Loading [MathJax]/jax/output/SVG/jax.js
Editorial Special Issues

Biochemical Problems, Mathematical Solutions

  • Received: 15 November 2021 Revised: 15 November 2021 Accepted: 31 December 2021 Published: 10 January 2022
  • Citation: Marc R. Roussel, Moisés Santillán. Biochemical Problems, Mathematical Solutions[J]. AIMS Mathematics, 2022, 7(4): 5662-5669. doi: 10.3934/math.2022313

    Related Papers:

    [1] Khalil Ur Rehman, Wasfi Shatanawi, Zeeshan Asghar, Haitham M. S. Bahaidarah . Neural networking analysis for MHD mixed convection Casson flow past a multiple surfaces: A numerical solution. AIMS Mathematics, 2023, 8(7): 15805-15823. doi: 10.3934/math.2023807
    [2] Khalil Ur Rehman, Wasfi Shatanawi, Zead Mustafa . Artificial intelligence (AI) based neural networks for a magnetized surface subject to tangent hyperbolic fluid flow with multiple slip boundary conditions. AIMS Mathematics, 2024, 9(2): 4707-4728. doi: 10.3934/math.2024227
    [3] Khalil Ur Rehman, Wasfi Shatanawi, Weam G. Alharbi . On nonlinear coupled differential equations for corrugated backward facing step (CBFS) with circular obstacle: AI-neural networking. AIMS Mathematics, 2025, 10(3): 4579-4597. doi: 10.3934/math.2025212
    [4] Manal Alqhtani, J.F. Gómez-Aguilar, Khaled M. Saad, Zulqurnain Sabir, Eduardo Pérez-Careta . A scale conjugate neural network learning process for the nonlinear malaria disease model. AIMS Mathematics, 2023, 8(9): 21106-21122. doi: 10.3934/math.20231075
    [5] Kottakkaran Sooppy Nisar, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Yasmin Tariq, Ayesha Rafiq, Ahmed Morsy . Design of neural networks for second-order velocity slip of nanofluid flow in the presence of activation energy. AIMS Mathematics, 2023, 8(3): 6255-6277. doi: 10.3934/math.2023316
    [6] Manal Abdullah Alohali, Fuad Al-Mutiri, Kamal M. Othman, Ayman Yafoz, Raed Alsini, Ahmed S. Salama . An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture. AIMS Mathematics, 2024, 9(4): 10185-10207. doi: 10.3934/math.2024498
    [7] Naret Ruttanaprommarin, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Soheil Salahshour, Juan Luis García Guirao, Wajaree Weera, Thongchai Botmart, Anucha Klamnoi . Artificial neural network procedures for the waterborne spread and control of diseases. AIMS Mathematics, 2023, 8(1): 2435-2452. doi: 10.3934/math.2023126
    [8] Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188
    [9] Lin Zheng, Liang Chen, Yanfang Ma . A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations. AIMS Mathematics, 2022, 7(1): 1241-1256. doi: 10.3934/math.2022073
    [10] Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam . A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608


  • In mathematics and various sciences, the changes of output and input of nonlinear systems are out of proportion. Most of the systems involved in life are essentially nonlinear, so solving nonlinear problems has attracted various scientists. Scholars have proposed more efficient iterative methods for solving nonlinear systems. One of the most famous iterative methods for solving nonlinear systems is Newton's method [1],

    x(k+1) =x(k)[F(x(k))]1F(x(k)), (1.1)

    for k=0,1,2,..., x0 is the starting point. The Newton's method is second order convergent and effective in solving some nonlinear systems.

    With the advancement of computers and numerical algebra, scholars have developed many iterative methods based on Newton's method that are more efficient than second-order Newton's method for solving nonlinear problems [2,3,4,5,6,7]. In addition, when the Jacobian matrix cannot be calculated for nonlinear systems, some effective derivative free methods can also solve nonlinear systems well (see [8,9,10,11,12]). We propose an eighth order iterative method with high computational efficiency, which is suitable for solving large systems of equations [13]. The specific iteration format is as follows

    {y(k) =x(k)ΓkF(x(k)),w(k)=y(k)[I+(I+54M(k))M(k)]ΓkF(y(k)),x(k+1)=w(k)[I+(I+32M(k))M(k)]ΓkF(w(k)), (1.2)

    where M(k)=Γk(F(x(k))F(y(k))), and Γk=[F(x(k))]1.

    The theoretical results of local convergence and semilocal convergence of the iterative method are also important in the study. Local convergence requires the existence of the assumed solution and the initial value is close enough to the solution. Semilocal convergence does not require the existence of an assumed solution, but the selection of initial values also needs to meet certain conditions (see [14,15,16,17,18]). Therefore, for some systems that cannot be analyzed and solved, the results of semilocal convergence cannot only prove the convergence of iterative sequences, but also prove the existence of solutions of these systems, so as to obtain the existence domain and uniqueness domain of system solutions; for further study (see [19,20,21,22]). Based on this, we perform a semilocal convergence analysis on the method (1.2) .

    This paper consists of five sections. In Section 2 of the paper, the recurrence relation is explained. The semilocal convergence of the iterative method (1.2) is proved in Section 3. In Section 4, the numerical experiments of two nonlinear systems are completed. Finally, the conclusion of this paper is made.

    In this section, let X and Y be Banach spaces and let F:ΩXY be a twice differetiable nonlinear Fréchet operator in an open Ω [23]. Let us assume that the inverse of the Jacobian matrix of the system in the iteration (1.2) is Γ0L(Y,X), which is the set of linear operation from Y to X.

    Moreover, in order to obtain the semilocal convergence result for this iterative method (1.2) , Kantorovich conditions are assumed:

    (M1)Γ0β,

    (M2)Γ0F(x0)η,

    (M3)F(x)F(y)Kxy,

    where K, β, η are non-negative real numbers. For the sake of simplicity, we denote a0=Kβη and define the sequence

    ak+1=akf(ak)2g(ak), (2.1)

    where we use the following auxiliary functions

    h(x)=1256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9), (2.2)
    f(x)=11xh(x), (2.3)

    and

    g(x)=x131072(196608+327680x+589824x2+819200x3+1064960x4+1351680x5+1569792x6+1689600x7+1752576x8+1693696x9+1490432x10+1226752x11+913920x12+596928x13+354724x14+180520x15+73600x16+25500x17+5625x18). (2.4)

    These functions play a key role in the analysis that will be performed next.

    Preliminary results. In order to get the difference of the first two elements in the iterative method (1.2) , we have

    w0x0=y0x0[I+(I+54Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(y0). (2.5)

    The Taylor series expansion of F around x0 evaluated in y0 is

    F(y0)=F(x0)+F(x0)(y0x0)+y0x0(F(x)F(x0))dx, (2.6)

    where the term F(x0)+F(x0)(y0x0) is equal to zero, since it comes from a Newton's step. With the change x=x0+t(y0x0), we get

    F(y0)=10(F(x0+t(y0x0))F(x0))(y0x0)dt. (2.7)

    Then,

    w0x0=y0x0(I+Γ0(F(x0)F(y0))+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0)))Γ0F(y0)=y0x0(Γ0F(y0)+Γ0(F(x0)F(y0))Γ0F(y0)+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0))Γ0F(y0))=y0x0(Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt+Γ0(F(x0)F(y0))Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0))×Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt). (2.8)

    Taking norms and applying Lipschitz condition, we get

    w0x0y0x0+K2Γ0y0x02+K22Γ0y0x0Γ0y0x02+5K38Γ0y0x0Γ0y0x0Γ0y0x02η+12Kβη2+12K2β2η3+58K3β3η4=η(1+12a0+12a20+58a30), (2.9)

    so that,

    w0x0η(1+12(a0+a20+54a30)). (2.10)

    Using a method similar to (2.5), we get w0y0

    w0y0=y0y0[I+(I+54Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(y0). (2.11)

    So,

    w0y0y0y0+K2Γ0y0x02+K22Γ0y0x0Γ0y0x02+5K38Γ0y0x0Γ0y0x0Γ0y0x0212Kβη2+12K2β2η3+58K3β3η4=η(12a0+12a20+58a30). (2.12)

    Next, the next step analysis

    x1x0=w0x0[I+(I+32Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(w0). (2.13)

    Using Taylor's expansion of F(w0) around x0 and applying Lipschitz condition, we obtain

    x1x0w0x0+K2Γ0w0x02+K22Γ0y0x0Γ0w0x02+3K34Γ0y0x0Γ0y0x0Γ0w0x02η(1+12(a0+a20+54a30))+Kβη22(1+12(a0+a20+54a30))2+K2β2η32(1+12(a0+a20+54a30))2+3K3β3η44(1+12(a0+a20+54a30))2=η((1+12(a0+a20+54a30))+a02(1+12(a0+a20+54a30))2+a202(1+12(a0+a20+54a30))2+3a304(1+12(a0+a20+54a30))2)=η(1256(256+256a0+384a20+640a30+576a40+576a50+528a60+298a70+170a80+75a90)). (2.14)

    By applying Banach's lemma, one has

    IΓ0F(x1)=Γ0F(x0)Γ0F(x1)=Γ0F(x0)Γ0F(x1)Kβx1x0Kβη(1256(256+256a0+384a20+640a30+576a40+576a50+528a60+298a70+170a80+75a90))=a0(h(a0))<1, (2.15)

    where

    h(x)=1256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9).

    Then, as far as a0(h(a0))<1 (by taking a0<0.45807), Banach's lemma guarantees that

    (Γ0F(x1))1=Γ1Γ10

    exists and

    Γ111a0(h(a0))Γ0=f(a0)Γ0, (2.16)

    so

    f(x)=111256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9).

    Based on the above analysis, we can obtain the following theorem.

    Theorem 1. For k1, the following conditions are valid:

    (O1k)Γkf(ak1)Γk1,

    (O2k)ykxk=ΓkF(xk)f(ak1)g(ak1)yk1xk1,

    (O3k)KΓkykxkak,

    (O4k)xkxk1h(ak1)yk1xk1.

    Proof. The above theorem is proven through induction. Starting with k=1, (2.16) proved the (O11).

    (O21): The Taylor's expansion of F(x1) around y0, we can get

    F(x1)=F(y0)+F(y0)(x1y0)+x1y0(F(x)F(y0))dx=F(y0)+(F(y0)F(x0))(x1y0)+F(x0)(x1y0)+10(F(y0+t(x1y0))F(y0))(x1y0)dt. (2.17)

    So, we must to have x1y0

    x1y0=w0y0[I+(I+32Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(w0). (2.18)

    And bounding its norm, the following inequality is obtained

    x1y0w0y0+K2Γ0w0x02+K22Γ0y0x0Γ0w0x02+3K34Γ0y0x0Γ0y0x0Γ0w0x02η(12a0+12a20+58a30)+Kβη22(1+12(a0+a20+54a30))2+K2β2η32(1+12(a0+a20+54a30))2+3K3β3η44(1+12(a0+a20+54a30))2η(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80)). (2.19)

    Then, using (2.17)–(2.19), the F(x1) is bounded

    F(x1)12Kη2+Kη2(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))+1βη(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))+12Kη2(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))2. (2.20)

    Therefore, by applying (O11), we get

    y1x1=Γ1F(x1)=f(a0)Γ0F(x1)f(a0)[1131072a0(196608+327680a0+589824a20+819200a30+1064960a40+1351680a50+1569792a60+1689600a70+1752576a80+1693696a90+1490432a100+1226752a110+913920a120+596928a130+354724a140+180520a150+73600a160+25500a170+5625a180)]η. (2.21)

    That is,

    y1x1=f(a0)g(a0)ηf(a0)g(a0)y0x0,

    where,

    g(x)=x131072(196608+327680x+589824x2+819200x3+1064960x4+1351680x5+1569792x6+1689600x7+1752576x8+1693696x9+1490432x10+1226752x11+913920x12+596928x13+354724x14+180520x15+73600x16+25500x17+5625x18).

    (O31): Using (O11) and (O21),

    KΓ1y1x1Kf(a0)Γ0f(a0)g(a0)y0x0=a0f(a0)2g(a0)=a1.

    (O41): For k=1 it has been proven in (2.16).

    The proof of (O1k+1), (O2k+1), (O3k+1) and (O4k+1) is based on the same method of proving that the inductive assumption with (O1k), (O2k), (O3k) and (O4k) as k1 holds true.

    According to the convergence property of xk sequence in Banach space, we need to prove that this sequence is a Cauchy sequence. Based on the auxiliary function, we can obtain the following results.

    Lemma 1. According h(x),f(x) and g(x), we have:

    i. f(x) is inceasing and f(x)>1 for x(0,0.45807),

    ii. h(x) and g(x) are increasing for x(0,0.45807).

    The above lemma can be calculated from the Section 2, and the process is omitted.

    Lemma 2. The f(x) and g(x) defined by (2.3) and (2.4). Then

    i. f(a0)g(a0)<1 for a0<0.252232,

    ii. f(a0)2g(a0)<1 for a0<0.21715,

    iii. the sequence ak is decreasing and ak<0.21715 for k>0.

    Proof. It is straightforword that i, ii are satisfied. As f(a0)2g(a0)<1, then by construction of ak, it is a dereasing sequence. So ak<a00.21715, for all k1.

    Theorem 2. Let X, Y be Banach spaces and F:ΩXY be a nonlinear twice differentiable Fréchet operator in an open set domain Ω. Assume that Γ0=[F(x0)]1 exists in x0Ω and meet the conditions of (M1)(M3). Let be a0=Kβη, and assume that a0<0.21. The sequence {xk} defined in (2.1) and starting in x0 converges to the solution x of F(x)=0, if Be(x0,Rη)=xX:xx0<RηΩ where R=h(a0)1f(a0)g(a0). In the case, the iterates {xk} and {yk} are contained in Be(x0,Rη) and xBe(x0,Rη). In addition, the x is the only solution of equation F(x)=0 in Bn(x0,2KβRη)Ω.

    Proof. By recursively applying (O4k), we can write

    xk+1xkh(ak)ykxkh(ak)f(ak1)g(ak1)yk1xk1h(ak)[k1i=0f(ai)g(ai)]y0x0. (3.1)

    Then,

    xk+mxkxk+mxk+m1+xk+m1xk+m2++xk+1xkh(ak+m1)ηk+m2i=0f(ai)g(ai)+h(ak+m2)ηk+m3i=0f(ai)g(ai)++h(ak)ηk1i=0f(ai)g(ai). (3.2)

    As h(x) is increasing and ak dreasing, it can be stated that

    xk+mxkh(ak)ηm1l=0[k+l1i=0f(ai)g(ai)]h(ak)ηm1l=0(f(a0)g(a0))l+k. (3.3)

    Moreover, according Lemmas 1 and 2, by using the expression for the partial sum of a geometrical series,

    xk+mxkh(ak)1(f(a0)g(a0))m1f(a0)g(a0)(f(a0)g(a0))kη. (3.4)

    So, the Cauchy sequence if and only if f(a0)g(a0)<1 (Lemma 2).

    For k=0,

    xmx0xmxm1+xm1xm2++x1x0h(a0)y0x0m1r=0(f(a0)g(a0))r.=h(a0)1(f(a0)g(a0))m1f(a0)g(a0)η<Rη, (3.5)

    when m, we get the radius od convergence Rη=h(a0)1f(a0)g(a0)η.

    Let's prove that x is the solution of F(x)=0 starting from the boundary of F(xn),

    F(xk)F(x0)+F(xk)F(x0)F(x0)+Kxkx0F(x0)+KRη. (3.6)

    Then, acorrding M2 and (3.1)

    F(xk)F(xk)ykxkF(xk)h(ak)[n1i=0f(ai)g(ai)]η, (3.7)

    as h(x), f(x) and g(x) are increasing and ak is the decreasing sequence,

    F(xk)F(xk)h(ak)(f(a0)g(a0))kη. (3.8)

    Taking into account that F(xk) is bounded and (f(a0)g(a0))k tends to zero when k, we conclude that F(xk)0. As F is continuous in Ω, then F(x)=0.

    Finally, the uniqueness of x in B(x0,2KβRη)Ω.

    0=F(y)F(x)=(F(x)+10F(x+t(yx))(yx)dt)(F(x)=(yx)10F(x+t(yx))dt). (3.9)

    In order to guarantee that yx=0 it is necesssary to prove that operator 10F(x+t(yx))dt is invertible. Applying hypothesis (M3),

    Γ010F(x+t(yx))F(x0)dtKβ10x+t(yx)x0dtKβ10((1t)xx0+tyx0)dt<Kβ2(Rη+2KβRη)=1. (3.10)

    By the Banach lemma, the intergal operator is invertible and hence y=x.

    In this section, we provide some numerical examples to illustrate the theoretical results introduced earlier.

    Example 1. Hammerstein equation is a kind of important nonlinear integral equation [24], which is given as follows:

    x(s)=1+(1/5)10N(s,t)x(t)3dt, (4.1)

    where xC[0,1],s,t[0,1], with the kernel N is

    N(s,t)={(1s)tts,s(1t)st.

    To solve (4.1) we transform it into a syste of nonlinear equations through a discretization process. We approximate the integral appearing in Eq (4.1) by using Gauss-Legendre quadrature,

    10s(t)dt7i=1wjs(tj),

    being tj and wj the nodes and the weights of the Gauss-Legendre polynomial. Denoting the approximation of x(tj) as xi,i=1,...,7, then we estimate (4.1) with the nonlinear system of equations

    xi1157j=1aijx3j=0,i=1,...,7 (4.2)

    where

    aij={wjtj(1ti)ji,wjti(1tj)i<j.

    So, the system can be rewritten as

    F(x)=x115Avx,vx=(x31,x32,...,x37)T,
    F(x)=I35AD(x),D(x)=diag(x21,x22,...,x27),

    where F if a nonlinear operator in the Banach space RL, and F is its Fréchet derivative in L(RL,RL).

    According the method (1.2), we will use it to solve the nonlinear systems.

    Taking x0=(1.8,1.8,...,1.8)T,L=7 and the infinity norm, we get

    Γ0β,β1.2559,Γ0F(x0)η,η2.2062,F(x)F(y)kxy,k0.0671,a0=kβη,0.1860. (4.3)

    The above results satisfy the semilocal convergence condition, so this method can be applied to the system. Thus, we guarantee the existence of the solution in Be(x0,0.5646), and the uniqueness in Bn(x0,22.4874). Table 1 shows the the radius of the existence domain and the radius of the unique domain under different initial values. For x0i>1.87,i=1,2,...,7, convergence conditions are not satisfied and, therefore, the convergence is not guaranteed.

    Table 1.  Different initial values related parameters.
    x0i β η k a0 Re Rn
    0.2 1.0025 2.1204 0.0287 0.0610 0.0754 69.3528
    0.4 1.0102 1.6005 0.0337 0.0545 0.0657 58.6428
    0.6 1.0232 1.0827 0.0390 0.0433 0.0500 50.0651
    0.8 1.0420 0.5637 0.0451 0.0265 0.0288 42.5422
    1.0 1.0671 0.0461 0.0682 0.0034 0.0034 27.4813
    1.2 1.0996 0.4949 0.0505 0.0275 0.0300 36.0019
    1.4 1.1406 1.0420 0.0569 0.0676 0.0859 30.7271
    1.6 1.1919 1.6098 0.0622 0.1193 0.1970 26.6603
    1.7 1.2222 1.9038 0.0647 0.1505 0.3107 24.7005

     | Show Table
    DownLoad: CSV

    Using the iterative method (1.2) to solve (4.2), the exact solution is

    x=(1.003,1.012,1.023,1.028,1.023,1.012,1.003)T.

    Example 2. Let X=Y=R2 be equipped with the max-norm. Choose: x0=(0.9,0.9)T, s[0,12). Let s=0.49, define function F by

    F(x)=(x31s,x32s)T,x=(x1,x2)T. (4.4)

    The fréchet-derivative of operator F is given by

    F(x)=[3x21003x2].

    Taking x0=(0.9,0.9)T and the infinity norm, we get

    Γ0β,β0.4115,Γ0F(x0)η,η0.1391,F(x)F(y)kxy,k3.6113,a0=kβη,0.2067. (4.5)

    The convergence conditions are met and consequently the method can be applied to the system. The existence domain of the solution is Be(x0,0.9101), and the uniqueness domain is Bn(x0,1.2192).

    Taking x0=(0.73,0.73)T and the infinity norm, then

    Γ0β,β0.6255,Γ0F(x0)η,η0.0893,F(x)F(y)kxy,k3.2329,a0=kβη,0.1806. (4.6)

    The existence domain of the solution is Be(x0,0.5095), and the uniqueness domain is Bn(x0,0.943534).

    When the initial value satisfies the Kantorovich condition and the range of a0 obtained, the initial value within that range is taken to solve the system. Iterative method (1.2) for solving nonlinear (4.4) with roots of x=(0.7884,0.7884)T.

    Similar results can be obtained in Tables 2 and 3, that is, under the Kantorovich condition, by selecting different initial values, we can converge to a unique solution. When the initial value is closer to the root, the error estimate is lower. This semilocal convergence that can prove the existence and uniqueness of solutions under certain assumptions is very valuable.

    Table 2.  Numberical results of method (1.2) for nonliner equation.
    x0i iter xkxk1 F(xk)
    0.2 4 7.469e-336 2.149e-2021
    0.4 4 2.538e-352 4.629e-2120
    0.6 4 1.755e-383 8.222e-2307
    0.8 4 5.848e-445 2.318e-2675
    1.0 4 2.629e-701 3.000e-4096
    1.2 4 2.221e-467 5.991e-2809
    1.4 4 1.935e-353 8.489e-2126
    1.6 4 8.010e-286 2.379e-1720
    1.7 4 7.450e-259 1.285e-1558

     | Show Table
    DownLoad: CSV
    Table 3.  Numberical results of method (1.2) for nonliner equation.
    x0i iter xkxk1 F(xk) ρ
    0.72 4 4.048e-331 1.878e-2640 8
    0.74 4 2.665e-419 6.432e-3346 8
    0.76 4 1.046e-548 3.726e-4381 8
    0.78 4 2.052e-830 1.000e-6000 8
    0.8 4 2.246e-767 1.000e-6000 8
    0.82 4 2.005e-554 6.803e-4427 8
    0.84 4 1.127e-454 6.768e-3629 8
    0.86 4 9.380e-391 1.559e-3117 8
    0.88 4 1.414e-344 4.163e-2748 8
    0.9 4 5.796e-309 3.313e-2463 8

     | Show Table
    DownLoad: CSV

    In this paper, the semilocal convergence of the eighth order iterative method (1.2) is studied. By analyzing the behavior of the iterative method under the Kantorovich condition, the Lipschitz condition is applied to the first derivative, and the theory of semilocal convergence of the iterative method is obtained by using the recurrence relation. The existence and uniqueness domain of the solution of the nonlinear system is obtained. In the experimental part, a classical Hammerstein nonlinear integral equation and a matrix function are solved. The experimental results are consistent with expectations, and the high-precision approximation of the system solution also proves the effectiveness of the method numerically.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by the National Natural Science Foundation of China (No. 61976027), the Natural Science Foundation of Liaoning Province (Nos. 2022-MS-371, 2023-MS-296), Educational Commission Foundation of Liaoning Province of China (Nos. LJKMZ20221492, LJKMZ20221498) and the Key Project of Bohai University (No. 0522xn078).

    The authors declare no conflicts of interest.



    [1] Md. R. Amin, M. R. Roussel, Graph-theoretic analysis of a model for the coupling between photosynthesis and photorespiration, Can. J. Chem., 92 (2014), 85–93. https://doi.org/10.1139/cjc-2013-0315 doi: 10.1139/cjc-2013-0315
    [2] S. Bakshi, A. Siryaporn, M. Goulian, J. C. Weisshaar, Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells, Mol. Microbiol., 85 (2012), 21–38. https://doi.org/10.1111/j.1365-2958.2012.08081.x doi: 10.1111/j.1365-2958.2012.08081.x
    [3] K. Ball, T. G. Kurtz, L. Popovic, G. Rampala, Asymptotic analysis of multiscale approximations to reaction networks, Ann. Appl. Probab., 16 (2006), 1925–1961. https://doi.org/10.1214/105051606000000420 doi: 10.1214/105051606000000420
    [4] A. F. Bartholomay, Enzymatic reaction-rate theory: A stochastic approach, Ann. N. Y. Acad. Sci., 96 (1962), 897–912. https://doi.org/10.1111/j.1749-6632.1962.tb54110.x doi: 10.1111/j.1749-6632.1962.tb54110.x
    [5] A. F. Bartholomay, A stochastic approach to statistical kinetics with application to enzyme kinetics, Biochemistry, 1 (1962), 223–230. https://doi.org/10.1021/bi00908a005 doi: 10.1021/bi00908a005
    [6] R. D. Bliss, Analysis of the Dynamic Behavior of the Tryptophan Operon of Escherichia coli: The Functional Significance of Feedback Inhibition, PhD thesis, University of California Riverside, 1979.
    [7] G. E. Briggs, J. B. S. Haldane, A note on the kinetics of enzyme action, Biochem. J., 19 (1925), 338–339. https://doi.org/10.1042/bj0190338 doi: 10.1042/bj0190338
    [8] S. Busenberg, J. Mahaffy, Interaction of spatial diffusion and delays in models of genetic control by repression, J. Math. Biol., 22 (1985), 313–333. https://doi.org/10.1007/BF00276489 doi: 10.1007/BF00276489
    [9] T. R. Caine Boyde, Foundation Stones of Biochemistry, Voile et Aviron, Hong Kong, 1980.
    [10] K. J. Dale, O. Pourquié, A clock-work somite, BioEssays, 22 (2000), 72–83. https://doi.org/10.1002/(SICI)1521-1878(200001)22:1%3C72::AID-BIES12%3E3.0.CO;2-S doi: 10.1002/(SICI)1521-1878(200001)22:1%3C72::AID-BIES12%3E3.0.CO;2-S
    [11] A. Ecoffet, F. Poitevin, K. D. Duc, MorphOT: Transport-based interpolation between EM maps with UCSF ChimeraX, Bioinformatics, 36 (2020), 5528–5529. https://doi.org/10.1093/bioinformatics/btaa1019 doi: 10.1093/bioinformatics/btaa1019
    [12] A. Ecoffet, G. Woollard, A. Kushner, F. Poitevin, K. D. Duc, Application of transport-based metric for continuous interpolation between cryo-EM density maps, AIMS Math., 7 (2022), 986–999. https://doi.org/10.3934/math.2022059 doi: 10.3934/math.2022059
    [13] B. B. Edelstein, Biochemical model with multiple steady states and hysteresis, J. Theor. Biol., 29 (1970), 57–62. https://doi.org/10.1016/0022-5193(70)90118-9 doi: 10.1016/0022-5193(70)90118-9
    [14] R. Edwards, M. Wood, Branch prioritization motifs in biochemical networks with sharp activation, AIMS Math., 7 (2022), 1115–1146. https://doi.org/10.3934/math.2022066 doi: 10.3934/math.2022066
    [15] J. Eilertsen, M. R. Roussel, S. Schnell, S. Walcher, On the quasi-steady-state approximation in an open Michaelis-Menten reaction mechanism, AIMS Math., 6 (2021), 6781–6814. https://doi.org/10.3934/math.2021398 doi: 10.3934/math.2021398
    [16] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana U. Math. J., 21 (1971), 193–226. https://doi.org/10.1512/iumj.1972.21.21017 doi: 10.1512/iumj.1972.21.21017
    [17] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53–98. https://doi.org/10.1016/0022-0396(79)90152-9 doi: 10.1016/0022-0396(79)90152-9
    [18] Herbert C. Friedmann (ed.), Enzymes, Hutchinson Ross Publishing, Stroudsburg, Pa., 1981.
    [19] D. S. Glass, X. Jin, I. H. Riedel-Kruse, Nonlinear delay differential equations and their application to modeling biological network motifs, Nat. Commun., 12 (2021), 1788. https://doi.org/10.1038/s41467-021-21700-8 doi: 10.1038/s41467-021-21700-8
    [20] A. Goeke, S. Walcher, E. Zerz, Determining "small parameters" for quasi-steady state, J. Differential Equations, 259 (2015), 1149–1180. https://doi.org/10.1016/j.jde.2015.02.038 doi: 10.1016/j.jde.2015.02.038
    [21] A. Goldbeter, R. Lefever, Dissipative structures for an allosteric model, Biophys. J., 12 (1972), 1302–1315. https://doi.org/10.1016/S0006-3495(72)86164-2 doi: 10.1016/S0006-3495(72)86164-2
    [22] D. Gonze, W. Abou-Jaoudé, D. A. Ouattara, J. Halloy, How molecular should your molecular model be? On the level of molecular detail required to simulate biological networks in systems and synthetic biology, Meth. Enzymol., 487 (2011), 171–215. https://doi.org/10.1016/B978-0-12-381270-4.00007-X doi: 10.1016/B978-0-12-381270-4.00007-X
    [23] B. C. Goodwin, Temporal Organization in Cells, Academic Press, London, 1963.
    [24] J. S. Griffith, Mathematics of cellular control processes. Ⅰ. Negative feedback to one gene, J. Theor. Biol., 20 (1968), 202–208. https://doi.org/10.1016/0022-5193(68)90189-6 doi: 10.1016/0022-5193(68)90189-6
    [25] R. Grima, S. Schnell, Modelling reaction kinetics inside cells, Essays Biochem., 45 (2008), 41–56. https://doi.org/10.1042/bse0450041 doi: 10.1042/bse0450041
    [26] S. M. Hanson, S. Schnell, Reactant stationary approximation in enzyme kinetics, J. Phys. Chem. A, 112 (2008), 8654–8658. https://doi.org/10.1021/jp8026226 doi: 10.1021/jp8026226
    [27] L. A. Harris, J. S. Hogg, J.-J. Tapia, J. A. P. Sekar, S. Gupta, I. Korsunsky, et al., BioNetGen 2.2: Advances in rule-based modeling, Bioinformatics, 32 (2016), 3366–3368. https://doi.org/10.1093/bioinformatics/btw469 doi: 10.1093/bioinformatics/btw469
    [28] F. G. Heineken, H. M. Tsuchiya, R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosci., 1 (1967), 95–113. https://doi.org/10.1016/0025-5564(67)90029-6 doi: 10.1016/0025-5564(67)90029-6
    [29] J. Higgins, A chemical mechanism for oscillation of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. U.S.A., 51 (1964), 989–994. https://doi.org/10.1073/pnas.51.6.989 doi: 10.1073/pnas.51.6.989
    [30] A. V. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol., 40 (1910), ⅳ–ⅶ.
    [31] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, W. Fontana, Rules for modeling signal-transduction systems, Sci. STKE, (2006), re6. https://doi.org/10.1126/stke.3442006re6 doi: 10.1126/stke.3442006re6
    [32] K. J. Hughes, M. Fairweather, J. F. Griffiths, R. Porter, A. S. Tomlin, The application of the QSSA via reaction lumping for the reduction of complex hydrocarbon oxidation mechanisms, Proc. Combust. Inst., 32 (2009), 543–551. https://doi.org/10.1016/j.proci.2008.06.064 doi: 10.1016/j.proci.2008.06.064
    [33] H. Kacser, J. A. Burns, The control of flux, Symp. Soc. Exp. Biol., 27 (1973), 65–104.
    [34] A. Kicheva, T. Bollenbach, O. Wartlick, F. Jülicher, M. Gonzalez-Gaitan, Investigating the principles of morphogen gradient formation: from tissues to cells, Curr. Opin. Genet. Dev., 22 (2012), 527–532. https://doi.org/10.1016/j.gde.2012.08.004 doi: 10.1016/j.gde.2012.08.004
    [35] T. R. Kiehl, R. M. Mattheyses, M. K. Simmons, Hybrid simulation of cellular behavior, Bioinformatics, 20 (2004), 316–322. https://doi.org/10.1093/bioinformatics/btg409 doi: 10.1093/bioinformatics/btg409
    [36] B. I. Kurganov, A. I. Dorozhko, Z. S. Kagan, V. A. Yakovlev, The theoretical analysis of kinetic behaviour of "hysteretic" allosteric enzymes. Ⅰ. The kinetic manifestations of slow conformational change of an oligomeric enzyme in the Monod, Wyman and Changeux model, J. Theor. Biol., 60 (1976), 247–269. https://doi.org/10.1016/0022-5193(76)90059-X doi: 10.1016/0022-5193(76)90059-X
    [37] K. J. Laidler, Theory of the transient phase in kinetics, with special reference to enzyme systems, Can. J. Chem., 33 (1955), 1614–1624. https://doi.org/10.1139/v55-195 doi: 10.1139/v55-195
    [38] H. D. Landahl, Some conditions for sustained oscillations in biochemical chains with feedback inhibition, Bull. Math. Biophys., 31 (1969), 775–787. https://doi.org/10.1007/BF02477786 doi: 10.1007/BF02477786
    [39] J. Le Sauteur-Robitaille, Z. S. Yu, M. Craig, Impact of estrogen population pharmacokinetics on a QSP model of mammary stem cell differentiation into myoepithelial cells, AIMS Math., 6 (2021), 10861–10880. https://doi.org/10.3934/math.2021631 doi: 10.3934/math.2021631
    [40] D. Lee, A. Koul, N. Lubna, S. A. McKenna, S. Portet, Mathematical modelling of OAS2 activation by dsRNA and effects of dsRNA lengths, AIMS Math., 6 (2021), 5924–5941. https://doi.org/10.3934/math.2021351 doi: 10.3934/math.2021351
    [41] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, et al., Transcriptional regulatory networks in Saccharomyces cerevisiae, Science, 298 (2002), 799–804. https://doi.org/10.1126/science.1075090 doi: 10.1126/science.1075090
    [42] D. Lloyd, E. L. Rossi, M. R. Roussel, The temporal organization of living systems from molecule to mind, in Ultradian Rhythms from Molecules to Mind (eds. D. Lloyd and E. L. Rossi), Springer, (2008), 1–8.
    [43] C. Macdonald, Gap junctions and cell-cell communication, Essays Biochem., 21 (1985), 86–118.
    [44] P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics: Homogeneous and Heterogeneous Approaches, vol. 30 of Interdisciplinary Applied Mathematics, Springer, New York, 2005.
    [45] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326
    [46] M. C. Mackey, M. Santillán, M. Tyran-Kamińska, E. S. Zeron, Simple Mathematical Models of Gene Regulatory Dynamics, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Cham, Switzerland, 2016.
    [47] J. Maynard Smith, Mathematical Ideas in Biology, Cambridge University Press, Cambridge, 1968.
    [48] H. G. Othmer, A continuum model for coupled cells, J. Math. Biol., 17 (1983), 351–369. https://doi.org/10.1007/BF00276521 doi: 10.1007/BF00276521
    [49] L. Ouellet, K. J. Laidler, Theory of the transient phase in kinetics, with special reference to enzyme systems — Ⅱ. The case of two enzyme-substrate complexes, Can. J. Chem., 34 (1956), 146–150. https://doi.org/10.1139/v56-018 doi: 10.1139/v56-018
    [50] J. Pantoja-Hernández, M. Santillán, Segmentation-clock synchronization in circular-lattice networks of embryonic presomitic-mesoderm cells, AIMS Math., 6 (2021), 5817–5836. https://doi.org/10.3934/math.2021344 doi: 10.3934/math.2021344
    [51] L. Petzold, W. Zhu, Model reduction for chemical kinetics: An optimization approach, AIChE J., 45 (1999), 869–886. https://doi.org/10.1002/aic.690450418 doi: 10.1002/aic.690450418
    [52] I. Prigogine, R. Lefever, A. Goldbeter, M. Herschkowitz-Kaufman, Symmetry breaking instabilities in biological systems, Nature, 223 (1969), 913–916. https://doi.org/10.1038/223913a0 doi: 10.1038/223913a0
    [53] M. Ptashnyk, Multiscale modelling and analysis of signalling processes in tissues with non-periodic distribution of cells, Vietnam J. Math., 45 (2017), 295–316. https://doi.org/10.1007/s10013-016-0232-9 doi: 10.1007/s10013-016-0232-9
    [54] O. Radulescu, A. N. Gorban, A. Zinovyev, V. Noel, Reduction of dynamical biochemical reactions networks in computational biology, Front. Genet., 3 (2012), 131. https://doi.org/10.3389/fgene.2012.00131 doi: 10.3389/fgene.2012.00131
    [55] O. Radulescu, A. N. Gorban, A. Zinovyev, A. Lilienbaum, Robust simplifications of multiscale biochemical networks, BMC Syst. Biol., 2 (2008), 86. https://doi.org/10.1186/1752-0509-2-86 doi: 10.1186/1752-0509-2-86
    [56] M. R. Roussel, The use of delay differential equations in chemical kinetics, J. Phys. Chem., 100 (1996), 8323–8330. https://doi.org/10.1021/jp9600672 doi: 10.1021/jp9600672
    [57] M. A. Savageau, The behavior of intact biochemical control systems, Curr. Topics Cell. Reg., 6 (1972), 63–130. https://doi.org/10.1016/B978-0-12-152806-5.50010-2 doi: 10.1016/B978-0-12-152806-5.50010-2
    [58] L. A. Segel, M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, SIAM Rev., 31 (1989), 446–477. https://doi.org/10.1137/1031091 doi: 10.1137/1031091
    [59] P. K. Sorger, S. R. Allerheiligen, D. R. Abernethy, R. B. Altman, K. L. R. Brouwer, A. Califano, et al., Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms, Technical report, National Institutes of Health, 2011. Available from: https://www.nigms.nih.gov/training/documents/systemspharmawpsorger2011.pdf.
    [60] I. Stoleriu, F. A. Davidson, J. L. Liu, Quasi-steady state assumptions for non-isolated enzyme-catalyzed reactions, J. Math. Biol., 48 (2004), 82–104. https://doi.org/10.1007/s00285-003-0225-7 doi: 10.1007/s00285-003-0225-7
    [61] P. Thomas, A. V. Straube, R. Grima, Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks, J. Chem. Phys., 135 (2011), 181103. https://doi.org/10.1063/1.3661156 doi: 10.1063/1.3661156
    [62] P. P. Thumfort, D. B. Layzell, C. A. Atkins, A simplified approach for modeling diffusion into cells, J. Theor. Biol., 204 (2000), 47–65. https://doi.org/10.1006/jtbi.2000.1071 doi: 10.1006/jtbi.2000.1071
    [63] T. Turányi, Reduction of large reaction mechanisms, New J. Chem., 14 (1990), 795–803.
    [64] C. Walter, Enzyme Kinetics: Open and Closed Systems, Ronald Press, New York, 1966.
    [65] L. E. Whitehouse, A. S. Tomlin, M. J. Pilling, Systematic reduction of complex tropospheric chemical mechanisms, Part Ⅰ: Sensitivity and time-scale analyses, Atmos. Chem. Phys., 4 (2004), 2025–2056. https://doi.org/10.5194/acp-4-2025-2004 doi: 10.5194/acp-4-2025-2004
    [66] D. M. Wolf, A. P. Arkin, Motifs, modules and games in bacteria, Curr. Opin. Microbiol., 6 (2003), 125–134. https://doi.org/10.1016/S1369-5274(03)00033-X doi: 10.1016/S1369-5274(03)00033-X
  • This article has been cited by:

    1. Farwah Ali Syed, Kwo-Ting Fang, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics, 2024, 0927-7099, 10.1007/s10614-024-10587-4
    2. Hira Ilyas, Iftikhar Ahmad, Syed Ibrar Hussain, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Design of evolutionary computational intelligent solver for nonlinear corneal shape model by Mexican Hat and Gaussian wavelet neural networks, 2024, 1745-5030, 1, 10.1080/17455030.2024.2368867
    3. Syed Ali Asghar, Hira Ilyas, Shafaq Naz, Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Muhammad Shaoib, Intelligent predictive computing for functional differential system in quantum calculus, 2024, 15, 1868-5137, 2153, 10.1007/s12652-023-04744-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3018) PDF downloads(97) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog