Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Bifurcation analysis and optimal control of SEIR epidemic model with saturated treatment function on the network

  • Received: 05 October 2021 Accepted: 09 November 2021 Published: 14 December 2021
  • In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that R0<1 is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near R0=1. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.

    Citation: Boli Xie, Maoxing Liu, Lei Zhang. Bifurcation analysis and optimal control of SEIR epidemic model with saturated treatment function on the network[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1677-1696. doi: 10.3934/mbe.2022079

    Related Papers:

    [1] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [2] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [3] Weichun Bu, Tianqing An, Guoju Ye, Yating Guo . Nonlocal fractional p()-Kirchhoff systems with variable-order: Two and three solutions. AIMS Mathematics, 2021, 6(12): 13797-13823. doi: 10.3934/math.2021801
    [4] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
    [5] Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271
    [6] Fátima Cruz, Ricardo Almeida, Natália Martins . A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
    [7] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [8] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [9] Teng-Fei Shen, Jian-Gen Liu, Xiao-Hui Shen . Existence of solutions for Hadamard fractional nonlocal boundary value problems with mean curvature operator at resonance. AIMS Mathematics, 2024, 9(10): 28895-28905. doi: 10.3934/math.20241402
    [10] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
  • In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that R0<1 is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near R0=1. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.



    The linear complexity and the k-error linear complexity are important cryptographic characteristics of stream cipher sequences. The linear complexity of an N-periodic sequence s={su}u=0, denoted by LC(s), is defined as the length of the shortest linear feedback shift register (LFSR) that generates it [1]. With the Berlekamp-Massey (B-M) algorithm [2], if LC(s)N/2, then s is regarded as a good sequence with respect to its linear complexity. For an integer k0, the k-error linear complexity LCk(s) is the smallest linear complexity that can be obtained by changing at most k terms of s in the first period and periodically continued [3]. The cryptographic background of the k-error linear complexity is that some key streams with large linear complexity can be approximated by some sequences with much lower linear complexity [2]. For a sequence to be cryptographically strong, its linear complexity should be large enough, and its k-error linear complexity should be close to the linear complexity.

    The relationship between the linear complexity and the DFT of the sequence was given by Blahut in [4]. Let m be the order of 2 modulo an odd number N. For a primitive N-th root βF2m of unity, the DFT of s is defined by

    ρi=N1u=0suβiu0iN1. (1.1)

    Then

    LC(s)=WH(ρ0,ρ1,,ρN1), (1.2)

    where WH(A) is the hamming weight of the sequence A. The polynomial

    G(X)=N1i=0ρiXiF2m[X] (1.3)

    is called the Mattson-Solomon polynomial (M-S polynomial) of s [5]. It can be deduced from Eqs (1.2)and (1.3) that the linear complexity of s is equal to the number of the nonzero terms of G(X), namely

    LC(s)=|G(X)|. (1.4)

    By the inverse DFT,

    su=N1i=0ρiβiu=G(βu)0uN1. (1.5)

    There are many studies about two-prime generators. In 1997–1998, Ding calculated the linear complexity and the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order two [6,7]. In 2013, Li defined a new generalized cyclotomic sequence of order two of length pq, which is based on Whiteman generalized cyclotomic classes, and calculated its linear complexity [8]. In 2015, Wei determined the k-error linear complexity of Legendre sequences for k=1,2 [9]. In 2018, Hofer and Winterhof studied the 2-adic complexity of the two-prime generator of period pq [10]. Alecu and Sălăgean transformed the optimisation problem of finding the k-error linear complexity of a sequence into an optimisation problem in the DFT domain, by using Blahut's theorem in the same year [11]. In 2019, in terms of the DFT, Chen and Wu discussed the k-error linear complexity for Legendre, Ding-Helleseth-Lam, and Hall's sextic residue sequences of odd prime period p [12]. In 2020, Zhou and Liu presented a type of binary sequences based on a general two-prime generalized cyclotomy, and derived their minimal polynomial and linear complexity [13]. In 2021, the autocorrelation distribution and the 2-adic complexity of generalized cyclotomic binary sequences of order 2 with period pq were determined by Jing [14].

    This paper is organized as follows. Firstly, we present some preliminaries about Whiteman generalized cyclotomic classes and the linear complexity in Section 2. In Section 3, we give main results about the linear complexity of Whiteman generalized cyclotomic sequences of order two. In Section 4, we give the 1-error linear complexity of these sequences. At last, we conclude this paper in Section 5.

    Let p and q be two distinct odd primes with gcd(p1,q1)=2, and N=pq, e=(p1)(q1)/2. By the Chinese Remainder Theorem, there is a fixed common primitive root g of both p and q such that ordN(g)=e. Let x be an integer satisfying

    x=g(modp)x=1(modq).

    Then the set

    Di={gsximodN:s=0,1,,e1}

    for i=0,1 is called a Whiteman generalized cyclotomic class of order two [15].

    As pointed out in [14], the unit group of the ring ZN is

    ZN={a(mod N):gcd(a,N)=1}={ip+jq(mod N):1iq11jp1}.

    Let P={p,2p,,(q1)p}, Q={q,2q,,(p1)q} and R={0}. Then ZN=ZNPQR. The sequence s(a,b,c)={su}u=0 over F2 is defined by

    su={c,if u=0,a,if uP,b,if uQ,12(1(up)(uq)),if uZN,

    where () denotes the Legendre symbol and a,b,cF2 [14].

    Lemma 2.1. [7] 1D1, if |pq|/2 is odd; and 1D0, if |pq|/2 is even.

    Lemma 2.2. [6]

    (1)Ifp±1(mod8),q±1(mod8)orp±3(mod8),q±3(mod8),then2D0.(2)Ifp±1(mod8),q±3(mod8)orp±3(mod8),q±1(mod8),then2D1.

    Lemma 2.3. [6] (1) If aP, then aP=P and aQ=R.

    (2) If aQ, then aP=R and aQ=Q.

    (3) If aDi, then aP=P, aQ=Q, and aDj=D(i+j)mod2, where i,j=0,1.

    It was shown in [6] that, for a primitive N-th root βF2m of unity, we have

    iPβi=1,iQβi=1,

    and

    iD0βi+iD1βi+iPβi+iQβi=1. (2.1)

    Lemma 2.4. [6]

    uDjβiu={p12(mod2),ifiP,q12(mod2),ifiQ.

    Actually, if p1(mod8) or p3(mod8), then (p1)/2=1; if p1(mod8) or p3(mod8), then (p1)/2=0. By symmetry, if q1(mod8) or q3(mod8), then (q1)/2=1; if q1(mod8) or q3(mod8), then (q1)/2=0.

    Lemma 2.5. Define

    Di(X)=uDiXuF2[X],i=0,1.

    Then for β, we have D0(β)=0 and D1(β)=1 if 2D0; D0(β)=ω and D1(β)=1+ω if 2D1, where ωF4F2.

    Proof. (1) If 2D0, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDiβ2u=Di(β)F2.

    (2) If 2D1, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDi+1β2u=Di+1(β),[Di(β)]4=[Di(β)2]2=[Di+1(β)]2=Di+1(β2)=2uDiβ2u=Di(β).

    Hence Di(β)F4F2.

    And by Eq (2.1), we have D0(β)D1(β) and D0(β)+D1(β)=1. Assume that D0(β)=0, D1(β)=1 for 2D0, and D0(β)=ω, D1(β)=1+ω for 2D1, where ωF4F2.

    Let LC(s(a,b,c)) be the linear complexity of s(a,b,c), and the other symbols be the same as before.

    Theorem 3.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3. Then the linear complexity of s(a,b,c) respect to different values of p and q is as shown as Table 1.

    Table 1.  The linear complexity of s(a,b,c).
    s(0,0,0) s(0,0,1) s(0,1,0) s(0,1,1) s(1,0,0) s(1,0,1) s(1,1,0)) s(1,1,1)
    (1,3) or (3,1) pqp pqq+1 pq1 pqpq+2 pqpq+1 pq pqq pqp+1
    (1,3) or (3,1) pq1 pqpq+2 pqp pqq+1 pqq pqp+1 pqpq+1 pq
    (1,1) or (3,3) pqp+q12 pq+pq+12 pq+p+q32 pqpq+32 pqpq+12 pq+p+q12 pq+pq12 pqp+q+12
    (1,1) or (3,3) pq+p+q32 pqpq+32 pqp+q12 pq+pq+12 pq+pq12 pqp+q+12 pqpq+12 pq+p+q12
    (3,1) or (1,3) pqq pqp+1 pqpq+1 pq pq1 pqpq+2 pqp pqq+1
    (1,1) or (3,3) pq+pq12 pqp+q+12 pqpq+12 pq+p+q12 pq+p+q32 pqpq+32 pqp+q12 pq+pq+12

     | Show Table
    DownLoad: CSV

    Proof. We provide the process of calculating LC(s(0,0,0)) when v=1 and w=3, and can prove other cases in a similar way.

    By Lemmas 2.1–2.3 and Eq (1.1), we have 1D1, 2D1, then

    ρi=N1u=0suβiu=uD1βiu=uD0βiu,

    and ρ0=0. By Eq (1.3), we have

    G(X)=N1i=0ρiXi=iD0ρiXi+iD1ρiXi+iPρiXi+iQρiXi+ρ0=iD0uD0βiuXi+iD1uD0βiuXi+iPuD0βiuXi+iQuD0βiuXi.

    Let t=iu. Then by Lemmas 2.3–2.5, we have

    G(X)=iD0tD0βtXi+iD1tD1βtXi+iPp12Xi+iQq12Xi=D0(β)D0(X)+D1(β)D1(X)+iPXi=ωD0(X)+(1+ω)D1(X)+iPXi.

    By Eq (1.4) we can get the linear complexity of s(0,0,0) as

    LC(s(0,0,0))=|G(X)|=pqp.

    Actually, the linear complexity of s(1,0,0) was studied by Ding in [6] with its minimal polynomial.

    Let LCk(s(a,b,c)) be the k-error linear complexity of s(a,b,c), ˜s={˜su}u=0 be the new sequence obtained by changing at most k terms of s, that ˜s=s+e, where e={eu}u=0 is an error sequence of period N. Ding has provided in [2] that, the k-error linear complexity of a sequence can be expressed as

    LCk(s)=minWH(e)k{LC(s+e)}. (4.1)

    It is clearly that LC0(s)=LC(s) and

    NLC0(s)LC1(s)LCl(s)=0,

    where l=WH(s).

    Let G(X), Gk(X) and ˜G(X) be the M-S polynomials of s, e and ˜s respectively. Note that

    G(X)=N1i=0ρiXi, Gk(X)=N1i=0ηiXi, ˜G(X)=N1i=0ξiXi, (4.2)

    where ρi, ηi and ξi are the DFTs of s, e and ˜s respectively. By Eqs (1.5), (4.1) and (4.2), we have ˜G(X)=G(X)+Gk(X), then

    ξi=ρi+ηi. (4.3)

    Assume that eu0=1 for 0u0N1 and eu=0 for uu0 in the first period of e. Then the DFT of e is

    ηi=N1u=0euβiu=βiu00iN1.

    Specially, if u0=0, then ηi=1 for all 0iN1; otherwise, η0=1 and the order of ηi is N for 1iN1.

    Theorem 4.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3, and the other symbols be the same as before. Then the 1-error linear complexity of s(a,b,c) is as shown as Table 2.

    Table 2.  The 1-error linear complexity of s(a,b,c).
    s(0,0,0) and s(0,0,1) s(0,1,0) and s(0,1,1) s(1,0,0) and s(1,0,1) s(1,1,0)) and s(1,1,1)
    (1,3) or (3,1) (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    pqpq+2 pqpq+1 (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    (1,3) or (3,1) pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1
    (1,1) or (3,3) (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    pqpq+32 pqpq+12 (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    (1,1) or (3,3) pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12
    (3,1) or (1,3) (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1 pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1,1) or (3,3) (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12 pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.

     | Show Table
    DownLoad: CSV

    Proof. We consider the case v=1,w=3 for LC1(s(0,0,0)). By Lemmas 2.1–2.5 and Eq (1.1), we have 1D1, 2D1 and

    ξi=ρi+ηi=uD0βiu+βiu0={ω+βiu0,if iD0,1+ω+βiu0,if iD1,1+βiu0,if iP,βiu0,if iQ,1,if i=0.

    Then by Eq (4.2), we can get

    ˜G(X)=N1i=0ξiXi=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1.

    According to Lemma 2.3, we can get the following results.

    (1) If u0=0, then

    ˜G(X)=iD0(ω+1)Xi+iD1ωXi+iQXi+1,|˜G(X)|=pqq+1.

    (2) If u0Q, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pqq+1.

    (3) If u0D0 or u0D1 or u0P, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pq.

    Compare the results of Cases (1)–(3) with LC(s(0,0,0))=pqp. If p>q, then pqp<pqq+1<pq; if p<q, then pqq+1<pqp<pq. Hence

    LC1(s(0,0,0))={pqp,if p>q,pqq+1,if p<q.

    Similarly we can prove the other cases for LC1(s(a,b,c)).

    All results of LC(s(a,b,c)) and LC1(s(a,b,c)) in Sections 3 and 4 have been tested by MAGMA program.

    The purpose of this paper is to determine the linear complexity and the 1-error linear complexity of s(a,b,c). In most of the cases, s(a,b,c) possesses high linear complexity, namely LC(s(a,b,c))>N/2, consequently has decent stability against 1-bit error. Notice that the linear complexity of some of the sequences above is close to N/2. Then the sequences can be selected to construct cyclic codes by their minimal generating polynomials with the method introduced by Ding [16].

    This work was supported by Fundamental Research Funds for the Central Universities (No. 20CX05012A), the Major Scientific and Technological Projects of CNPC under Grant (No. ZD2019-183-008), the National Natural Science Foundation of China (Nos. 61902429, 11775306) and Shandong Provincial Natural Science Foundation of China (ZR2019MF070).

    The authors declare that they have no conflicts of interest.



    [1] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200–3203. doi: 10.1103/PhysRevLett.86.3200. doi: 10.1103/PhysRevLett.86.3200
    [2] R. Pastor-Satorras, A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001), 066117. doi: 10.1103/PhysRevE.63.066117. doi: 10.1103/PhysRevE.63.066117
    [3] Y. Moreno, R. Pastor-Satorras, A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26 (2002), 521–529. doi: 10.1140/epjb/e20020122. doi: 10.1140/epjb/e20020122
    [4] C. Li, C. Tsai, S. Yang, Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci., 19 (2014), 1042–1054. doi: 10.1016/j.cnsns.2013.08.033. doi: 10.1016/j.cnsns.2013.08.033
    [5] S. Huang, F. Chen, L. Chen, Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination, Commun. Nonlinear Sci., 43 (2017), 296–310. doi: 10.1016/j.cnsns.2016.07.014. doi: 10.1016/j.cnsns.2016.07.014
    [6] T. Li, Y. Wang, Z. Guan, Spreading dynamics of a SIQRS epidemic model on scale-free networks, Commun. Nonlinear Sci., 19 (2014), 686–692. doi: 10.1016/j.cnsns.2013.07.010. doi: 10.1016/j.cnsns.2013.07.010
    [7] J. Juang, Y. H. Liang, Analysis of a general SIS model with infective vectors on the complex networks, Physica A, 437 (2015), 382–395. doi: 10.1016/j.physa.2015.06.006. doi: 10.1016/j.physa.2015.06.006
    [8] Y. Wang, Z. Jin, Z. Yang, Z. Zhang, T. Zhou, G. Sun, Global analysis of an SIS model with an infective vector on complex networks, Nonlinear Anal. Real World Appl., 13 (2012), 543–557. doi: 10.1016/j.nonrwa.2011.07.033. doi: 10.1016/j.nonrwa.2011.07.033
    [9] M. Yang, G. Chen, X. Fu, A modified SIS model with an infective medium on complex networks and its global stability, Phys. A, 390 (2011), 2408–2413. doi: 10.1016/j.physa.2011.02.007. doi: 10.1016/j.physa.2011.02.007
    [10] Q. Wu, X. Fu, M. Yang, Epidemic thresholds in a heterogenous population with competing strains, Chinese Phys. B, 20 (2011), 046401. doi: 10.1088/1674-1056/20/4/046401. doi: 10.1088/1674-1056/20/4/046401
    [11] Q. Wu, M. Small, H. Liu, Superinfection behaviors on scale-free networks with competing strains, J. Nonlinear Sci., 23 (2013), 113–127. doi: 10.1007/s00332-012-9146-1. doi: 10.1007/s00332-012-9146-1
    [12] J. Yang, C. H. Li, Dynamics of a competing two-strain SIS epidemic model on complex networks with a saturating incidence rate, J. Phys. A, 49 (2016), 215601. doi: 10.1088/1751-8113/49/21/215601. doi: 10.1088/1751-8113/49/21/215601
    [13] L. J. Chen, J. T. Sun, Global stability and optimal control of an SIRS epidemic model on heterogeneous networks, Phys. A, 410 (2014), 196–204. doi: 10.1016/j.physa.2014.05.034. doi: 10.1016/j.physa.2014.05.034
    [14] L. J. Chen, J. T. Sun, Optimal vaccination and treatment of an epidemic network model, Phys. Lett. A, 378 (2014), 3028–3036. doi: 10.1016/j.physleta.2014.09.002. doi: 10.1016/j.physleta.2014.09.002
    [15] D. G. Xu, X. Y. Xu, Y. F. Xie, C. H. Yang, Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks, Commun. Nonlinear Sci., 48 (2017), 200–210. doi: 10.1016/j.cnsns.2016.12.025. doi: 10.1016/j.cnsns.2016.12.025
    [16] N. Jia, L. Ding, Y. J. Liu, P. Hu, Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction, Phys. A, 502 (2018), 93–105. doi: 10.1016/j.physa.2018.02.056. doi: 10.1016/j.physa.2018.02.056
    [17] K. Li, G. Zhu, Z. Ma, L. Chen, Dynamic stability of an SIQS epidemic network and its optimal control, Commun. Nonlinear Sci., 66 (2019), 84–95. doi: 10.1016/j.cnsns.2018.06.020. doi: 10.1016/j.cnsns.2018.06.020
    [18] L. J. Chen, S. Y. Huang, F. D. Chen, M. J. Fu, The bifurcation analysis and optimal feedback mechanism for an SIS epidmic model on networks, Adv. Differ. Equations, 529 (2019), 1–13. doi: 10.1186/s13662-019-2460-2. doi: 10.1186/s13662-019-2460-2
    [19] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Q. M. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582. doi: 10.1016/j.amc.2019.05.057. doi: 10.1016/j.amc.2019.05.057
    [20] Y. K. Xie, Z. Wang, J. W. Lu, Y. X. Li, Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks, Math. Comput., 383 (2020), 125381. doi: 10.1016/j.amc.2020.125381. doi: 10.1016/j.amc.2020.125381
    [21] Y. K. Xie, Z. Wang, Transmission dynamics, global stability and control strategies of a modified SIS epidemic model on complex networks with an infective medium, Math. Comput. Simul., 188 (2021), 23–34. doi: 10.1016/j.matcom.2021.03.029. doi: 10.1016/j.matcom.2021.03.029
    [22] C. J. Xu, Z. X. Lin, M. X. Liao, P. L. Li, Q. M. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, Math. Comput. Simulat., 182 (2021), 471–494. doi: 10.1016/j.matcom.2020.11.023. doi: 10.1016/j.matcom.2020.11.023
    [23] C. J. Xu, Z. X. Lin, L. Y. Yao, C. Aouiti, Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays, Appl. Math. Comput., 410 (2021), 126458. doi: 10.1016/j.amc.2021.126458. doi: 10.1016/j.amc.2021.126458
    [24] W. D. Wang, S. G. Ruan, Bifurcation in epidemic model with constant removal rate infectives, J. Math. Anal. Appl., 291 (2015), 775–793. doi: 10.1016/j.jmaa.2003.11.043. doi: 10.1016/j.jmaa.2003.11.043
    [25] W. D. Wang, Backward Bifurcation of An Epidemic Model with Treatment, Math. Biosci., 201 (2006), 58–71. doi: 10.1016/j.mbs.2005.12.022. doi: 10.1016/j.mbs.2005.12.022
    [26] X. Zhang, X. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433–443. doi: 10.1016/j.jmaa.2008.07.042. doi: 10.1016/j.jmaa.2008.07.042
    [27] J. Wang, S. Liu, B. Zhang, Y. Takeuchi, Qualitative and bifurcation analysis using an SIR model with a saturated treatment function, Math. Comput. Model., 55 (2012), 710–722. doi: 10.1016/j.mcm.2011.08.045. doi: 10.1016/j.mcm.2011.08.045
    [28] J. Wei, J. Cui, Dynamics of SIS epidemic model with the standard incidence rate and saturated treatment function, Int. J. Biomath., 5 (2012), 1260003. doi: 10.1142/S1793524512600030. doi: 10.1142/S1793524512600030
    [29] J. Cui, X. Mu, H. Wan, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol., 254 (2008), 275–283. doi: 10.1016/j.jtbi.2008.05.015. doi: 10.1016/j.jtbi.2008.05.015
    [30] L. H. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13 (2012), 312–324. doi: 10.1016/j.nonrwa.2011.07.036. doi: 10.1016/j.nonrwa.2011.07.036
    [31] I. M. Wangari, S. Davis, L. Stonea, Backward bifurcation in epidemic models: Problems arising with aggregated bifurcation parameters, Appl. Math. Model., 40 (2016), 1669–1675. doi: 10.1016/j.apm.2015.07.022. doi: 10.1016/j.apm.2015.07.022
    [32] P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6. doi: 10.1016/S0025-5564(02)00108-6
    [33] F. D. Sahneh, C. Scoglio, P. V. Mieghem, Generalized epidemic mean-field model for spreading processes over multilayer complex networks, IEEE/ACM Trans. Netw., 21 (2013), 1609–1620. doi: 10.1109/TNET.2013.2239658. doi: 10.1109/TNET.2013.2239658
    [34] R. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, American Mathematical Society, 2012.
    [35] D. E. Kirk, Optimal Control Theory: An Introduction, Dover Publications, 2004.
    [36] B. Buonomo, D. Lacitignola, C. Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, Math. Comput. Simulat., 100 (2014), 88–102. doi: 10.1016/j.matcom.2013.11.005. doi: 10.1016/j.matcom.2013.11.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3144) PDF downloads(247) Cited by(3)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog