, "Init" refers to the initial point used in each test problem, " n " refers to the problem dimension multiplied by 1000, "CPUT" refers to the CPU time in seconds, "Nfunc" refers to the number of function evaluations, and "Niter" refers to the number of iterations. A notable observation from the numerical results is that all three algorithms successfully solve the test problem across various initial points and problem dimensions. To be specific, the ILR algorithm demonstrates superior performance in most cases compared to the other two algorithms.

    Table 1.  Numerical results for Problem 1.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 1.93\times10^{-3} / \textbf{4} / \textbf{1} \mathbf{4.45\times10^{-4}} /4/1 1.57\times10^{-2} /332/7
    a_2 (5) \mathbf{1.84\times10^{-3}} / \textbf{23} / \textbf{7} 3.47\times10^{-3} /60/15 2.15\times10^{-2} /487/24
    a_3 (5) \mathbf{2.11\times10^{-3}} / \textbf{29} /9 2.16\times10^{-3} /37/ \textbf{8} 1.75\times10^{-2} /447/10
    a_4 (5) \mathbf{1.55\times10^{-3}} / \textbf{23} / \textbf{7} 2.13\times10^{-3} /39/9 1.86\times10^{-2} /405/31
    a_5 (5) \mathbf{1.57\times10^{-3}} / \textbf{23} / \textbf{7} 3.33\times10^{-3} /60/15 2.04\times10^{-2} /487/24
    a_6 (5) 5.08\times10^{-4} / \textbf{7} / \textbf{1} \mathbf{4.16\times10^{-4}} /7/1 2.00\times10^{-3} /9/1
    a_7 (5) \mathbf{1.92\times10^{-3}} / \textbf{23} / \textbf{7} 3.46\times10^{-3} /60/15 2.07\times10^{-2} /487/24
    a_8 (5) 2.21\times10^{-3} / \textbf{30} / \textbf{9} \mathbf{2.16\times10^{-3}} /39/9 2.30\times10^{-2} /563/14
    a_1 (10) 6.36\times10^{-4} / \textbf{4} / \textbf{1} \mathbf{4.22\times10^{-4}} /4/1 2.50\times10^{-2} /332/7
    a_2 (10) \mathbf{3.69\times10^{-3}} / \textbf{23} / \textbf{7} 6.19\times10^{-3} /57/14 4.11\times10^{-2} /487/24
    a_3 (10) 4.66\times10^{-3} / \textbf{29} /9 \mathbf{3.96\times10^{-3}} /37/ \textbf{8} 3.44\times10^{-2} /447/10
    a_4 (10) \mathbf{3.48\times10^{-3}} / \textbf{23} / \textbf{7} 4.12\times10^{-3} /39/9 3.59\times10^{-2} /408/32
    a_5 (10) \mathbf{3.45\times10^{-3}} / \textbf{23} / \textbf{7} 6.12\times10^{-3} /57/14 3.98\times10^{-2} /487/24
    a_6 (10) 8.35\times10^{-4} / \textbf{7} / \textbf{1} \mathbf{7.34\times10^{-4}} /7/1 1.99\times10^{-3} /9/1
    a_7 (10) \mathbf{3.56\times10^{-3}} / \textbf{23} / \textbf{7} 6.10\times10^{-3} /57/14 3.88\times10^{-2} /487/24
    a_8 (10) 6.37\times10^{-3} / \textbf{41} /13 \mathbf{5.28\times10^{-3}} /48/ \textbf{12} 4.40\times10^{-2} /563/14
    a_1 (50) 3.75\times10^{-3} / \textbf{4} / \textbf{1} \mathbf{1.64\times10^{-3}} /4/1 9.06\times10^{-2} /332/7
    a_2 (50) \mathbf{1.35\times10^{-2}} / \textbf{23} / \textbf{7} 2.48\times10^{-2} /60/15 1.51\times10^{-1} /596/26
    a_3 (50) \mathbf{1.27\times10^{-2}} / \textbf{29} /9 1.72\times10^{-2} /37/ \textbf{8} 1.02\times10^{-1} /447/10
    a_4 (50) \mathbf{9.17\times10^{-3}} / \textbf{23} / \textbf{7} 1.11\times10^{-2} /39/9 1.39\times10^{-1} /602/28
    a_5 (50) \mathbf{1.39\times10^{-2}} / \textbf{23} / \textbf{7} 2.47\times10^{-2} /60/15 1.49\times10^{-1} /596/26
    a_6 (50) \mathbf{2.67\times10^{-3}} / \textbf{7} / \textbf{1} 4.30\times10^{-3} /7/1 5.98\times10^{-3} /9/1
    a_7 (50) \mathbf{1.13\times10^{-2}} / \textbf{23} / \textbf{7} 1.95\times10^{-2} /60/15 1.32\times10^{-1} /596/26
    a_8 (50) \mathbf{1.06\times10^{-2}} / \textbf{23} / \textbf{7} 1.86\times10^{-2} /56/14 1.30\times10^{-1} /576/16
    a_1 (100) 7.76\times10^{-3} / \textbf{4} / \textbf{1} \mathbf{2.44\times10^{-3}} /4/1 1.21\times10^{-1} /332/7
    a_2 (100) \mathbf{1.49\times10^{-2}} / \textbf{23} / \textbf{7} 3.51\times10^{-2} /66/17 1.44\times10^{-1} /487/24
    a_3 (100) 1.69\times10^{-2} / \textbf{29} /9 \mathbf{1.64\times10^{-2}} /37/ \textbf{8} 1.24\times10^{-1} /447/10
    a_4 (100) \mathbf{1.49\times10^{-2}} / \textbf{23} / \textbf{7} 1.56\times10^{-2} /39/9 1.84\times10^{-1} /602/28
    a_5 (100) \mathbf{1.24\times10^{-2}} / \textbf{23} / \textbf{7} 2.76\times10^{-2} /66/17 1.38\times10^{-1} /487/24
    a_6 (100) 2.91\times10^{-3} / \textbf{7} / \textbf{1} \mathbf{2.55\times10^{-3}} /7/1 5.45\times10^{-3} /9/1
    a_7 (100) \mathbf{1.22\times10^{-2}} / \textbf{23} / \textbf{7} 2.67\times10^{-2} /66/17 1.50\times10^{-1} /487/24
    a_8 (100) \mathbf{1.32\times10^{-2}} / \textbf{23} / \textbf{7} 3.29\times10^{-2} /60/15 1.92\times10^{-1} /677/18
    a_1 (150) 3.49\times10^{-3} / \textbf{4} / \textbf{1} \mathbf{2.63\times10^{-3}} /4/1 1.13\times10^{-1} /332/7
    a_2 (150) \mathbf{1.88\times10^{-2}} / \textbf{23} / \textbf{7} 3.88\times10^{-2} /75/19 2.84\times10^{-1} /602/28
    a_3 (150) 1.95\times10^{-2} / \textbf{29} /9 \mathbf{1.88\times10^{-2}} /37/ \textbf{8} 1.71\times10^{-1} /447/10
    a_4 (150) \mathbf{1.65\times10^{-2}} / \textbf{23} / \textbf{7} 2.08\times10^{-2} /39/9 2.36\times10^{-1} /602/28
    a_5 (150) \mathbf{1.65\times10^{-2}} / \textbf{23} / \textbf{7} 3.80\times10^{-2} /75/19 2.40\times10^{-1} /602/28
    a_6 (150) 5.11\times10^{-3} / \textbf{7} / \textbf{1} \mathbf{4.06\times10^{-3}} /7/1 1.05\times10^{-2} /9/1
    a_7 (150) \mathbf{1.75\times10^{-2}} / \textbf{23} / \textbf{7} 4.80\times10^{-2} /75/19 2.46\times10^{-1} /602/28
    a_8 (150) \mathbf{1.95\times10^{-2}} / \textbf{23} / \textbf{7} 2.97\times10^{-2} /45/11 2.34\times10^{-1} /575/18

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results for Problem 2.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 8.86\times10^{-3} / \textbf{29} / \textbf{11} \mathbf{8.84\times10^{-3}} /96/25 3.91\times10^{-2} /576/23
    a_2 (5) 2.64\times10^{-2} /400/52 \mathbf{1.73\times10^{-2}} / \textbf{281} / \textbf{31} 5.06\times10^{-2} /893/43
    a_3 (5) \mathbf{2.85\times10^{-3}} / \textbf{30} / \textbf{11} 6.36\times10^{-3} /88/23 2.04\times10^{-2} /300/34
    a_4 (5) 2.69\times10^{-2} /414/53 \mathbf{1.86\times10^{-2}} / \textbf{310} / \textbf{30} 4.14\times10^{-2} /692/44
    a_5 (5) \mathbf{4.95\times10^{-3}} / \textbf{54} / \textbf{20} 7.76\times10^{-3} /107/28 2.56\times10^{-2} /406/35
    a_6 (5) 1.57\times10^{-2} /232/31 \mathbf{7.92\times10^{-3}} / \textbf{114} / \textbf{25} 5.95\times10^{-2} /1056/34
    a_7 (5) \mathbf{5.33\times10^{-3}} / \textbf{54} / \textbf{20} 7.78\times10^{-3} /107/28 2.59\times10^{-2} /406/35
    a_8 (5) 4.65\times10^{-2} /727/76 \mathbf{1.90\times10^{-2}} / \textbf{305} / \textbf{36} 4.12\times10^{-2} /688/41
    a_1 (10) \mathbf{1.22\times10^{-2}} / \textbf{56} / \textbf{20} 1.26\times10^{-2} /84/22 5.03\times10^{-2} /411/37
    a_2 (10) 5.78\times10^{-2} /435/47 \mathbf{4.50\times10^{-2}} / \textbf{398} /34 7.79\times10^{-2} /703/ \textbf{22}
    a_3 (10) \mathbf{6.49\times10^{-3}} / \textbf{29} / \textbf{11} 1.56\times10^{-2} /82/22 5.64\times10^{-2} /353/55
    a_4 (10) 8.59\times10^{-2} /582/57 \mathbf{4.34\times10^{-2}} / \textbf{387} /36 8.26\times10^{-2} /721/ \textbf{25}
    a_5 (10) \mathbf{1.05\times10^{-2}} / \textbf{50} / \textbf{18} 1.92\times10^{-2} /128/32 4.28\times10^{-2} /300/37
    a_6 (10) 3.89\times10^{-2} /276/35 \mathbf{1.51\times10^{-2}} / \textbf{108} / \textbf{24} 9.90\times10^{-2} /851/40
    a_7 (10) \mathbf{1.07\times10^{-2}} / \textbf{50} / \textbf{18} 1.87\times10^{-2} /128/32 4.04\times10^{-2} /300/37
    a_8 (10) 8.75\times10^{-2} /673/60 \mathbf{6.39\times10^{-2}} / \textbf{541} /52 1.09\times10^{-1} /966/ \textbf{39}
    a_1 (50) 5.65\times10^{-2} / \textbf{57} / \textbf{20} \mathbf{5.36\times10^{-2}} /90/24 1.69\times10^{-1} /320/41
    a_2 (50) 4.89\times10^{-1} /997/80 4.34\times10^{-1} /951/57 \mathbf{3.28\times10^{-1}} / \textbf{731} / \textbf{24}
    a_3 (50) \mathbf{2.44\times10^{-2}} / \textbf{35} / \textbf{13} 5.55\times10^{-2} /99/26 1.42\times10^{-1} /327/35
    a_4 (50) 4.42\times10^{-1} /926/83 3.80\times10^{-1} /957/55 \mathbf{3.09\times10^{-1}} / \textbf{731} / \textbf{24}
    a_5 (50) \mathbf{4.08\times10^{-2}} / \textbf{55} / \textbf{19} 6.92\times10^{-2} /124/31 1.93\times10^{-1} /409/36
    a_6 (50) 2.48\times10^{-1} /510/51 \mathbf{5.96\times10^{-2}} / \textbf{114} / \textbf{25} 4.73\times10^{-1} /1119/36
    a_7 (50) \mathbf{3.77\times10^{-2}} / \textbf{55} / \textbf{19} 6.56\times10^{-2} /124/31 1.99\times10^{-1} /409/36
    a_8 (50) 4.88\times10^{-1} /1011/86 3.19\times10^{-1} /699/50 \mathbf{3.04\times10^{-1}} / \textbf{686} / \textbf{20}
    a_1 (100) 7.76\times10^{-2} / \textbf{75} /27 \mathbf{7.69\times10^{-2}} /92/ \textbf{24} 4.11\times10^{-1} /613/31
    a_2 (100) 8.14\times10^{-1} /1187/92 8.34\times10^{-1} /1259/65 \mathbf{4.43\times10^{-1}} / \textbf{727} / \textbf{24}
    a_3 (100) 9.47\times10^{-2} /96/33 \mathbf{7.82\times10^{-2}} / \textbf{94} / \textbf{25} 2.83\times10^{-1} /413/39
    a_4 (100) 7.69\times10^{-1} /1073/90 8.34\times10^{-1} /1193/66 \mathbf{5.16\times10^{-1}} / \textbf{728} / \textbf{24}
    a_5 (100) \mathbf{9.05\times10^{-2}} / \textbf{76} / \textbf{26} 1.01\times10^{-1} /119/31 3.28\times10^{-1} /493/29
    a_6 (100) 3.62\times10^{-1} /505/46 \mathbf{9.80\times10^{-2}} / \textbf{122} / \textbf{27} 6.84\times10^{-1} /1006/46
    a_7 (100) \mathbf{8.67\times10^{-2}} / \textbf{76} / \textbf{26} 9.83\times10^{-2} /119/31 3.27\times10^{-1} /493/29
    a_8 (100) 1.18\times 10^0 /1610/106 5.32\times10^{-1} /800/52 \mathbf{4.04\times10^{-1}} / \textbf{608} / \textbf{25}
    a_1 (150) \mathbf{8.00\times10^{-2}} / \textbf{54} / \textbf{20} 1.15\times10^{-1} /99/26 3.48\times10^{-1} /330/40
    a_2 (150) 1.15\times 10^0 /1130/87 1.34\times 10^0 /1408/76 \mathbf{7.09\times10^{-1}} / \textbf{726} / \textbf{24}
    a_3 (150) \mathbf{8.44\times10^{-2}} / \textbf{57} / \textbf{18} 1.25\times10^{-1} /102/26 4.08\times10^{-1} /400/35
    a_4 (150) 1.17\times 10^0 /1165/95 1.26\times 10^0 /1365/69 \mathbf{6.80\times10^{-1}} / \textbf{726} / \textbf{24}
    a_5 (150) \mathbf{9.90\times10^{-2}} / \textbf{69} / \textbf{25} 1.44\times10^{-1} /124/32 4.11\times10^{-1} /407/38
    a_6 (150) 7.33\times10^{-1} /714/63 \mathbf{1.32\times10^{-1}} / \textbf{117} / \textbf{26} 8.80\times 10^0 /8853/275
    a_7 (150) \mathbf{1.24\times10^{-1}} / \textbf{69} / \textbf{25} 1.73\times10^{-1} /124/32 4.47\times10^{-1} /407/38
    a_8 (150) 1.33\times 10^0 /1224/91 1.27\times 10^0 /1255/71 \mathbf{7.01\times10^{-1}} / \textbf{657} / \textbf{29}

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results for Problem 3.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 8.33\times10^{-3} /23/ \textbf{8} \mathbf{2.50\times10^{-3}} / \textbf{21} /9 3.90\times10^{-2} /544/11
    a_2 (5) 8.23\times10^{-3} / \textbf{61} /21 \mathbf{8.17\times10^{-3}} /82/22 6.76\times10^{-2} /977/ \textbf{19}
    a_3 (5) 5.10\times10^{-3} / \textbf{45} / \textbf{16} \mathbf{5.06\times10^{-3}} /60/16 3.11\times10^{-2} /492/30
    a_4 (5) 7.16\times10^{-3} / \textbf{66} /23 \mathbf{6.87\times10^{-3}} /82/22 5.68\times10^{-2} /977/ \textbf{19}
    a_5 (5) \mathbf{6.90\times10^{-3}} / \textbf{61} /21 7.31\times10^{-3} /82/22 5.94\times10^{-2} /977/ \textbf{19}
    a_6 (5) \mathbf{2.28\times10^{-3}} / \textbf{19} / \textbf{7} 3.53\times10^{-3} /33/14 6.56\times10^{-2} /1084/21
    a_7 (5) 7.05\times10^{-3} / \textbf{61} /21 \mathbf{6.94\times10^{-3}} /82/22 5.87\times10^{-2} /977/ \textbf{19}
    a_8 (5) \mathbf{4.85\times10^{-3}} / \textbf{44} / \textbf{15} 8.76\times10^{-3} /105/28 5.83\times10^{-2} /977/19
    a_1 (10) 6.23\times10^{-3} /23/ \textbf{8} \mathbf{3.88\times10^{-3}} / \textbf{21} /9 5.47\times10^{-2} /544/11
    a_2 (10) \mathbf{9.75\times10^{-3}} / \textbf{49} / \textbf{17} 1.26\times10^{-2} /85/23 1.05\times10^{-1} /986/21
    a_3 (10) 1.12\times10^{-2} / \textbf{54} /19 \mathbf{8.97\times10^{-3}} /60/ \textbf{16} 5.92\times10^{-2} /499/31
    a_4 (10) 1.67\times10^{-2} / \textbf{78} /28 \mathbf{1.27\times10^{-2}} /85/23 1.07\times10^{-1} /986/ \textbf{21}
    a_5 (10) \mathbf{1.04\times10^{-2}} / \textbf{49} / \textbf{17} 1.24\times10^{-2} /85/23 1.09\times10^{-1} /986/21
    a_6 (10) \mathbf{4.08\times10^{-3}} / \textbf{19} / \textbf{7} 5.89\times10^{-3} /33/14 1.06\times10^{-1} /977/19
    a_7 (10) \mathbf{1.10\times10^{-2}} / \textbf{49} / \textbf{17} 1.44\times10^{-2} /85/23 1.11\times10^{-1} /986/21
    a_8 (10) \mathbf{8.57\times10^{-3}} / \textbf{44} / \textbf{15} 1.47\times10^{-2} /98/27 9.76\times10^{-2} /890/24
    a_1 (50) 2.84\times10^{-2} /23/ \textbf{8} \mathbf{1.39\times10^{-2}} / \textbf{21} /9 1.18\times10^{-1} /437/9
    a_2 (50) 4.56\times10^{-2} / \textbf{74} /26 \mathbf{3.72\times10^{-2}} /94/25 3.08\times10^{-1} /978/ \textbf{19}
    a_3 (50) \mathbf{2.33\times10^{-2}} / \textbf{44} / \textbf{15} 2.67\times10^{-2} /60/16 1.04\times10^{-1} /279/31
    a_4 (50) \mathbf{4.24\times10^{-2}} / \textbf{61} /21 4.43\times10^{-2} /93/25 2.94\times10^{-1} /978/ \textbf{19}
    a_5 (50) 5.26\times10^{-2} / \textbf{74} /26 \mathbf{4.02\times10^{-2}} /94/25 2.85\times10^{-1} /978/ \textbf{19}
    a_6 (50) \mathbf{1.01\times10^{-2}} / \textbf{19} / \textbf{7} 1.48\times10^{-2} /35/15 2.93\times10^{-1} /977/19
    a_7 (50) 4.55\times10^{-2} / \textbf{74} /26 \mathbf{4.41\times10^{-2}} /94/25 2.97\times10^{-1} /978/ \textbf{19}
    a_8 (50) \mathbf{4.27\times10^{-2}} / \textbf{63} /22 5.60\times10^{-2} /102/27 2.92\times10^{-1} /978/ \textbf{19}
    a_1 (100) 1.51\times10^{-2} /20/ \textbf{7} \mathbf{1.14\times10^{-2}} / \textbf{18} /7 1.52\times10^{-1} /437/9
    a_2 (100) \mathbf{5.81\times10^{-2}} / \textbf{72} /25 6.66\times10^{-2} /104/28 3.86\times10^{-1} /978/ \textbf{19}
    a_3 (100) 4.40\times10^{-2} / \textbf{58} /20 \mathbf{3.25\times10^{-2}} /60/ \textbf{16} 1.36\times10^{-1} /364/19
    a_4 (100) \mathbf{4.69\times10^{-2}} / \textbf{61} /21 5.44\times10^{-2} /104/28 4.02\times10^{-1} /978/ \textbf{19}
    a_5 (100) \mathbf{5.39\times10^{-2}} / \textbf{72} /25 5.64\times10^{-2} /104/28 3.98\times10^{-1} /978/ \textbf{19}
    a_6 (100) \mathbf{1.69\times10^{-2}} / \textbf{19} / \textbf{7} 2.70\times10^{-2} /35/15 4.70\times10^{-1} /1085/21
    a_7 (100) \mathbf{5.06\times10^{-2}} / \textbf{72} /25 5.60\times10^{-2} /104/28 4.14\times10^{-1} /978/ \textbf{19}
    a_8 (100) 6.54\times10^{-2} / \textbf{76} /26 \mathbf{5.91\times10^{-2}} /109/29 3.98\times10^{-1} /978/ \textbf{19}
    a_1 (150) 1.99\times10^{-2} /20/ \textbf{7} \mathbf{1.50\times10^{-2}} / \textbf{18} /7 2.04\times10^{-1} /437/9
    a_2 (150) \mathbf{7.71\times10^{-2}} / \textbf{71} /25 8.53\times10^{-2} /99/27 5.09\times10^{-1} /978/ \textbf{19}
    a_3 (150) 5.08\times10^{-2} / \textbf{51} /17 \mathbf{4.93\times10^{-2}} /60/ \textbf{16} 1.65\times10^{-1} /274/19
    a_4 (150) \mathbf{8.24\times10^{-2}} / \textbf{74} /25 8.47\times10^{-2} /99/27 5.37\times10^{-1} /978/ \textbf{19}
    a_5 (150) 7.76\times10^{-2} / \textbf{71} /25 \mathbf{6.93\times10^{-2}} /99/27 5.39\times10^{-1} /978/ \textbf{19}
    a_6 (150) \mathbf{2.37\times10^{-2}} / \textbf{22} / \textbf{8} 3.91\times10^{-2} /35/15 5.64\times10^{-1} /978/19
    a_7 (150) \mathbf{8.44\times10^{-2}} / \textbf{71} /25 8.50\times10^{-2} /99/27 5.38\times10^{-1} /978/ \textbf{19}
    a_8 (150) \mathbf{6.24\times10^{-2}} / \textbf{62} /22 7.60\times10^{-2} /105/28 5.27\times10^{-1} /978/ \textbf{19}

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results for Problem 4.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 1.58\times10^{-1} / \textbf{3} / \textbf{1} \mathbf{4.47\times10^{-3}} /3/1 2.10\times10^{-2} /3/1
    a_2 (5) \mathbf{1.70\times10^{-2}} / \textbf{44} / \textbf{5} 1.91\times10^{-2} /149/16 4.55\times10^{-2} /651/16
    a_3 (5) \mathbf{9.99\times10^{-3}} / \textbf{63} /8 1.86\times10^{-2} /247/26 2.06\times10^{-2} /259/ \textbf{7}
    a_4 (5) \mathbf{3.70\times10^{-3}} / \textbf{44} / \textbf{5} 1.33\times10^{-2} /225/24 2.86\times10^{-2} /509/12
    a_5 (5) \mathbf{5.19\times10^{-3}} / \textbf{44} / \textbf{5} 1.36\times10^{-2} /149/16 3.72\times10^{-2} /651/16
    a_6 (5) 8.76\times10^{-4} / \textbf{4} / \textbf{1} \mathbf{5.51\times10^{-4}} /4/1 2.28\times10^{-3} /4/1
    a_7 (5) \mathbf{3.48\times10^{-3}} / \textbf{44} / \textbf{5} 9.75\times10^{-3} /149/16 3.18\times10^{-2} /651/16
    a_8 (5) \mathbf{3.25\times10^{-3}} / \textbf{44} / \textbf{5} 1.24\times10^{-2} /200/21 3.11\times10^{-2} /626/14
    a_1 (10) 1.03\times10^{-3} / \textbf{3} / \textbf{1} \mathbf{5.12\times10^{-4}} /3/1 3.02\times10^{-3} /3/1
    a_2 (10) \mathbf{5.99\times10^{-3}} / \textbf{44} / \textbf{5} 2.83\times10^{-2} /243/26 6.79\times10^{-2} /660/16
    a_3 (10) \mathbf{8.56\times10^{-3}} / \textbf{63} /8 2.97\times10^{-2} /246/26 2.56\times10^{-2} /259/ \textbf{7}
    a_4 (10) \mathbf{5.47\times10^{-3}} / \textbf{44} / \textbf{5} 1.59\times10^{-2} /141/15 5.05\times10^{-2} /509/12
    a_5 (10) \mathbf{5.66\times10^{-3}} / \textbf{44} / \textbf{5} 2.84\times10^{-2} /243/26 6.01\times10^{-2} /660/16
    a_6 (10) 1.04\times10^{-3} / \textbf{4} / \textbf{1} \mathbf{6.07\times10^{-4}} /4/1 1.69\times10^{-3} /4/1
    a_7 (10) \mathbf{5.08\times10^{-3}} / \textbf{44} / \textbf{5} 2.48\times10^{-2} /243/26 5.86\times10^{-2} /660/16
    a_8 (10) \mathbf{5.28\times10^{-3}} / \textbf{44} / \textbf{5} 2.45\times10^{-2} /229/24 3.55\times10^{-2} /364/17
    a_1 (50) 8.54\times10^{-3} / \textbf{3} / \textbf{1} \mathbf{1.09\times10^{-3}} /3/1 3.14\times10^{-3} /3/1
    a_2 (50) \mathbf{2.88\times10^{-2}} / \textbf{44} / \textbf{5} 6.72\times10^{-2} /159/17 1.44\times10^{-1} /509/12
    a_3 (50) \mathbf{2.57\times10^{-2}} / \textbf{63} /8 7.24\times10^{-2} /237/25 6.79\times10^{-2} /259/ \textbf{7}
    a_4 (50) \mathbf{1.77\times10^{-2}} / \textbf{44} / \textbf{5} 9.94\times10^{-2} /245/26 1.31\times10^{-1} /509/12
    a_5 (50) \mathbf{1.74\times10^{-2}} / \textbf{44} / \textbf{5} 6.06\times10^{-2} /159/17 1.66\times10^{-1} /509/12
    a_6 (50) \mathbf{2.83\times10^{-3}} / \textbf{4} / \textbf{1} 3.46\times10^{-3} /4/1 4.31\times10^{-3} /4/1
    a_7 (50) \mathbf{1.88\times10^{-2}} / \textbf{44} / \textbf{5} 5.47\times10^{-2} /159/17 1.40\times10^{-1} /509/12
    a_8 (50) \mathbf{1.87\times10^{-2}} / \textbf{44} / \textbf{5} 8.57\times10^{-2} /244/26 1.81\times10^{-1} /725/17
    a_1 (100) 3.06\times10^{-3} / \textbf{3} / \textbf{1} \mathbf{2.70\times10^{-3}} /3/1 4.55\times10^{-3} /3/1
    a_2 (100) \mathbf{2.59\times10^{-2}} / \textbf{44} / \textbf{5} 1.15\times10^{-1} /250/27 1.79\times10^{-1} /509/12
    a_3 (100) \mathbf{3.02\times10^{-2}} / \textbf{63} /8 8.74\times10^{-2} /197/21 8.90\times10^{-2} /259/ \textbf{7}
    a_4 (100) \mathbf{2.46\times10^{-2}} / \textbf{44} / \textbf{5} 8.31\times10^{-2} /176/19 1.76\times10^{-1} /509/12
    a_5 (100) \mathbf{2.40\times10^{-2}} / \textbf{44} / \textbf{5} 1.17\times10^{-1} /250/27 1.83\times10^{-1} /509/12
    a_6 (100) 1.20\times10^{-2} /11/ \textbf{1} 1.08\times10^{-2} /11/1 \mathbf{5.98\times10^{-3}} / \textbf{4} /1
    a_7 (100) \mathbf{2.57\times10^{-2}} / \textbf{44} / \textbf{5} 1.21\times10^{-1} /250/27 1.97\times10^{-1} /509/12
    a_8 (100) \mathbf{2.37\times10^{-2}} / \textbf{44} / \textbf{5} 9.33\times10^{-2} /187/20 1.82\times10^{-1} /509/12
    a_1 (150) 3.87\times10^{-3} / \textbf{3} / \textbf{1} \mathbf{1.92\times10^{-3}} /3/1 6.30\times10^{-3} /3/1
    a_2 (150) \mathbf{3.76\times10^{-2}} / \textbf{44} / \textbf{5} 1.33\times10^{-1} /201/22 2.57\times10^{-1} /509/12
    a_3 (150) \mathbf{4.78\times10^{-2}} / \textbf{63} /8 1.15\times10^{-1} /179/19 1.22\times10^{-1} /259/ \textbf{7}
    a_4 (150) \mathbf{3.00\times10^{-2}} / \textbf{44} / \textbf{5} 8.73\times10^{-2} /132/14 2.34\times10^{-1} /509/12
    a_5 (150) \mathbf{3.16\times10^{-2}} / \textbf{44} / \textbf{5} 1.34\times10^{-1} /201/22 2.51\times10^{-1} /509/12
    a_6 (150) 1.60\times10^{-2} /11/ \textbf{1} 1.42\times10^{-2} /11/1 \mathbf{1.33\times10^{-2}} / \textbf{8} /1
    a_7 (150) \mathbf{3.09\times10^{-2}} / \textbf{44} / \textbf{5} 1.32\times10^{-1} /201/22 2.46\times10^{-1} /509/12
    a_8 (150) \mathbf{3.17\times10^{-2}} / \textbf{44} / \textbf{5} 2.09\times10^{-1} /301/32 3.02\times10^{-1} /642/24

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results for Problem 5.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 5.45\times10^{-2} / \textbf{283} /36 \mathbf{3.93\times10^{-2}} /309/ \textbf{34} 6.74\times10^{-2} /694/43
    a_2 (5) \mathbf{2.50\times10^{-2}} / \textbf{235} / \textbf{30} 3.07\times10^{-2} /330/36 9.82\times10^{-2} /1113/46
    a_3 (5) \mathbf{2.09\times10^{-2}} / \textbf{191} / \textbf{24} 2.60\times10^{-2} /294/32 5.82\times10^{-2} /663/50
    a_4 (5) \mathbf{2.41\times10^{-2}} / \textbf{235} / \textbf{30} 3.07\times10^{-2} /330/36 8.84\times10^{-2} /1125/46
    a_5 (5) \mathbf{2.04\times10^{-2}} / \textbf{212} / \textbf{27} 3.62\times10^{-2} /289/31 1.26\times10^{-1} /1142/56
    a_6 (5) 2.66\times10^{-2} / \textbf{253} / \textbf{32} \mathbf{2.25\times10^{-2}} /286/32 1.41\times10^{-1} /1265/113
    a_7 (5) \mathbf{2.84\times10^{-2}} / \textbf{212} / \textbf{27} 3.94\times10^{-2} /289/31 1.22\times10^{-1} /1142/56
    a_8 (5) \mathbf{3.33\times10^{-2}} / \textbf{247} / \textbf{32} 3.92\times10^{-2} /331/35 2.61\times10^{-1} /2555/55
    a_1 (10) \mathbf{6.23\times10^{-2}} / \textbf{254} / \textbf{32} 9.28\times10^{-2} /356/39 1.72\times10^{-1} /757/57
    a_2 (10) \mathbf{5.84\times10^{-2}} / \textbf{239} / \textbf{31} 6.88\times10^{-2} /308/33 1.68\times10^{-1} /800/48
    a_3 (10) \mathbf{5.94\times10^{-2}} / \textbf{258} / \textbf{33} 6.19\times10^{-2} /296/33 1.20\times10^{-1} /565/46
    a_4 (10) \mathbf{5.24\times10^{-2}} / \textbf{232} / \textbf{30} 6.53\times10^{-2} /308/33 1.60\times10^{-1} /800/48
    a_5 (10) \mathbf{5.56\times10^{-2}} / \textbf{239} / \textbf{31} 6.79\times10^{-2} /325/35 1.65\times10^{-1} /789/62
    a_6 (10) \mathbf{4.87\times10^{-2}} / \textbf{205} / \textbf{26} 6.13\times10^{-2} /282/32 1.81\times10^{-1} /887/53
    a_7 (10) \mathbf{5.46\times10^{-2}} / \textbf{239} / \textbf{31} 6.68\times10^{-2} /325/35 1.63\times10^{-1} /789/62
    a_8 (10) \mathbf{6.69\times10^{-2}} / \textbf{275} / \textbf{36} 7.43\times10^{-2} /350/37 2.56\times10^{-1} /1297/54
    a_1 (50) \mathbf{2.56\times10^{-1}} / \textbf{211} / \textbf{27} 3.13\times10^{-1} /308/33 5.78\times10^{-1} /657/46
    a_2 (50) \mathbf{2.42\times10^{-1}} / \textbf{229} / \textbf{29} 2.56\times10^{-1} /279/31 1.24\times 10^0 /1319/111
    a_3 (50) \mathbf{2.35\times10^{-1}} / \textbf{250} / \textbf{32} 2.68\times10^{-1} /308/33 6.76\times10^{-1} /682/59
    a_4 (50) \mathbf{2.38\times10^{-1}} / \textbf{229} / \textbf{29} 2.83\times10^{-1} /279/31 1.17\times 10^0 /1276/105
    a_5 (50) \mathbf{2.33\times10^{-1}} / \textbf{228} / \textbf{29} 3.54\times10^{-1} /340/38 9.50\times10^{-1} /983/83
    a_6 (50) \mathbf{2.17\times10^{-1}} / \textbf{219} / \textbf{28} 2.92\times10^{-1} /324/35 8.49\times10^{-1} /937/52
    a_7 (50) \mathbf{2.46\times10^{-1}} / \textbf{228} / \textbf{29} 3.07\times10^{-1} /340/38 9.22\times10^{-1} /983/83
    a_8 (50) \mathbf{2.32\times10^{-1}} / \textbf{241} / \textbf{31} 3.16\times10^{-1} /364/39 1.09\times 10^0 /1238/56
    a_1 (100) \mathbf{3.79\times10^{-1}} / \textbf{220} / \textbf{28} 4.93\times10^{-1} /325/35 1.12\times 10^0 /753/44
    a_2 (100) \mathbf{4.04\times10^{-1}} / \textbf{236} / \textbf{30} 4.62\times10^{-1} /283/32 1.24\times 10^0 /768/61
    a_3 (100) \mathbf{4.28\times10^{-1}} / \textbf{250} / \textbf{32} 4.92\times10^{-1} /317/34 1.87\times 10^0 /1229/56
    a_4 (100) \mathbf{3.82\times10^{-1}} / \textbf{236} / \textbf{30} 4.27\times10^{-1} /273/31 1.24\times 10^0 /768/61
    a_5 (100) \mathbf{4.77\times10^{-1}} / \textbf{262} / \textbf{33} 5.63\times10^{-1} /331/36 1.40\times 10^0 /892/65
    a_6 (100) \mathbf{4.27\times10^{-1}} / \textbf{254} / \textbf{33} 5.55\times10^{-1} /314/34 1.66\times 10^0 /1020/50
    a_7 (100) \mathbf{4.73\times10^{-1}} / \textbf{262} / \textbf{33} 5.60\times10^{-1} /331/36 1.30\times 10^0 /892/65
    a_8 (100) \mathbf{4.79\times10^{-1}} / \textbf{291} / \textbf{38} 5.78\times10^{-1} /380/41 1.96\times 10^0 /1246/58
    a_1 (150) \mathbf{5.67\times10^{-1}} / \textbf{221} / \textbf{28} 6.78\times10^{-1} /287/31 2.40\times 10^0 /1010/50
    a_2 (150) \mathbf{5.10\times10^{-1}} / \textbf{206} / \textbf{26} 8.62\times10^{-1} /375/41 2.98\times 10^0 /1327/123
    a_3 (150) \mathbf{5.57\times10^{-1}} / \textbf{228} / \textbf{29} 6.93\times10^{-1} /325/35 1.95\times 10^0 /832/52
    a_4 (150) \mathbf{5.48\times10^{-1}} / \textbf{206} / \textbf{26} 8.80\times10^{-1} /375/41 3.41\times 10^0 /1363/126
    a_5 (150) \mathbf{5.66\times10^{-1}} / \textbf{214} / \textbf{27} 8.50\times10^{-1} /358/40 2.31\times 10^0 /1031/78
    a_6 (150) \mathbf{4.97\times10^{-1}} / \textbf{240} / \textbf{31} 7.32\times10^{-1} /313/34 1.83\times 10^0 /875/46
    a_7 (150) \mathbf{5.95\times10^{-1}} / \textbf{214} / \textbf{27} 9.02\times10^{-1} /358/40 2.42\times 10^0 /1031/78
    a_8 (150) \mathbf{6.91\times10^{-1}} / \textbf{291} / \textbf{38} 1.13\times 10^0 /456/49 2.85\times 10^0 /1242/58

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results for Problem 6.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 7.08\times10^{-3} / \textbf{34} / \textbf{14} \mathbf{6.92\times10^{-3}} /84/22 4.32\times10^{-2} /672/21
    a_2 (5) 7.84\times10^{-3} / \textbf{69} /27 \mathbf{5.48\times10^{-3}} /71/ \textbf{22} 2.96\times10^{-2} /513/40
    a_3 (5) \mathbf{4.14\times10^{-3}} / \textbf{34} / \textbf{14} 7.29\times10^{-3} /111/27 2.58\times10^{-2} /504/34
    a_4 (5) 7.08\times10^{-3} /74/28 \mathbf{4.61\times10^{-3}} / \textbf{71} / \textbf{22} 2.23\times10^{-2} /414/41
    a_5 (5) 5.92\times10^{-3} / \textbf{69} /27 \mathbf{4.87\times10^{-3}} /71/ \textbf{22} 2.85\times10^{-2} /513/40
    a_6 (5) 3.27\times10^{-3} /32/13 \mathbf{2.77\times10^{-3}} / \textbf{28} / \textbf{11} 3.18\times10^{-2} /670/20
    a_7 (5) 6.28\times10^{-3} / \textbf{69} /27 \mathbf{4.86\times10^{-3}} /71/ \textbf{22} 2.74\times10^{-2} /513/40
    a_8 (5) 6.68\times10^{-3} / \textbf{79} /30 \mathbf{5.76\times10^{-3}} /84/ \textbf{25} 2.66\times10^{-2} /446/40
    a_1 (10) \mathbf{6.94\times10^{-3}} / \textbf{31} / \textbf{13} 8.81\times10^{-3} /67/20 4.26\times10^{-2} /424/29
    a_2 (10) \mathbf{6.88\times10^{-3}} / \textbf{34} / \textbf{14} 1.25\times10^{-2} /95/27 6.07\times10^{-2} /672/21
    a_3 (10) \mathbf{6.52\times10^{-3}} / \textbf{31} / \textbf{13} 1.68\times10^{-2} /142/31 3.96\times10^{-2} /384/30
    a_4 (10) \mathbf{6.86\times10^{-3}} / \textbf{34} / \textbf{14} 1.36\times10^{-2} /90/26 6.88\times10^{-2} /672/21
    a_5 (10) \mathbf{7.18\times10^{-3}} / \textbf{34} / \textbf{14} 1.23\times10^{-2} /95/27 6.25\times10^{-2} /672/21
    a_6 (10) 7.48\times10^{-3} /35/14 \mathbf{4.64\times10^{-3}} / \textbf{33} / \textbf{13} 5.18\times10^{-2} /561/18
    a_7 (10) \mathbf{6.86\times10^{-3}} / \textbf{34} / \textbf{14} 1.20\times10^{-2} /95/27 6.47\times10^{-2} /672/21
    a_8 (10) \mathbf{6.92\times10^{-3}} / \textbf{34} / \textbf{14} 1.10\times10^{-2} /86/25 6.35\times10^{-2} /672/21
    a_1 (50) \mathbf{3.20\times10^{-2}} / \textbf{41} / \textbf{17} 3.59\times10^{-1} /1099/94 2.04\times10^{-1} /698/31
    a_2 (50) \mathbf{2.57\times10^{-2}} / \textbf{36} / \textbf{15} 4.34\times10^{-2} /105/29 1.82\times10^{-1} /572/23
    a_3 (50) \mathbf{2.34\times10^{-2}} / \textbf{38} / \textbf{16} 2.38\times10^{-1} /769/56 1.70\times10^{-1} /511/38
    a_4 (50) \mathbf{2.23\times10^{-2}} / \textbf{36} / \textbf{15} 3.88\times10^{-2} /101/28 1.87\times10^{-1} /572/23
    a_5 (50) \mathbf{2.68\times10^{-2}} / \textbf{36} / \textbf{15} 4.40\times10^{-2} /105/29 1.84\times10^{-1} /572/23
    a_6 (50) 2.29\times10^{-2} /37/15 \mathbf{1.08\times10^{-2}} / \textbf{25} / \textbf{10} 2.13\times10^{-1} /672/21
    a_7 (50) \mathbf{2.70\times10^{-2}} / \textbf{36} / \textbf{15} 5.36\times10^{-2} /105/29 1.88\times10^{-1} /572/23
    a_8 (50) \mathbf{2.61\times10^{-2}} / \textbf{36} / \textbf{15} 4.65\times10^{-2} /102/28 1.88\times10^{-1} /572/23
    a_1 (100) \mathbf{3.96\times10^{-2}} / \textbf{41} / \textbf{17} 5.61\times10^{-2} /84/25 2.28\times10^{-1} /569/22
    a_2 (100) \mathbf{5.49\times10^{-2}} / \textbf{57} /24 6.17\times10^{-2} /100/28 2.95\times10^{-1} /676/ \textbf{23}
    a_3 (100) \mathbf{3.64\times10^{-2}} / \textbf{41} / \textbf{17} 4.73\times10^{-2} /84/23 2.08\times10^{-1} /411/43
    a_4 (100) \mathbf{4.85\times10^{-2}} / \textbf{57} /24 6.49\times10^{-2} /100/28 2.92\times10^{-1} /676/ \textbf{23}
    a_5 (100) \mathbf{4.61\times10^{-2}} / \textbf{57} /24 5.92\times10^{-2} /100/28 2.79\times10^{-1} /676/ \textbf{23}
    a_6 (100) 3.35\times10^{-2} /39/16 \mathbf{2.28\times10^{-2}} / \textbf{33} / \textbf{13} 2.64\times10^{-1} /673/22
    a_7 (100) \mathbf{4.73\times10^{-2}} / \textbf{57} /24 6.31\times10^{-2} /100/28 2.89\times10^{-1} /676/ \textbf{23}
    a_8 (100) 7.09\times10^{-2} / \textbf{83} /33 \mathbf{5.68\times10^{-2}} /100/28 3.00\times10^{-1} /676/ \textbf{23}
    a_1 (150) \mathbf{4.56\times10^{-2}} / \textbf{38} / \textbf{16} 6.69\times10^{-2} /83/24 4.36\times10^{-1} /678/24
    a_2 (150) \mathbf{5.06\times10^{-2}} / \textbf{41} / \textbf{17} 1.01\times10^{-1} /125/35 3.39\times10^{-1} /512/39
    a_3 (150) \mathbf{4.98\times10^{-2}} / \textbf{38} / \textbf{16} 1.21\times10^{-1} /154/34 4.10\times10^{-1} /661/52
    a_4 (150) \mathbf{4.84\times10^{-2}} / \textbf{41} / \textbf{17} 1.21\times10^{-1} /125/35 3.36\times10^{-1} /517/41
    a_5 (150) \mathbf{4.28\times10^{-2}} / \textbf{41} / \textbf{17} 1.23\times10^{-1} /125/35 3.83\times10^{-1} /512/39
    a_6 (150) 6.04\times10^{-2} /39/16 \mathbf{3.64\times10^{-2}} / \textbf{35} / \textbf{14} 3.85\times10^{-1} /674/22
    a_7 (150) \mathbf{4.13\times10^{-2}} / \textbf{41} / \textbf{17} 9.58\times10^{-2} /125/35 3.00\times10^{-1} /512/39
    a_8 (150) \mathbf{4.37\times10^{-2}} / \textbf{41} / \textbf{17} 1.17\times10^{-1} /129/36 3.59\times10^{-1} /597/33

     | Show Table
    DownLoad: CSV
    Table 7.  Numerical results for Problem 7.
    Inti( n ) ILR VRMILP DFPRPMHS
    CPUT/Nfunc/Niter CPUT/Nfunc/Niter CPUT/Nfunc/Niter
    a_1 (5) 1.75\times10^{-2} /111/18 \mathbf{6.37\times10^{-3}} / \textbf{73} / \textbf{12} 4.54\times10^{-2} /752/32
    a_2 (5) \mathbf{9.71\times10^{-3}} / \textbf{118} / \textbf{19} 1.35\times10^{-2} /207/29 3.64\times10^{-2} /811/55
    a_3 (5) 5.77\times10^{-3} /104/17 \mathbf{3.63\times10^{-3}} / \textbf{73} / \textbf{12} 3.20\times10^{-2} /829/17
    a_4 (5) 6.72\times10^{-3} /126/20 \mathbf{5.25\times10^{-3}} / \textbf{112} / \textbf{17} 3.93\times10^{-2} /934/46
    a_5 (5) \mathbf{6.59\times10^{-3}} / \textbf{118} / \textbf{19} 9.84\times10^{-3} /207/29 3.90\times10^{-2} /891/51
    a_6 (5) 5.47\times10^{-3} /96/17 \mathbf{3.57\times10^{-3}} / \textbf{72} / \textbf{13} 4.04\times10^{-2} /1024/21
    a_7 (5) \mathbf{6.59\times10^{-3}} / \textbf{118} / \textbf{19} 1.00\times10^{-2} /207/29 3.93\times10^{-2} /892/51
    a_8 (5) \mathbf{6.74\times10^{-3}} / \textbf{128} / \textbf{20} 9.35\times10^{-3} /207/29 4.15\times10^{-2} /927/45
    a_1 (10) 1.70\times10^{-2} /113/18 \mathbf{8.21\times10^{-3}} / \textbf{73} / \textbf{12} 6.53\times10^{-2} /735/43
    a_2 (10) 1.72\times10^{-2} /148/22 \mathbf{1.30\times10^{-2}} / \textbf{137} / \textbf{20} 8.32\times10^{-2} /1047/35
    a_3 (10) 1.36\times10^{-2} /133/20 \mathbf{6.79\times10^{-3}} / \textbf{73} / \textbf{12} 6.49\times10^{-2} /830/17
    a_4 (10) 1.71\times10^{-2} /138/22 \mathbf{1.12\times10^{-2}} / \textbf{112} / \textbf{17} 7.33\times10^{-2} /913/30
    a_5 (10) 1.73\times10^{-2} /148/22 \mathbf{1.28\times10^{-2}} / \textbf{137} / \textbf{20} 1.07\times10^{-1} /1047/35
    a_6 (10) 1.19\times10^{-2} /96/17 \mathbf{8.66\times10^{-3}} / \textbf{72} / \textbf{13} 8.01\times10^{-2} /1024/21
    a_7 (10) 1.66\times10^{-2} /148/22 \mathbf{1.44\times10^{-2}} / \textbf{137} / \textbf{20} 8.95\times10^{-2} /1047/35
    a_8 (10) \mathbf{1.54\times10^{-2}} / \textbf{131} / \textbf{21} 2.27\times10^{-2} /241/33 7.95\times10^{-2} /914/43
    a_1 (50) 4.83\times10^{-2} /118/19 \mathbf{2.48\times10^{-2}} / \textbf{79} / \textbf{13} 2.08\times10^{-1} /836/16
    a_2 (50) \mathbf{4.34\times10^{-2}} / \textbf{133} / \textbf{21} 4.56\times10^{-2} /185/26 2.22\times10^{-1} /988/27
    a_3 (50) 3.22\times10^{-2} /105/17 \mathbf{2.33\times10^{-2}} / \textbf{79} / \textbf{13} 1.81\times10^{-1} /772/37
    a_4 (50) 3.98\times10^{-2} /133/21 \mathbf{2.78\times10^{-2}} / \textbf{112} / \textbf{17} 2.34\times10^{-1} /999/52
    a_5 (50) \mathbf{4.44\times10^{-2}} / \textbf{133} / \textbf{21} 4.96\times10^{-2} /185/26 2.44\times10^{-1} /988/27
    a_6 (50) 3.19\times10^{-2} /102/18 \mathbf{2.16\times10^{-2}} / \textbf{78} / \textbf{14} 2.29\times10^{-1} /1024/21
    a_7 (50) \mathbf{4.29\times10^{-2}} / \textbf{133} / \textbf{21} 4.79\times10^{-2} /185/26 2.28\times10^{-1} /988/27
    a_8 (50) \mathbf{4.32\times10^{-2}} / \textbf{133} / \textbf{21} 5.52\times10^{-2} /209/29 2.13\times10^{-1} /931/27
    a_1 (100) 6.02\times10^{-2} /118/19 \mathbf{3.75\times10^{-2}} / \textbf{79} / \textbf{13} 2.51\times10^{-1} /838/16
    a_2 (100) \mathbf{5.16\times10^{-2}} / \textbf{133} / \textbf{21} 6.32\times10^{-2} /205/29 2.91\times10^{-1} /1018/31
    a_3 (100) 4.38\times10^{-2} /117/19 \mathbf{2.48\times10^{-2}} / \textbf{79} / \textbf{13} 2.37\times10^{-1} /849/18
    a_4 (100) 5.98\times10^{-2} /133/21 \mathbf{4.46\times10^{-2}} / \textbf{112} / \textbf{17} 2.75\times10^{-1} /1018/31
    a_5 (100) \mathbf{5.15\times10^{-2}} / \textbf{133} / \textbf{21} 6.67\times10^{-2} /205/29 2.78\times10^{-1} /1018/31
    a_6 (100) 4.26\times10^{-2} /102/18 \mathbf{2.68\times10^{-2}} / \textbf{78} / \textbf{14} 2.74\times10^{-1} /1024/21
    a_7 (100) \mathbf{5.38\times10^{-2}} / \textbf{133} / \textbf{21} 8.67\times10^{-2} /205/29 3.08\times10^{-1} /1018/31
    a_8 (100) \mathbf{5.41\times10^{-2}} / \textbf{130} / \textbf{21} 9.41\times10^{-2} /241/33 3.10\times10^{-1} /1058/36
    a_1 (150) 5.88\times10^{-2} /111/18 \mathbf{4.44\times10^{-2}} / \textbf{79} / \textbf{13} 3.23\times10^{-1} /838/16
    a_2 (150) \mathbf{6.85\times10^{-2}} / \textbf{139} / \textbf{22} 7.94\times10^{-2} /168/24 4.13\times10^{-1} /1048/35
    a_3 (150) 7.80\times10^{-2} /142/22 \mathbf{3.71\times10^{-2}} / \textbf{79} / \textbf{13} 3.38\times10^{-1} /787/49
    a_4 (150) 6.78\times10^{-2} /132/21 \mathbf{5.61\times10^{-2}} / \textbf{127} / \textbf{19} 3.81\times10^{-1} /1018/31
    a_5 (150) \mathbf{7.81\times10^{-2}} / \textbf{139} / \textbf{22} 8.21\times10^{-2} /168/24 4.24\times10^{-1} /1048/35
    a_6 (150) 5.85\times10^{-2} /108/19 \mathbf{4.74\times10^{-2}} / \textbf{78} / \textbf{14} 4.21\times10^{-1} /1024/21
    a_7 (150) \mathbf{7.66\times10^{-2}} / \textbf{139} / \textbf{22} 8.18\times10^{-2} /168/24 3.88\times10^{-1} /1048/35
    a_8 (150) 8.15\times10^{-2} /149/24 \mathbf{5.84\times10^{-2}} / \textbf{118} / \textbf{18} 4.22\times10^{-1} /1056/36

     | Show Table
    DownLoad: CSV

    To provide a clearer characterization of the performance differences among the three algorithms, we adopt the performance profiles proposed by Dolan and Moré [28]. These profiles evaluate algorithmic behavior based on several key performance indicators, specifically the CPU time in seconds, the number of function evaluations, and the number of iterations. By plotting these indicators, the profiles offer a visual and comparative summary of algorithm efficiency. In these plots, a higher performance curve corresponds to better overall performance, making interpretation both intuitive and informative. By drawing these performance profiles for these three algorithms, we can visually assess and compare their efficiency, as shown in Figures 13. According to Figure 1, the ILR algorithm demonstrates significant efficiency, solving approximately 56% of the test problems with the lowest CPUT compared to the VRMILP and DFPRPMHS algorithms, which solve around 44% and 4% of the test problems, respectively. Similarly, Figure 2 shows that the ILR algorithm maintains its superior performance, solving approximately 75% of the test problems with the fewest Nfunc. In contrast, the VRMILP and DFPRPMHS algorithms solve about 26% and 7% of the test problems, respectively, with the least number of function evaluations. Lastly, Figure 3 further confirms the ILR algorithm's efficiency, solving approximately 53% of the test problems with the fewest Niter, while the VRMILP and DFPRRMHS algorithms solve around 37% and 20% of the test problems, respectively, with the fewest iterations.

    Figure 1.  Performance profiles on CPUT.
    Figure 2.  Performance profiles on Nfunc.
    Figure 3.  Performance profiles on Niter.

    Overall, these performance profiles highlight the ILR algorithm's effectiveness in solving large-scale nonlinear systems of equations with convex constraints, outperforming the VRMILP and DFPRPMHS algorithms across multiple performance metrics.

    In this section, we extend the evaluation of the proposed ILR algorithm to impulse noise image restoration problems. To validate the effectiveness of the ILR algorithm, we apply it to benchmark grayscale images subjected to varying levels of impulse noise.

    Impulse noise image restoration is a critical topic in the field of image processing, particularly due to its importance in improving the quality of images corrupted by noise. Noise in images can be introduced through various sources, such as malfunctioning pixels in camera sensors, faulty memory locations in hardware, or transmission errors in communication channels. Common types of noise include Gaussian noise and impulse noise, with the latter often manifesting as salt-and-pepper noise. To address the challenge of removing impulse noise, Chan et al. [29] proposed a two-phase denoising scheme. This scheme combines the adaptive median filter (AMF) method with a variational method to effectively detect and restore noisy pixels.

    Let m \times n denote the pixel size of an original image. The pixel locations are indexed by the set \mathcal{M} = \{1, 2, \ldots, m \} \times \{1, 2, \ldots, n\} . We denote the noise candidate set by \mathcal{N} \subset \mathcal{M} , and |\mathcal{N}| represents the number of elements in \mathcal{N} . In the first phase, noise detection is performed using an AMF. For a pixel located at (i, j) \in \mathcal{M} , the observed pixel value is denoted by y_{ij} , and the neighborhood of pixel (i, j) is defined as \mathcal{V}_{ij} = \{(i, j - 1), (i, j + 1), (i - 1, j), (i + 1, j)\} . The AMF detects noise by considering these neighborhood values. Once the noisy pixels are detected, the second phase involves the restoration of these pixels. This is achieved by minimizing the following regularization function:

    \min\limits_{\mathbf{x}} \sum\limits_{(i,j) \in \mathcal{N}} \left[ |x_{i,j} - y_{i,j}| + \frac{\beta}{2} \left( 2\Phi_{i,j}^1 + \Phi_{i,j}^2 \right) \right],

    where

    \Phi_{i,j}^1 = \sum\limits_{(m,n) \in \mathcal{V}_{ij} \setminus \mathcal{N}} \varphi_{\alpha}(x_{i,j} - y_{m,n}), \quad \Phi_{i,j}^2 = \sum\limits_{(m,n) \in \mathcal{V}_{ij} \setminus \mathcal{N}} \varphi_{\alpha}(x_{i,j} - u_{m,n}).

    Here, \beta is a regularization parameter, and \varphi_{\alpha}(\cdot) is an even edge-preserving potential function with parameter \alpha > 0 . The vector \mathbf{x} = [x_{i, j}]_{(i, j) \in \mathcal{N}} is optimized lexicographically to achieve denoising. The regularization problem posed in the second phase is nonsmooth due to the data-fitting term |x_{i, j} - y_{i, j}| . To address this, Cai et al. [30] proposed removing the nonsmooth term and instead solving the following smooth unconstrained optimization problem:

    \min\limits_{\mathbf{x}} f_{\alpha}(\mathbf{x}) : = \sum\limits_{(i,j) \in \mathcal{N}} \left( 2\Phi_{i,j}^1 + \Phi_{i,j}^2 \right).

    The potential function \varphi_{\alpha}(\cdot) plays a crucial role in preserving edges while smoothing the image. A commonly used potential function is the Huber function, defined as:

    \varphi_{\alpha}(t) = \begin{cases} \frac{t^2}{2\alpha}, & \text{for } |t| \leq \alpha, \\ |t| - \frac{\alpha}{2}, & \text{for } |t| > \alpha. \end{cases}

    This function is convex and first-order Lipschitz continuous, making it suitable for the minimization problems described above. Let \nabla f_{\alpha}(\mathbf{x}) denote the gradient of the function f_{\alpha}(\mathbf{x}) . In alignment with Proposition 6 in [30], if \varphi_\alpha is convex, then \nabla f_{\alpha}(\mathbf{x}) is monotone.

    In this section, all parameters for these three algorithms are set as described in Section 4. The stopping criteria for these three algorithms are defined as follows:

    \begin{equation*} \frac{\|\mathbf{x}_k - \mathbf{x}_{k-1}\|}{\|\mathbf{x}_k\|} \leq \tau \quad \text{or} \quad \frac{|f_{\alpha}(\mathbf{x}_k)-f_{\alpha}(\mathbf{x}_{k-1})|}{|f_{\alpha}(\mathbf{x}_k)|} \leq \tau. \end{equation*}

    For this experiment, we utilize the well-known grayscale test images Man ( 1024 \times 1024 ) and Tank2 ( 512 \times 512 ), which are sourced from the website https://www.hlevkin.com. We examine the performance of these three algorithms by applying them to images corrupted with 30% and 70% impulse noise. The noisy images, as well as the images recovered by these three algorithms, are shown in Figures 4 and 5. The corresponding numerical results are provided in Table 8. Based on these figures and the table, we can draw the following conclusions: (1) Figures 4 and 5 demonstrate that all three algorithms successfully recover the images affected by 30% and 70% impulse noise; (2) Recovering an image with 30% impulse noise requires less CPU time and fewer iterations compared to recovering an image with 70% impulse noise; (3) Among these three algorithms, the ILR algorithm generally requires less CPU time and fewer iterations than the VRMILP and DFPRPMHS algorithms for a given level of impulse noise.

    Figure 4.  From left to right: A noisy image with 30% impulse noise and recovered images obtained by the ILR, VRMILP, and DFPRPMHS algorithms.
    Figure 5.  From left to right: A noisy image with 70% impulse noise and recovered images obtained by the ILR, VRMILP, and DFPRPMHS algorithms.
    Table 8.  The numerical results of the ILR, VRMILP, and DFPRPMHS algorithms.
    Algorithm Man Tank
    Noise: 30% Noise: 70% Noise: 30% Noise: 70%
    Niter/CPUT Niter/CPUT Niter/CPUT Niter/CPUT
    ILR 14/13.38 29/29.04 8/1.46 16/3.66
    VRMILP 22/28.26 39/55.89 18/5.47 20/6.52
    DFPRPMHS 27/38.08 42/46.95 17/2.59 18/3.92

     | Show Table
    DownLoad: CSV

    In this paper, we presented an improved LS-RMIL-type conjugate gradient projection algorithm aimed at efficiently solving systems of nonlinear equations with convex constraints. The proposed algorithm demonstrates several key advantages, including the ability to generate search directions that satisfy sufficient descent and trust-region properties independently of the line search approach. Additionally, the proposed algorithm only requires continuous and monotone assumptions for systems of nonlinear equations, which makes it applicable under less restrictive conditions compared to existing methods. We established the global convergence of the proposed algorithm without relying on the Lipschitz continuity assumption, further relaxing the conditions that need to be satisfied for successful implementation. Extensive numerical simulations, including large-scale systems of nonlinear equations and impulse noise image restoration problems, have shown that the proposed algorithm exhibits superior efficiency and stability compared to existing algorithms. These results indicate that the proposed algorithm is a promising and competitive approach, with significant potential for practical applications, such as image restoration.

    Yan Xia: Conceptualization, Investigation, Writing–original draft, Writing–review and editing, Funding acquisition; Xuejie Ma: Writing–review and editing, Funding acquisition; Dandan Li: Conceptualization, Funding acquisition, Writing–review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Guangzhou Huashang College Daoshi Project (2024HSDS28).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] Akbas H, Canikli S (2019) Determinants of voluntary greenhouse gas emission disclosure: An empirical investigation on Turkish firms. Sustainability 11: 1–24. https://doi.org/10.3390/su11010107 doi: 10.3390/su11010107
    [2] Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58: 277–297. https://doi.org/10.2307/2297968 doi: 10.2307/2297968
    [3] Assidi S (2020) The effect of voluntary disclosures and corporate governance on firm value: A study of listed firms in France. Intl J Discl Governance 17: 168–179. https://doi.org/10.1057/s41310-020-00090-1 doi: 10.1057/s41310-020-00090-1
    [4] Barth M, McNichols M (1994) Estimation and market valuation of environmental liabilities relating to superfund sites. J Acc Res 32: 177–209. https://doi.org/10.2307/2491446 doi: 10.2307/2491446
    [5] Barth M, Beaver W, Landsman W (2001) The relevance of the value relevance literature for financial accounting standard-setting: Another view. J Acc Econ 31: 77–104. https://doi.org/10.1016/S0165-4101(01)00019-2 doi: 10.1016/S0165-4101(01)00019-2
    [6] Bebbington J, Larrinaga-Gonza'lez C (2008) Carbon trading: Accounting and reporting issues. Eur Acc Rev 17: 697–717. https://doi.org/10.1080/09638180802489162 doi: 10.1080/09638180802489162
    [7] Ben-Amar W, Chang M, McIlkenny P (2017) Board gender diversity and corporate response to sustainability initiatives: Evidence from the carbon disclosure Project. J Bus Eth 142: 369–383. https://doi.org/10.1007/s10551-015-2759-1 doi: 10.1007/s10551-015-2759-1
    [8] Bond S, Hoeffler A, Temple J (2001) GMM estimation of empirical growth models. Avaiable from: https://econpapers.repec.org/paper/nufeconwp/0121.htm.
    [9] Brouwers R, Schoubben, F, Van Hulle C (2018) The influence of carbon cost pass through on the link between carbon emission and corporate financial performance in the context of the European Union Emission Trading Scheme. Bus Strat Env 27: 1422–1436. https://doi.org/10.1002/bse.2193 doi: 10.1002/bse.2193
    [10] Campbell C, Sefcik S, Soderstrom N (2003) Disclosure of private information and reduction of uncertainty: Environmental liabilities in the chemical industry. Rev Quant Fin Acc 21: 349–278. https://doi.org/10.1023/B:REQU.0000004783.24513.ea doi: 10.1023/B:REQU.0000004783.24513.ea
    [11] CDP (2018) An introduction to 2018 scoring. Available from: https://www.cdp.net/en/guidance#1.
    [12] Chapple L, Clarkson P, Gold D (2013) The cost of carbon: Capital markets effects of the proposed emission trading scheme. J Acc Fin Bus Stud 49: 1–33. https://doi.org/10.1111/abac.12006 doi: 10.1111/abac.12006
    [13] Cheema-Fox A, Laperla R, Serafeim G, et al. (2021) Decarbonizing everything. Financ Anal J 77: 93–108. https://doi.org/10.1080/0015198X.2021.1909943 doi: 10.1080/0015198X.2021.1909943
    [14] Clarkson P, Li Y, Pinnuck M, et al. (2015) The valuation relevance of greenhouse gas emissions under the European Carbon Emissions Trading Scheme. Eur Acc Rev 24: 551–580. https://doi.org/10.1080/09638180.2014.927782 doi: 10.1080/09638180.2014.927782
    [15] Cotter J, Najah M (2011) Institutional investor influence on global climate change disclosure practices. Aust J Manage 37: 169–187. https://doi.org/10.1177/0312896211423945 doi: 10.1177/0312896211423945
    [16] Defra (2014) Measuring and reporting environmental impacts: Guidance for businesses. Available from: https://www.gov.uk/guidance/measuring-and-reporting-environmental-impacts-guidance-for-businesses.
    [17] Dhaliwal D, Li O, Tsang A, et al. (2011) Voluntary nonfinancial disclosure and the cost of equity capital: The initiation of corporate social responsibility reporting. Acc Rev 86: 59–100. https://doi.org/10.2308/accr.00000005 doi: 10.2308/accr.00000005
    [18] Dhar B, Sarkar S, Ayittey F (2020) Impact of social responsibility disclosure between implementation of green accounting and sustainable development: A study on heavily polluting companies in Bangladesh. Corporate Social Responsibility Env Manage 29: 71–78. https://doi.org/10.1002/csr.2174 doi: 10.1002/csr.2174
    [19] Elsayih J, Tang Q, Lan Y (2018) Corporate governance and carbon transparency: Australian experience. Acc Res J 31: 405–422. https://doi.org/10.1108/ARJ-12-2015-0153 doi: 10.1108/ARJ-12-2015-0153
    [20] Ganda F, Milondzo K (2018) The impact of carbon emissions on corporate financial performance: Evidence from the South African firms. Sustainability 10: 1–22. https://doi.org/10.3390/su10072398 doi: 10.3390/su10072398
    [21] Giannarakis G, Zafeiriou E, Sariannidis N, et al. (2016) Determinants of dissemination of environmental information: An empirical survey. J Bus Econ Manage 17: 749–764. https://doi.org/10.3846/16111699.2016.1195771 doi: 10.3846/16111699.2016.1195771
    [22] Griffin P (2017) The Carbon Majors Database: CDP Carbon Majors Report 2017. Available from: http://www.truevaluemetrics.org/DBpdfs/Carbon/CDP/CDP-Carbon-Majors-Report-2017.pdf.
    [23] Griffin P, Lont D, Sun E (2017) The relevance of greenhouse gas emission disclosures. Contemp Acc Res 34: 1265–1297. https://doi.org/10.1111/1911-3846.12298 doi: 10.1111/1911-3846.12298
    [24] Hahn R, Lülfs R (2014) Legitimizing negative aspects in GRI-oriented sustainability reporting: A qualitative analysis of corporate disclosure strategies. J Bus Eth 123: 401–420. https://doi.org/10.1007/s10551-013-1801-4 doi: 10.1007/s10551-013-1801-4
    [25] Hahn R, Reimsbach D, Schiemann F (2015) Organizations, climate change, and transparency: Reviewing the literature on carbon disclosure. Organ Env 28: 80–102. https://doi.org/10.1177/1086026615575542 doi: 10.1177/1086026615575542
    [26] Healy P, Palepu K (2001) Information asymmetry, corporate disclosure, and the capital markets: A review of the empirical disclosure literature. J Acc Econ 31: 405–440. https://doi.org/10.1016/S0165-4101(01)00018-0 doi: 10.1016/S0165-4101(01)00018-0
    [27] Hughes S, Anderson A, Golden S (2001) Corporate environmental disclosures: Are they useful in determining environmental performance? J Acc Public Policy 20: 217–240. https://doi.org/10.1016/S0278-4254(01)00031-X doi: 10.1016/S0278-4254(01)00031-X
    [28] Jaggi B, Allini A, Macchioni R, et al. (2018) Do investors find carbon information useful? Evidence from Italian firms. Rev Quant Financ Acc 50: 1031–1056. https://doi.org/10.1007/s11156-017-0653-x doi: 10.1007/s11156-017-0653-x
    [29] Johnston D, Sefcick E, Soderstrom N (2008) The value relevance of greenhouse gas emissions allowances: An exploratory study in the related United States SO2 Market. Eur Acc Rev 17: 747–764. https://doi.org/10.1080/09638180802481615 doi: 10.1080/09638180802481615
    [30] Kanwal M, Khan H (2021) Does carbon asset add value to clean energy market? Evidence from EU. Green Financ 3: 495–507. https://doi.org/10.3934/GF.2021023 doi: 10.3934/GF.2021023
    [31] Kim E, Lyon T (2011) When does institutional investor activism increase shareholder value?: The Carbon Disclosure Project. J Econ Anal Policy 11: 1–29. https://doi.org/10.2202/1935-1682.2676 doi: 10.2202/1935-1682.2676
    [32] Kim YB, An HT, Kim JD (2015) The effect of carbon risk on the cost of equity capital. J Clean Prod 93: 279–287. https://doi.org/10.1016/j.jclepro.2015.01.006 doi: 10.1016/j.jclepro.2015.01.006
    [33] Konar S, Cohen M (2001) Does the market value environmental performance? Rev Econ Stat 83: 281–289. https://doi.org/10.1162/00346530151143815 doi: 10.1162/00346530151143815
    [34] Krishnamurti C, Velayutham E (2018) The influence of board committee structures on voluntary disclosure of greenhouse gas emissions: Australian evidence. Pacific Basin Financ J 50: 65–81. https://doi.org/10.1016/j.pacfin.2017.09.003 doi: 10.1016/j.pacfin.2017.09.003
    [35] Lee S, Park Y, Klassen R (2015) Market responses to firms' voluntary climate change information disclosure and carbon communication. Corporate Social Resp Env Manage 22: 1–12. https://doi.org/10.1002/csr.1321 doi: 10.1002/csr.1321
    [36] Leszcensky L, Wolbring T (2019) How to deal with reverse causality using panel data? Recommendations for researchers based on a simulation study. Sociol Methods Res. https://doi.org/10.1177/0049124119882473 doi: 10.1177/0049124119882473
    [37] Li D, Huang M, Ren S, et al. (2018) Environmental legitimacy, green innovation, and corporate carbon disclosure: Evidence from CDP China 100. J Bus Eth 150: 1089–1104. https://doi.org/10.1007/s10551-016-3187-6 doi: 10.1007/s10551-016-3187-6
    [38] Li. Z, Liao G, Albitar K (2020) Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation. Bus Strat Env 29: 1045–1055. https://doi.org/10.1002/bse.2416 doi: 10.1002/bse.2416
    [39] Luo L, Tang Q (2014) Does voluntary carbon disclosure reflect underlying carbon performance? J Contemp Acc Econ 10: 191–205. https://doi.org/10.1016/j.jcae.2014.08.003 doi: 10.1016/j.jcae.2014.08.003
    [40] Luo L, Lan Y, Tang Q (2012) Corporate incentives to disclose carbon information: Evidence from the CDP global report. Int Financial Manage Acc 23: 93–120. https://doi.org/10.1111/j.1467-646X.2012.01055.x doi: 10.1111/j.1467-646X.2012.01055.x
    [41] Matisof D, Noonan D, O'Brian J (2013) Convergence in environmental reporting: Assessing Carbon Disclosure Project. Bus Strat Env 22: 285–305. https://doi.org/10.1002/bse.1741 doi: 10.1002/bse.1741
    [42] Matsumura E, Prakash R, Vera-Muñoz S (2014) Firm-Value effects of carbon emissions and carbon disclosures. Acc Rev 89: 695–724. https://doi.org/10.2308/accr-50629 doi: 10.2308/accr-50629
    [43] Roodman D (2009) How to do Xtabond?: An introduction to difference and system GMM in Stata. Stat J 9: 86–136. https://journals.sagepub.com/doi/pdf/10.1177/1536867X0900900106
    [44] Qian W, Schaltegger S (2017) Revisiting carbon disclosure and performance: Legitimacy and management views. British Acc Rev 49: 365–379. https://doi.org/10.1016/j.bar.2017.05.005 doi: 10.1016/j.bar.2017.05.005
    [45] Utomo M, Rahayu S, Kaujan K, et al. (2020) Environmental performance, environmental disclosure, and firm value: Empirical study of non-financial companies at Indonesia Stock Exchange. Green Financ 2: 100–113. https://doi.org/10.3934/GF.2020006 doi: 10.3934/GF.2020006
    [46] Velte P, Martin S, Lueg R (2020) Carbon performance and disclosure: A systematic review of governance-related determinants and financial consequences. J Cleaner Prod 254. https://doi.org/10.1016/j.jclepro.2020.120063 doi: 10.1016/j.jclepro.2020.120063
    [47] Wegener M, Elayan F, Felton S, et al. (2013) Factors influencing corporate environmental disclosures. Acc Persp 12: 53–73. https://doi.org/10.1111/1911-3838.12007 doi: 10.1111/1911-3838.12007
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4158) PDF downloads(530) Cited by(7)

Figures and Tables

Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog