By using the operator theory, we establish the Green's function for Caputo fractional differential equation under Sturm-Liouville boundary conditions. The results are new, the method used in this paper will provide some new ideas for the study of this kind of problems and easy to be generalized to solving other problems.
Citation: Youyu Wang, Xianfei Li, Yue Huang. The Green's function for Caputo fractional boundary value problem with a convection term[J]. AIMS Mathematics, 2022, 7(4): 4887-4897. doi: 10.3934/math.2022272
[1] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[2] | Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794 |
[3] | J. Kayalvizhi, A. G. Vijaya Kumar, Ndolane Sene, Ali Akgül, Mustafa Inc, Hanaa Abu-Zinadah, S. Abdel-Khalek . An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model. AIMS Mathematics, 2023, 8(2): 3542-3560. doi: 10.3934/math.2023180 |
[4] | Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212 |
[5] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[6] | Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245 |
[7] | Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736 |
[8] | Jagan Mohan Jonnalagadda . On a nabla fractional boundary value problem with general boundary conditions. AIMS Mathematics, 2020, 5(1): 204-215. doi: 10.3934/math.2020012 |
[9] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, L. A. Magna . Fractional calculus and the ESR test. AIMS Mathematics, 2017, 2(4): 692-705. doi: 10.3934/Math.2017.4.692 |
[10] | Abdissalam Sarsenbi, Abdizhahan Sarsenbi . Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability. AIMS Mathematics, 2023, 8(11): 26275-26289. doi: 10.3934/math.20231340 |
By using the operator theory, we establish the Green's function for Caputo fractional differential equation under Sturm-Liouville boundary conditions. The results are new, the method used in this paper will provide some new ideas for the study of this kind of problems and easy to be generalized to solving other problems.
In this paper, we give a new approach to construct Green's function for the following Caputo two-point boundary value problems with a constant convection coefficient
{−(CDαa+u)(t)+λu′(t)=h(t),a<t<b,1<α<2,(1.1)u(a)−β0u′(a)=γ0,u(b)+β1u′(b)=γ1,(1.2) |
where the constants λ,β0,β1,γ0,γ1 and the function h∈C[a,b] are given.
In recent years, fractional differential equations are becoming a powerful tool to describe real-world phenomena, enormous numbers of very interesting and novel applications of fractional differential equations in physics, chemistry, engineering, finance, and other sciences have been developed. The Caputo derivative is especially suitable to describe real phenomena since in many ways it behaves like the usual derivative of integer order. In particular, the Caputo derivative of constant functions is zero, which is not true for the Riemann-Liouville derivative. However, the study of fractional differential equations with Caputo derivative is far from enough, there are still many basic problems to be solved, for example, the research on the expression of Green's function and its sign in the problem with a constant convection coefficient has aroused the interest of experts.
Papers such as [1,2,3] examine the non-negativity of Green's functions for Caputo two-point boundary value problems, but these papers contain no convection terms, Papers [4,5] consider Caputo two-point boundary value problems with convection, when the convection term is constant, the non-negative condition for Green's function is sufficient but not a necessary condition.
As a special case of problems (1.1)–(1.2), X. Meng and M. Stynes [6] consider the following Caputo two-point boundary value problems with a constant convection coefficient
{−(CDαa+u)(t)+λu′(t)=h(t),0<t<1,1<α<2,(1.3)u(0)−β0u′(0)=γ0,u(1)+β1u′(1)=γ1,(1.4) |
an explicit formula for the associated Green's function is obtained by applying two-parameter Mittag-Leffler functions, and the necessary and sufficient conditions that ensure non-negativity of the Green's function can be deduce. This is the first derivation in the research literature of an explicit Green's function for a Caputo two-point boundary value problem with a convection term.
Recently, Z. Bai et al. [7] restudied problem (1.3)–(1.4), they constructed the Green's function by use of the Laplace transform.
Motivated by the works [6,7], in this paper, we will give the Green's function of boundary value problems (1.1)–(1.2) and generalize the results of [6,7]. Compared with these two articles, this paper includes the following features. Firstly, the operator theory is used in the process of solving the problem. By using operator theory, we generalize the conclusions of [6,7], these results cannot be obtained by using the methods provided in [6,7]. Secondly, the method provided in this paper may be more straightforward and easy to be generalized to solving other problems.
The paper is organized as follows. Some fundamental concepts and lemmas are described in Section 2 while Section 3 is devoted to the construction of Green's function for problem (1.1)–(1.2). In Section 4, we give the positive property of Green's function. Finally, the Green's function for multi-point boundary value problem is shown in Section 5.
In this section, we will recall some of the necessary definitions and results that will be used in the main results.
Definition 2.1. [8] Let α≥0 and f be a real function defined on [a,b]. The Riemann-Liouville fractional integral of order α is defined by (I0a+f)≡f and
(Iαa+f)(t)=1Γ(α)∫ta(t−s)α−1f(s)ds,α>0, t∈[a,b]. |
Definition 2.2. [8] The Caputo fractional derivative of order α≥0 is defined by (CD0a+f)≡f and
(CDαa+f)(t)=(Im−αa+Dmf)(t)=1Γ(m−α)∫ta(t−s)m−α−1f(m)(s)ds, |
for α>0, where m is the smallest integer greater or equal to α.
Lemma 2.3. If α≥0 and β>0, then
Iαa+(t−a)β−1=Γ(β)Γ(β+α)(t−a)β+α−1. |
Lemma 2.4. [8] Let α>0 and n=[α]+1, then
Iαa+(CDαa+u)(t)=u(t)+c0+c1(t−a)+c2(t−a)2+⋯+cn(t−a)n−1 |
for some ci∈R, i=0,1,2,⋯,n.
Definition 2.5 [8] The Mittag-Leffler function is defined by:
Eα(x):=∞∑k=0xkΓ(αk+1), α>0. |
The two-parameter Mittag-Leffler function is defined by:
Eα,γ(x):=∞∑k=0xkΓ(αk+γ), α>0. |
For convenience, we denote Fβ(x)=xβ−1Eα−1,β[λxα−1], the following properties of Fβ have been deduced in [6].
(P1):[Fβ+1(x)]′=Fβ(x) for β≥0,x≥0;
(P2):F1(0)=1,Fβ(0)=0 for β>1;
(P3):F1(x)>0 for x>0, F2(x) is increasing for x≥0;
(P4):Fα−1(x)>0 for x>0, Fα(x) is increasing for x>0.
Now, we prove the important result used in this paper.
Lemma 2.6. For any λ∈R,α>0, we have the following results.
(1) For any r∈C([a,b],R), series ∑∞k=0λkIkαa+r(t) is convergent andthe sum is
∞∑k=0λkIkαa+r(t)=r(t)+λ∫ta(t−s)α−1Eα,α[λ(t−s)α]r(s)ds. |
(2) The operator I−λIαa+:C([a,b],R)→C([a,b],R) is reversible and:
(I−λIαa+)−1r(t)=∞∑k=0λkIkαa+r(t). |
Proof. (1) By the properties of Mittag-Leffler function and two-parameter Mittag-Leffler function, we have
λ∫ta(t−s)α−1Eα,α[λ(t−s)α]r(s)ds=λ∫ta(t−s)α−1∞∑k=0λk(t−s)kαΓ(kα+α)r(s)ds=∞∑k=0λk+1Γ(kα+α)∫ta(t−s)kα+α−1r(s)ds=∞∑k=0λk+1Ikα+αa+r(t)=∞∑k=1λkIkαa+r(t), |
and
r(t)+∞∑k=1λkIkαa+r(t)=∞∑k=0λkIkαa+r(t). |
Thus, (1) is proved.
(2) First, we show that (I−λIαa+)(∑∞k=0λkIkαa+r(t))=r(t). In fact, it is easy to see
(I−λIαa+)(∞∑k=0λkIkαa+r(t))=∞∑k=0λkIkαa+r(t)−λIαa+∞∑k=0λkIkαa+r(t)=∞∑k=0λkIkαa+r(t)−∞∑k=0λk+1Ikα+αa+r(t)=∞∑k=0λkIkαa+r(t)−∞∑k=1λkIkαa+r(t)=r(t). |
Similarly, we can easily prove the fact that:
∞∑k=0λkIkαa+(I−λIαa+)r(t)=r(t). |
Theorem 3.1. Assume that β0≥0,β1≥0. The boundary valueproblem (1.1)–(1.2) has a unique solution
u(t)=∫baG(t,s)h(s)ds+γ1σ(t)+γ0[1−σ(t)], |
where
G(t,s)={σ(t)[Fα(b−s)+β1Fα−1(b−s)]−Fα(t−s),a≤s≤t≤b,σ(t)[Fα(b−s)+β1Fα−1(b−s)],a≤t≤s≤b,σ(t)=β0+F2(t−a)β0+β1F1(b−a)+F2(b−a). |
Proof. Applying Iαa+ to the both sides of the equation (1.1), we have:
−Iαa+(CDαa+u)(t)+λIαa+u′(t)=Iαa+h(t), |
From Lemmas 2.4,
−u(t)+c0+c1(t−a)−λΓ(α)u(a)(t−a)α−1+λIα−1a+u(t)=Iαa+h(t), |
let t=a, we obtain u(a)=c0, so
−u(t)+c0+c1(t−a)−λΓ(α)c0(t−a)α−1+λIα−1a+u(t)=Iαa+h(t), |
or
((I−λIα−1a+)u)(t)=c0+c1(t−a)−λΓ(α)c0(t−a)α−1−Iαa+h(t), |
by Lemma 2.6, we have
u(t)=(I−λIα−1a+)−1(c0+c1(t−a)−λΓ(α)c0(t−a)α−1−Iαa+h(t))=∞∑k=0λkIk(α−1)a+(c0+c1(t−a)−λΓ(α)c0(t−a)α−1−Iαa+h(t))=c0Eα−1,1[λ(t−a)α−1]+c1(t−a)Eα−1,2[λ(t−a)α−1]−λc0(t−a)α−1Eα−1,α[λ(t−a)α−1]−∫ta(t−s)α−1Eα−1,α[λ(t−s)α−1]h(s)ds=c0F1(t−a)+c1F2(t−a)−λc0Fα(t−a)−∫taFα(t−s)h(s)ds=c0+c1F2(t−a)−∫taFα(t−s)h(s)ds, |
and
u′(t)=c1F1(t−a)−∫taFα−1(t−s)h(s)ds, |
by the boundary conditions u(a)−β0u′(a)=γ0 and u(b)+β1u′(b)=γ1, we can get
{c0−β0c1=γ0,c0+[β1F1(b−a)+F2(b−a)]c1=γ1+∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)ds, |
thus,
c0=γ0+β0(γ1−γ0)+β0∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)dsβ0+β1F1(b−a)+F2(b−a),c1=γ1−γ0+∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)dsβ0+β1F1(b−a)+F2(b−a), |
therefore,
u(t)=c0+c1F2(t−a)−∫taFα(t−s)h(s)ds=(β0+F2(t−a))∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)dsβ0+β1F1(b−a)+F2(b−a)−∫taFα(t−s)h(s)ds+γ0+β0(γ1−γ0)β0+β1F1(b−a)+F2(b−a)+γ1−γ0β0+β1F1(b−a)+F2(b−a)F2(t−a)=σ(t)∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)ds−∫taFα(t−s)h(s)ds+γ1σ(t)+γ0[1−σ(t)]=∫baG(t,s)h(s)ds+γ1σ(t)+γ0[1−σ(t)]. |
A function h(x) is said to be log-concave if lnh(x) is concave, i.e., (lnh(x))″≤0. Similarly, a function h(x) is said to be log-convex if lnh(x) is convex, i.e., (lnh(x))″≥0.
Lemma 4.1. [6] Fix τ∈(0,1]. Then for x>0, the functions xτEτ,τ+1(xτ) and Eτ,1(xτ) are log-concave.
Lemma 4.2. [6] Fix τ∈(0,1]. Then for x>0, the functions xτEτ,τ+1(−xτ) is log-concave; Eτ,1(−xτ)and xτ−1Eτ,τ(−xτ) are log-convex.
Theorem 4.3. Fix t∈[a,b]. Then for a≤s≤t,
ft(s):=Fα(t−s)Fα(b−s)+β1Fα−1(b−s) |
is a decreasing function of s.
Proof. (I). If λ=0, then
ft(s)=(t−s)α−1(b−s)α−1+β1(α−1)(b−s)α−2, |
it is easy to check that
f′t(s)=ft(s)[−α−1t−s+α−2b−s+1b−s+(α−1)β1]<ft(s)[−α−1b−s+(α−1)β1+α−2b−s+(α−1)β1+1b−s+(α−1)β1]=0, |
so the conclusion holds.
(II). If λ≠0. By Lemma 4.1 and 4.2, the function |λ|Fα(x) is log-concave when x>0. Thus, one can infer from the property (P1) that for x>0,
(Fα−1(x)Fα(x))′=(|λ|Fα−1(x)|λ|Fα(x))′=[ln(|λ|Fα(x))]″≤0. |
This shows that Fα−1(x)Fα(x) is a decreasing function for x>0. Consequently
Fα−1(t−s)Fα(t−s)≥Fα−1(b−s)Fα(b−s), for a≤s<t, |
or
Fα(t−s)Fα−1(b−s)−Fα−1(t−s)Fα(b−s)≤0, for a≤s<t. | (4.1) |
That is, the numerator of ∂∂s(Fα(b−s)Fα(t−s)) is non-negative. So, Fα(b−s)Fα(t−s) is an increasing function of s. As Fα−1(x)Fα(x) is a decreasing function for x>0, the function Fα−1(b−s)Fα(b−s) is an increasing function of s. Consequently, Fα−1(b−s)Fα(b−s)⋅Fα(b−s)Fα(t−s)=Fα−1(b−s)Fα(t−s) is also increasing on s. By considering its derivative with respect to s, we obtain
Fα(t−s)Fα−2(b−s)−Fα−1(t−s)Fα−1(b−s)≤0. | (4.2) |
By (4.1) and (4.2), the numerator of f′t(s) is
Fα(t−s)[Fα−1(b−s)+β1Fα−2(b−s)]−Fα−1(t−s)[Fα(b−s)+β1Fα−1(b−s)]=Fα(t−s)Fα−1(b−s)−Fα−1(t−s)Fα(b−s)+β1[Fα(t−s)Fα−2(b−s)−Fα−1(t−s)Fα−1(b−s)]≤0, |
hence ft(s) is a decreasing function of s∈[a,t].
Lemma 4.4. For a≤t≤b, the function
g(t):=β1F1(b−a)+F2(b−a)−F2(t−a)β1Fα−1(b−a)+Fα(b−a)−Fα(t−a) |
is an increasing function of t.
Proof. (I). If λ=0, then for β≥0,Fβ(x)=1Γ(β)xβ−1, thus
g(t)=Γ(α−1)β1+(b−a)−(t−a)β1(b−a)α−2+(b−a)α−1−(t−a)α−1α−1=Γ(α−1)β1+(b−a)[1−t−ab−a]β1(b−a)α−2+(b−a)α−1α−1[1−(t−ab−a)α−1], |
it is easy to check that
(t−ab−a)2−α<1,1α−1(t−ab−a)2−α[1−(t−ab−a)α−1]<1−t−ab−a, |
we have
1Γ(α−1)g′(t)=g(t)[−1β1+(b−a)[1−t−ab−a]+1β1(t−ab−a)2−α+b−aα−1(t−ab−a)2−α[1−(t−ab−a)α−1]]>0, |
hence g(t) is an increasing function of t.
(II). If λ>0, then by Lemma 4.1 the function F1(x)=λFα(x)+1=xα−1Eα−1,α(λxα−1)+1 is log-concave when x>0, so
((λFα(x)+1)′λFα(x)+1)′≤0, for x>0, |
which imply
(F1(x)Fα−1(x))′=(λFα(x)+1(Fα(x))′)′=λ(λFα(x)+1(λFα(x)+1)′)′≥0, for x>0. |
(III). If λ<0, we can similarly prove that (F1(x)Fα−1(x))′≥0.
Suppose t∈(a,b), By the Cauchy mean value theorem, there exists ξ∈(t−a,b−a) such that
F2(b−a)−F2(t−a)Fα(b−a)−Fα(t−a)=F1(ξ)Fα−1(ξ)≥F1(t−a)Fα−1(t−a). |
Equivalently,
[F2(b−a)−F2(t−a)]Fα−1(t−a)−F1(t−a)[Fα(b−a)−Fα(t−a)]≥0. | (4.3) |
Furthermore, (F1(x)Fα−1(x))′≥0 implies that
F1(b−a)Fα−1(b−a)≥F1(t−a)Fα−1(t−a), |
or
F1(b−a)Fα−1(t−a)−F1(t−a)Fα−1(b−a)≥0. | (4.4) |
By (4.3) and (4.4), the sign of the numerator of g′(t) is
[β1F1(b−a)+F2(b−a)−F2(t−a)]Fα−1(t−a)−F1(t−a)[β1Fα−1(b−a)+Fα(b−a)−Fα(t−a)]=[F2(b−a)−F2(t−a)]Fα−1(t−a)−F1(t−a)[Fα(b−a)−Fα(t−a)]+β1[F1(b−a)Fα−1(t−a)−F1(t−a)Fα−1(b−a)]≥0. |
Hence g(t) is an increasing function of t∈[a,b].
The main result of this paper is as follow.
Theorem 4.5. Assume β1≥0. Then the Green's function G(t,s) isnonnegative if and only if
β0≥−F2(b−a)+F1(b−a)Fα(b−a)Fα−1(b−a). |
Proof. The Green's function G(t,s) is nonnegative on [a,b]×[a,b] if and only if
σ(t)[Fα(b−s)+β1Fα−1(b−s)]−Fα(t−s)≥0,for a≤s≤t≤b. |
Equivalently,
β0≥−β1F1(b−a)−F2(b−a)+β1F1(b−a)+F2(b−a)−F2(t−a)1−Fα(t−s)Fα(b−s)+β1Fα−1(b−s), for a≤s≤t≤b. | (4.5) |
by Theorem 4.3 and Lemma 4.4, inequality (4.5) is equivalent to
β0≥maxa≤s≤t≤b[−β1F1(b−a)−F2(b−a)+β1F1(b−a)+F2(b−a)−F2(t−a)1−ft(s)]s=a=maxa≤t≤b[−β1F1(b−a)−F2(b−a)+β1F1(b−a)+F2(b−a)−F2(t−a)1−ft(a)]=maxa≤t≤b[−β1F1(b−a)−F2(b−a)+[Fα(b−a)+β1Fα−1(b−a)]g(t)]t=b=−β1F1(b−a)−F2(b−a)+[Fα(b−a)+β1Fα−1(b−a)]F1(b−a)Fα−1(b−a)=−F2(b−a)+F1(b−a)Fα(b−a)Fα−1(b−a). |
The proof is complete.
In this section, we present the Green's function for the following multi-point boundary value problem
{−(CDαa+u)(t)+λu′(t)=h(t),a<t<b,1<α<2,(5.1)u(a)−β0u′(a)=0,u(b)+β1u′(b)=m−2∑i=1γiu(ξi),(5.2) |
where the constants λ,β0,β1,γi>0(i=1,2,⋯,m−2),a<ξ1<⋯<ξm−2<b and the function h∈C[a,b] are given.
Theorem 5.1. Assume that β0≥0,β1≥0. The boundary valueproblem (5.1)–(5.2) has a unique solution
u(t)=∫ba[G(t,s)+σ(t)1−m−2∑i=1γiσ(ξi)m−2∑i=1γiG(ξi,s)]h(s)ds, |
where
G(t,s)={σ(t)[Fα(b−s)+β1Fα−1(b−s)]−Fα(t−s),a≤s≤t≤b,σ(t)[Fα(b−s)+β1Fα−1(b−s)],a≤t≤s≤b,σ(t)=β0+F2(t−a)β0+β1F1(b−a)+F2(b−a). |
Proof. For convenience, we denote ρ=β0+β1F1(b−a)+F2(b−a), then we have the relations
β0+F2(t−a)=ρσ(t),β1F1(b−a)+F2(b−a)−m−2∑i=1γiF2(ξi−a)=ρ[1−m−2∑i=1γiσ(ξi)]−β0(1−m−2∑i=1γi),β0(1−m−2∑i=1γi)+β1F1(b−a)+F2(b−a)−m−2∑i=1γiF2(ξi−a)=ρ[1−m−2∑i=1γiσ(ξi)]. |
According to the proof of Theorem 3.1, u(t) and u′(t) satisfy
u(t)=c0+c1F2(t−a)−∫taFα(t−s)h(s)ds,u′(t)=c1F1(t−a)−∫taFα−1(t−s)h(s)ds, |
by the boundary conditions u(a)−β0u′(a)=0 and u(b)+β1u′(b)=∑m−2i=1γiu(ξi), we can get c0−β0c1=0 and
(1−m−2∑i=1γi)c0+(ρ(1−m−2∑i=1γiσ(ξi))−β0(1−m−2∑i=1γi))c1=∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)ds−m−2∑i=1γi∫ξiaFα(ξi−s)h(s)ds, |
thus,
c0=β0∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)ds−β0m−2∑i=1γi∫ξiaFα(ξi−s)h(s)dsρ(1−m−2∑i=1γiσ(ξi))=β0∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)dsρ+β0m−2∑i=1γi∫baσ(ξi)[Fα(b−s)+β1Fα−1(b−s)]h(s)ds−m−2∑i=1γi∫ξiaFα(ξi−s)h(s)dsρ(1−m−2∑i=1γiσ(ξi))=β0∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)dsρ+β0m−2∑i=1γi∫baG(ξi,s)h(s)dsρ(1−m−2∑i=1γiσ(ξi)),c1=∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)ds−m−2∑i=1γi∫ξiaFα(ξi−s)h(s)dsρ(1−m−2∑i=1γiσ(ξi))=∫ba[Fα(b−s)+β1Fα−1(b−s)]h(s)dsρ+m−2∑i=1γi∫baG(ξi,s)h(s)dsρ(1−m−2∑i=1γiσ(ξi)), |
therefore,
u(t)=c0+c1F2(t−a)−∫taFα(t−s)h(s)ds=∫baG(t,s)h(s)ds+σ(t)1−m−2∑i=1γiσ(ξi)m−2∑i=1γi∫baG(ξi,s)h(s)ds=∫ba[G(t,s)+σ(t)1−m−2∑i=1γiσ(ξi)m−2∑i=1γiG(ξi,s)]h(s)ds. |
In this paper, by use of the operator theory, the Green's function for a class of Sturm-Liouville fractional boundary value problems is obtained. Compare with other literature, our method provide some new ideas for the study of this kind of problems and easy to be generalized to solving other related problems.
The authors would like to thank the referees for their helpful comments and suggestions. This work is supported by the Tianjin Natural Science Foundation (grant no. 20JCYBJC00210).
[1] |
R. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math., 109 (2010), 973–1033. https://doi.org/10.1007/s10440-008-9356-6 doi: 10.1007/s10440-008-9356-6
![]() |
[2] |
M. Benchohra, J. Graef, S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal., 87 (2008), 851–863. https://doi.org/10.1080/00036810802307579 doi: 10.1080/00036810802307579
![]() |
[3] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 36. |
[4] | M. Al-Refai, Basic results on nonlinear eigenvalue problems of fractional order, Electron. J. Differ. Eq., 2012 (2012), 191. |
[5] | M. Al-Refai, On the fractional derivatives at extreme points, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 55. |
[6] |
X. Meng, M. Stynes, The Green function and a maximum principle for a Caputo two-point boundary value problem with a convection term, J. Math. Anal. Appl., 461 (2018), 198–218. https://doi.org/10.1016/j.jmaa.2018.01.004 doi: 10.1016/j.jmaa.2018.01.004
![]() |
[7] |
Z. Bai, S. Sun, Z. Du, Y. Chen, The Green function for a class of Caputo fractional differential equations with a convection term, Fract. Calc. Appl. Anal., 23 (2020), 787–798. https://doi.org/10.1515/fca-2020-0039 doi: 10.1515/fca-2020-0039
![]() |
[8] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
1. | Qingcong Song, Xinan Hao, Positive solutions for fractional iterative functional differential equation with a convection term, 2023, 31, 2688-1594, 1863, 10.3934/era.2023096 | |
2. | Youyu Wang, Yue Huang, Xianfei Li, Positive solutions for fractional differential equation at resonance under integral boundary conditions, 2022, 55, 2391-4661, 238, 10.1515/dema-2022-0026 | |
3. | Alireza Khabiri, Ali Asgari, Reza Taghipour, Mohsen Bozorgnasab, Ahmad Aftabi-Sani, Hossein Jafari, Analysis of fractional Euler-Bernoulli bending beams using Green’s function method, 2024, 106, 11100168, 312, 10.1016/j.aej.2024.07.023 | |
4. | Jeffrey W. Lyons, CONTINUOUS DEPENDENCE ON BOUNDARY CONDITIONS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.823 | |
5. | Jeffrey W. Lyons, Differentiation of Solutions of Caputo Boundary Value Problems with Respect to Boundary Data, 2024, 12, 2227-7390, 1790, 10.3390/math12121790 | |
6. | Zaid Laadjal, Thabet Abdeljawad, Fahd Jarad, Some results for two classes of two-point local fractional proportional boundary value problems, 2023, 37, 0354-5180, 7199, 10.2298/FIL2321199L | |
7. | Aghalaya S. Vatsala, Bhuvaneswari Sambandham, Remarks on Sequential Caputo Fractional Differential Equations with Fractional Initial and Boundary Conditions, 2024, 12, 2227-7390, 3970, 10.3390/math12243970 |