Conventional farming practices not only constrained food security due to low yield but also threatened the ecosystem by causing groundwater decline and groundwater nitrate contamination. A twoear field experiment was conducted at the research station of North China University of Water Resources and Electric Power, Zhengzhou. The WHCNS model was used to simulate grain yield, water and nitrogen fertilizer use efficiencies (WUE and FNUEs) of spring maize under border irrigation method, drip irrigation, and rainfed conditions. In addition, a scenario analysis was also performed on different dry and rainy seasons to assess the long-term impact of rainfall variability on spring maize from 2000–2017. The result showed that the model precisely simulated soil water content, N concentration, crop biomass accumulation, and grain yield. The maximum and minimum range of relative root mean squire error (RRMSE) values were 0.5–36.0% for soil water content, 14.0–38.0% for soil nitrate concentrations, 19.0–24.0% for crop biomass and 1.0–2.0% for grain yield, respectively under three irrigation methods. Both the index of agreement (IA) and Pearson correlation coefficient (r) values were close 1. We found the lowest grain yield from the rainfed maize, whereas the drip irrigation method increased grain yield by 14% at 40% water saving than border irrigation method for the two years with the 11% lower evaporation and maintained transpiration rate. Moreover, the drip irrigated maize had a negligible amount of drainage and runoff, which subsequently improved WUE by 27% in the first growing season and 16% in the second rotation than border irrigation. The drip irrigated maize also showed 24% higher FNUE. The reason of lower WUE and FNUEs under the border irrigation method was increased drainage amounts and N leaching rates. Furthermore, scenario analysis indicated that the dry season could result in a 30.8% yield decline as compared to rainy season.
Citation: Shu Xu, Yichang Wei, Abdul Hafeez Laghari, Xianming Yang, Tongchao Wang. Modelling effect of different irrigation methods on spring maize yield, water and nitrogen use efficiencies in the North China Plain[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9651-9668. doi: 10.3934/mbe.2021472
[1] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[2] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[3] | Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794 |
[4] | Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116 |
[5] | Yong Xian Ng, Chang Phang, Jian Rong Loh, Abdulnasir Isah . Analytical solutions of incommensurate fractional differential equation systems with fractional order 1<α,β<2 via bivariate Mittag-Leffler functions. AIMS Mathematics, 2022, 7(2): 2281-2317. doi: 10.3934/math.2022130 |
[6] | Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212 |
[7] | Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245 |
[8] | Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo . Explicit iteration and unique solution for ϕ-Hilfer type fractional Langevin equations. AIMS Mathematics, 2022, 7(3): 3456-3476. doi: 10.3934/math.2022192 |
[9] | Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736 |
[10] | Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764 |
Conventional farming practices not only constrained food security due to low yield but also threatened the ecosystem by causing groundwater decline and groundwater nitrate contamination. A twoear field experiment was conducted at the research station of North China University of Water Resources and Electric Power, Zhengzhou. The WHCNS model was used to simulate grain yield, water and nitrogen fertilizer use efficiencies (WUE and FNUEs) of spring maize under border irrigation method, drip irrigation, and rainfed conditions. In addition, a scenario analysis was also performed on different dry and rainy seasons to assess the long-term impact of rainfall variability on spring maize from 2000–2017. The result showed that the model precisely simulated soil water content, N concentration, crop biomass accumulation, and grain yield. The maximum and minimum range of relative root mean squire error (RRMSE) values were 0.5–36.0% for soil water content, 14.0–38.0% for soil nitrate concentrations, 19.0–24.0% for crop biomass and 1.0–2.0% for grain yield, respectively under three irrigation methods. Both the index of agreement (IA) and Pearson correlation coefficient (r) values were close 1. We found the lowest grain yield from the rainfed maize, whereas the drip irrigation method increased grain yield by 14% at 40% water saving than border irrigation method for the two years with the 11% lower evaporation and maintained transpiration rate. Moreover, the drip irrigated maize had a negligible amount of drainage and runoff, which subsequently improved WUE by 27% in the first growing season and 16% in the second rotation than border irrigation. The drip irrigated maize also showed 24% higher FNUE. The reason of lower WUE and FNUEs under the border irrigation method was increased drainage amounts and N leaching rates. Furthermore, scenario analysis indicated that the dry season could result in a 30.8% yield decline as compared to rainy season.
Hermite [1] and Hadamard [2] derived the familiar inequality is known as Hermite-Hadamard inequality (HH-inequality) and this inequality states that
Q(u+ν2)≤1ν−u∫νuQ(z)dz≤Q(u)+Q(ν)2, | (1) |
where Q:I→R is a convex function defined on a closed bounded interval I⊆R and u,ν∈I with ν>u. If Q is a concave function, then both inequality symbols in (1) are reversed. Sine 𝐻𝐻-inequalities are a useful technique for developing the qualitative and quantitative properties of convexity and nonconvexity. Because of diverse applications of these inequalities in different fields, there has been continuous growth of interest in such an area of research. Therefore many inequalities have been introduced as applications of convex functions and generalized convex function, see [3,4,5,6]. It is very important to mention that, Fejér [7] considered the major generalization of HH-inequality which is known as 𝐻𝐻-Fejér inequality. It can be expressed as follows:
Let Q:T→R be a convex function on an interval T=[u,ν] and u,ν∈T with u≤ν. and let Ω:T=[u,ν]→R,Ω(z)≥0, be a integrable and symmetric with respect to u+ν2, and ∫νuΩ(z)dz>0. Then, we have the following inequality.
Q(u+ν2).∫νuΩ(z)dz≤∫νuQ(z)Ω(z)dz≤Q(u)+Q(ν)2.∫νuΩ(z)dz. | (2) |
If Q is a concave function, then inequality (2) is reversed. If Ω(z)=1, then we obtain (1) from (2).
It is also worthy to mention that Sarikaya et al. [8] provided the fractional version of inequality (1) and for convex function Q:T=[u,ν]→R, this inequality states that:
Q(u+ν2)≤Γ(α+1)2(ν−u)α[Iαu+Q(ν)˜+Iαν−Q(u)]≤Q(u)+Q(ν)2, | (3) |
where Qassumed to be a positive function on [u,ν], Q∈L1([u,ν]) with u≤ν, and Iαu+ and Iαν− are the left sided and right sided Riemann-Liouville fractional of order 0≤α, and respectively are defined as follows:
Iαu+Q(z)=1Γ(α)∫zu(z−τ)α−1Q(τ)d(τ)(z>u), | (4) |
Iαν−Q(z)=1Γ(α)∫νz(τ−z)α−1Q(τ)d(τ)(z<ν). | (5) |
If α=1, then from (3), we obtain (2). We can easily say that inequality (3) is generalization of inequality (2). Thereafter, many authors in the mathematical community have paid close attention in the view of inequality (3) and obtained several inequalities for different classes of convex and non-convex functions through various fractional integral; see [9,10,11,12,13,14,15].
On the other hand, it is well-known fact that interval-valued analysis was introduced as an attempt to overcome interval uncertainty that occurs in the computer or mathematical models of some deterministic real-word phenomena. A classic example of an interval closure is Archimedes' technique which is associated with the computation of the circumference of a circle. In 1966, Moore [16] given the concept of interval analysis in his book and discussed its applications in computational Mathematics. After that several authors have developed a strong relationship between inequalities and IVFs by means of inclusion relation via different integral operators, as one can see Costa [17], Costa and Roman-Flores [18], Roman-Flores et al. [19,20], and Chalco-Cano et al. [21,22], but also to more general set-valued maps by Nikodem et al. [23], and Matkowski and Nikodem [24]. In particular, Zhang et al. [25] derived the new version of Jensen's inequalities for set-valued and fuzzy set-valued functions by means of a pseudo order relation and proved that these Jensen's inequalities generalized form of Costa Jensen's inequalities [17]. After that, Budek [26] established fractional HH-inequality for convex-IVF through interval-valued fractional Riemann-Liouville fractional.
Our goal is to use the generalization of classical Riemann integral operator which is known as fuzzy Riemann-Liouville fractional integral operator. Recently, Allahviranloo et al. [27] introduced the following fuzzy-interval Riemann-Liouville fractional integral operator:
Let α>0 and L([u,ν],F0) be the collection of all Lebesgue measurable fuzzy-IVFs on[u,ν]. Then, the fuzzy-interval left and right Riemann-Liouville fractional integral of ˜Q∈ L([u,ν],F0) with order α>0 are defined by
Iαu+˜Q(z)=1Γ(α)∫zu(z−τ)α−1˜Q(τ)d(τ),(z>u), | (6) |
and
Iαν−˜Q(z)=1Γ(α)∫νz(τ−z)α−1˜Q(τ)d(τ),(z<ν), | (7) |
respectively, where Γ(z)=∫∞0τz−1u−τd(τ) is the Euler gamma function. The fuzzy-interval left and right Riemann-Liouville fractional integral z based on left and right endpoint functions can be defined, that is
[Iαu+˜Q(z)]γ=1Γ(α)∫zu(z−τ)α−1Qγ(τ)d(τ)=1Γ(α)∫zu(z−τ)α−1[Q∗(τ,γ),Q∗(τ,γ)]d(τ),(z>u), | (8) |
where
Iαu+Q∗(z,γ)=1Γ(α)∫zu(z−τ)α−1Q∗(τ,γ)d(τ),(z>u), | (9) |
and
Iαu+Q∗(z,γ)=1Γ(α)∫zu(z−τ)α−1Q∗(τ,γ)d(τ),(z>u). | (10) |
Similarly, we can define the right Riemann-Liouville fractional integral ˜Q of z based on left and right endpoint functions.
Moreover, recently, Khan et al. [28] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex fuzzy-IVFs by means fuzzy order relation and presented the following new version of 𝐻𝐻-type inequality for (h1,h2)-convex fuzzy-IVF involving fuzzy-interval Riemann integrals:
Theorem 1.1. Let ˜Q:[u,ν]→F0 be a (h1,h2)-convex fuzzy-IVF with h1,h2:[0,1]→R+ and h1(12)h2(12)≠0, whose γ-levels define the family of IVFs Qγ:[u,ν]⊂R→K+C are given by Qγ(z)=[Q∗(z,γ),Q∗(z,γ)] for all z∈[u,ν] and for all γ∈[0,1]. If ˜Q is fuzzy-interval Riemann integrable (in sort, FR-integrable), then
12h1(12)h2(12)˜Q(u+ν2)≼1ν−u(FR)∫νu˜Q(z)dz≼[˜Q(u)˜+˜Q(ν)]∫10h1(τ)h2(1−τ)dτ. | (11) |
If h1(τ)=τ and h2(τ)≡1, then from inequality (11), we obtain the following inequality:
˜Q(u+ν2)≼1ν−u(FR)∫νu˜Q(z)dz≼˜Q(u)˜+˜Q(ν)2. | (12) |
This inequality (12) is known as HH-inequality for convex fuzzy-IVF. We refer readers to [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] and the references therein for further review of literature on the applications and properties of fuzzy-interval, inequalities, and generalized convex fuzzy mappings.
Inspired by the ongoing research work, the new class of generalized convex fuzzy-IVFs is introduced which is known as h-convex fuzzy-IVF. With the help of h-convex fuzzy-IVF and fuzzy-interval Riemann fractional integral operator, we have introduced fuzzy fractional Hermite-Hadamard type inequalities by means of fuzzy order relation. Moreover, we have shown that our results include a wide class of new and known inequalities for h-convex fuzzy-IVFs and their variant forms as special cases. Some useful examples are also presented to verify the validity of our main results.
Let R be the set of real numbers and KC be the space of all closed and bounded intervals of R and η∈KC be defined by
η=[η∗,η∗]={z∈R|η∗≤z≤η∗}, (η∗,η∗∈R). | (13) |
If η∗=η∗, then η is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If η∗≥0, then [η∗,η∗] is called positive interval. The set of all positive interval is denoted by K+C and defined as K+C={[η∗,η∗]:[η∗,η∗]∈KCandη∗≥0}.
Let τ∈R and τη be defined by
τη={[τη∗,τη∗]ifτ>0,{0}ifτ=0[τη∗,τη∗]ifτ<0. | (14) |
Then the Minkowski difference −η, addition η+ζ and η×ζ for η,ζ∈KC are defined by
[ζ∗,ζ∗]−[η∗,η∗]=[ζ∗−η∗,ζ∗−η∗],[ζ∗,ζ∗]+[η∗,η∗]=[ζ∗+η∗,ζ∗+η∗], | (15) |
and
[ζ∗,ζ∗]×[η∗,η∗]=[min{ζ∗η∗,ζ∗η∗,ζ∗η∗,ζ∗η∗},max{ζ∗η∗,ζ∗η∗,ζ∗η∗,ζ∗η∗}]. |
The inclusion "⊆" means that
ζ⊆η if and only if, [ζ∗,ζ∗]⊆[η∗,η∗],if and only if η∗≤ζ∗,ζ∗≤η∗. | (16) |
Remark 2.1. [29] The relation "≤I" defined on KC by
[ζ∗,ζ∗]≤I[η∗,η∗] if and only if ζ∗≤η∗,ζ∗≤η∗,(17)
for all [ζ∗,ζ∗],[η∗,η∗]∈KC, it is an order relation. For given [ζ∗,ζ∗],[η∗,η∗]∈KC, we say that [ζ∗,ζ∗]≤I[η∗,η∗] if and only if ζ∗≤η∗,ζ∗≤η∗.
For [ζ∗,ζ∗],[η∗,η∗]∈KC, the Hausdorff-Pompeiu distance between intervals [ζ∗,ζ∗] and [η∗,η∗] is defined by
d([ζ∗,ζ∗],[η∗,η∗])=max{|ζ∗−η∗|,|ζ∗−η∗|}. |
It is familiar fact that (KC,d) is a complete metric space.
A fuzzy subset A of R is characterize by a mapping ˜ζ:R→[0,1] called the membership function, for each fuzzy set and if γ∈(0,1], then γ-level sets of ˜ζ is denoted and defined as follows ζγ={u∈R|˜ζ(u)≥γ}. If γ=0, then supp(˜ζ)={z∈R|˜ζ(z)>0} is called support of ˜ζ. By [˜ζ]0 we define the closure of supp(˜ζ).
Let F(R) be the family of all fuzzy sets and ˜ζ∈F(R) be a fuzzy set. Then, we define the following:
(1)˜ζ is said to be normal if there exists z∈R and ˜ζ(z)=1;
(2)˜ζ is said to be upper semi continuous on R if for given z∈R, there exist ϵ>0 there exist δ>0 such that ˜ζ(z)−˜ζ(x)<ϵ for all x∈R with |z−x|<δ;
(3)˜ζ is said to be fuzzy convex if ζγ is convex for every γ∈[0,1];
(4)˜ζ is compactly supported if supp(˜ζ) is compact.
A fuzzy set is called a fuzzy number or fuzzy-interval if it has properties (1)–(4). We denote by F0 the family of all interval.
From these definitions, we have
[˜ζ]γ=[ζ∗(γ),ζ∗(γ)], |
where
ζ∗(γ)=inf{z∈R|˜ζ(z)≥γ},ζ∗(γ)=sup{z∈R|˜ζ(z)≥γ}. |
Proposition 2.2. [18] If ˜ζ,˜η∈F0, then relation "≼" defined on F0 by
˜ζ≼ ˜η if and only if, [ ˜ζ]γ≤I[ ˜η ]γ,for all γ∈[0, 1], | (18) |
this relation is known as partial order relation.
For ˜ζ,˜η∈F0 and τ∈R, the sum ˜ζ˜+˜η, product ˜ζ˜×˜η, scalar product τ.˜ζ and sum with scalar are defined by:
[˜ζ˜+˜η]γ=[˜ζ]γ+[˜η]γ, | (19) |
[˜ζ˜×˜η]γ=[˜ζ]γ×[˜η]γ, | (20) |
[τ.˜ζ]γ=τ.[˜ζ]γ, | (21) |
[τ˜+˜ζ]γ=τ+[˜ζ]γ. | (22) |
for all γ∈[0,1]. For ˜ψ∈F0 such that ˜ζ=˜η˜+˜ψ, then by this result we have existence of Hukuhara difference of ˜ζ and ˜η, and we say that ˜ψ is the H-difference of ˜ζ and ˜η, and denoted by ˜ζ˜−˜η. If H-difference exists, then
(ψ)∗(γ)=(ζ−η)∗(γ)=ζ∗(γ)−η∗(γ),(ψ)∗(γ)=(ζ−η)∗(γ)=ζ∗(γ)−η∗(γ). | (23) |
A partition of [u,ν] is any finite ordered subset P having the form
P={u=z1<z2<z3<z4<z5…⋯<zk=ν}. |
The mesh of a partition P is the maximum length of the subintervals containing P that is,
mesh(P)=max{zj−zj−1:j=1,2,3,……k}. |
Let P(δ,[u,ν]) be the set of all partitions P of [u,ν] such that mesh(P)<δ. For each interval [zj−1,zj], where 1≤j≤k, choose an arbitrary point ξj and taking the sum
S(Q,P,δ)=∑kj=1Q(ξj)(zj−zj−1), |
where Q:[u,ν]→KC. We call S(Q,P,δ) a Riemann sum of Q corresponding to P∈P(δ,[u,ν]).
Definition 2.3. [30] A function Q:[u,ν]→KC is called interval Riemann integrable (IR-integrable) on [u,ν] if there exists B∈KC such that, for each ϵ>0 , there exists \delta >0 such that
d\left(S\left(\mathcal{Q}, P, \delta \right), B\right) < ϵ\text{, } |
for every Riemann sum of \mathcal{Q} corresponding to P\in \mathcal{P}\left(\delta, \left[u, \nu \right]\right) and for arbitrary choice of {\xi }_{j}\in \left[{\mathcal{z}}_{j-1}, {\mathcal{z}}_{j}\right] for 1\le j\le k. Then, we say that B is the IR -integral of \mathcal{Q} on [u, \nu] and is denote by B = \left(IR\right){\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}\right)d\mathcal{z} .
Moore [9] firstly proposed the concept of Riemann integral for IVF and it is defined as follow:
Theorem 2.4. [16] If \mathcal{Q}:[u, \nu]\subset \mathbb{R}\to {\mathcal{K}}_{C} is an IVF on such that \mathcal{Q}\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}, {\mathcal{Q}}^{*}\right] , then \mathcal{Q} is Riemann integrable over [u, \nu] if and only if, {\mathcal{Q}}_{*} and {\mathcal{Q}}^{*} both are Riemann integrable over \left[u, \nu \right] such that
\left(IR\right){\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}\right)d\mathcal{z} = \left[\left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}_{*}\left(\mathcal{z}\right)d\mathcal{z}, \left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}^{*}\left(\mathcal{z}\right)d\mathcal{z}\right]\text{.} | (24) |
Definition 2.5. [31] A fuzzy map \widetilde{\mathcal{Q}}:[u, \nu]\to {\mathbb{F}}_{0} is called fuzzy-IVF. For each \gamma \in \left[0, 1\right], whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:[u, \nu]\to {\mathcal{K}}_{C} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in [u, \nu]. Here, for each \gamma \in \left[0, 1\right], the left and right real valued functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right):[u, \nu]\to \mathbb{R} are also called lower and upper functions of \widetilde{\mathcal{Q}} .
Remark 2.6. If \widetilde{\mathcal{Q}}:[u, \nu]\subset \mathbb{R}\to {\mathbb{F}}_{0} is a fuzzy-IVF, then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is called continuous function at \mathcal{z}\in [u, \nu], if for each \gamma \in \left[0, 1\right], both left and right real valued functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are continuous at \mathcal{z}\in K.
The following conclusion can be drawn from the above literature review, see [17,31].
Definition 2.7. Let \widetilde{\mathcal{Q}}:[u, \nu]\subset \mathbb{R}\to {\mathbb{F}}_{0} is called fuzzy-IVF. The fuzzy Riemann integral of \widetilde{\mathcal{Q}} over \left[u, \nu \right], denoted by \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z} , it is defined level by level
{\left[\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\right]}^{\mathit{\gamma }} = \left(IR\right){\int }_{u}^{\nu }{\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right)d\mathcal{z} = \left\{{\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}, \gamma \right)d\mathcal{z}:\mathcal{Q}\left(\mathcal{z}, \gamma \right)\in {\mathcal{R}}_{[u, \nu ]}\right\}, | (25) |
for all \gamma \in \left[0, 1\right], where {\mathcal{R}}_{[u, \nu]} contains the family of left and right functions of IVFs. \widetilde{\mathcal{Q}} is \left(FR\right) -integrable over [u, \nu] if \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\in {\mathbb{F}}_{0}. Note that, if left and right real valued functions are Lebesgue-integrable, then \widetilde{\mathcal{Q}} is fuzzy Aumann-integrable over \left[u, \nu \right], denoted by \left(FA\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z} , see [31].
Theorem 2.8. Let \widetilde{\mathcal{Q}}:[u, \nu]\subset \mathbb{R}\to {\mathbb{F}}_{0} be a fuzzy-IVF, whose \gamma -levels obtain the collection of IVFs {\mathcal{Q}}_{\gamma }:[u, \nu]\subset \mathbb{R}\to {\mathcal{K}}_{C} are defined by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in [u, \nu] and for all \gamma \in \left[0, 1\right]. Then, \widetilde{\mathcal{Q}} is \left(FR\right) -integrable over [u, \nu] if and only if, {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) both are R -integrable over [u, \nu] . Moreover, if \widetilde{\mathcal{Q}} is \left(FR\right) -integrable over \left[u, \nu \right], then
{\left[\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\right]}^{\mathit{\gamma }} = \left[\left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right)d\mathcal{z}, \left(R\right){\int }_{u}^{\nu }{\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)d\mathcal{z}\right] = \left(IR\right){\int }_{u}^{\nu }{\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right)d\mathcal{z}\text{, } | (26) |
for all \gamma \in \left[0, 1\right].
Definition 2.9. A real valued function \mathcal{Q}:\left[u, \nu \right]\to {\mathbb{R}}^{+} is called convex function if
\mathcal{Q}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\le \tau \mathcal{Q}\left(\mathcal{x}\right)+\left(1-\tau \right)\mathcal{Q}\left(\mathcal{z}\right), | (27) |
for all \mathcal{x}, \mathcal{ }\mathcal{z}\in \left[u, \nu \right], \tau \in \left[0, 1\right]. If (27) is reversed, then \mathcal{Q} is called concave.
Definition 2.10. [32] The fuzzy-IVF \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} is called convex fuzzy-IVF on \left[u, \nu \right] if
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq \tau \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}(1-\tau )\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), | (28) |
for all \mathcal{x}, \mathcal{ }\mathcal{z}\in \left[u, \nu \right], \tau \in \left[0, 1\right], where \widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\succcurlyeq \widetilde{0} for all \mathcal{z}\in \left[u, \nu \right]. If (28) is reversed, then \widetilde{\mathcal{Q}} is called concave fuzzy-IVF on \left[u, \nu \right] . \widetilde{\mathcal{Q}} is affine if and only if it is both convex and concave fuzzy-IVF.
Remark 2.11. If {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) and \gamma = 1 , then we obtain the inequality (1).
Definition 2.12. [28] Let {h}_{1}, {h}_{2}:[0, 1]\subseteq [u, \nu]\to {\mathbb{R}}^{+} such that {h}_{1}, {h}_{2}\not\equiv 0 . Then, fuzzy-IVF \widetilde{\mathcal{Q}}:[u, \nu]\to {\mathbb{F}}_{0} is said to be \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF on [u, \nu] if
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq {h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), | (29) |
for all \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu], \tau \in \left[0, 1\right], where \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\succcurlyeq \widetilde{0}. If \widetilde{\mathcal{Q}} is \left({h}_{1}, {h}_{2}\right) -concave on [u, \nu] , then inequality (29) is reversed.
Remark 2.13. [28] If {h}_{2}\left(\tau \right)\equiv 1, then \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF becomes h -convex fuzzy-IVF, that is
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq {h}_{1}\left(\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}{h}_{1}\left(1-\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), \mathrm{ }\forall \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu ], \tau \in \left[0, 1\right]. | (30) |
If {h}_{1}\left(\tau \right) = \tau, {h}_{2}\left(\tau \right)\equiv 1, then \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF becomes convex fuzzy-IVF, that is
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq \tau \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}\left(1-\tau \right)\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), \mathrm{ }\forall \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu ], \tau \in \left[0, 1\right]. | (31) |
If {h}_{1}\left(\tau \right) = {h}_{2}\left(\tau \right)\equiv 1, then \left({h}_{1}, {h}_{2}\right) -convex fuzzy-IVF becomes P -convex fuzzy-IVF, that is
\widetilde{\mathcal{Q}}\left(\tau \mathcal{x}+\left(1-\tau \right)\mathcal{z}\right)\preccurlyeq \widetilde{\mathcal{Q}}\left(\mathcal{x}\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\mathcal{z}\right), \mathrm{ }\forall \mathcal{x}, \mathcal{ }\mathcal{z}\in [u, \nu ], \tau \in \left[0, 1\right]. | (32) |
Theorem 2.14. Let h:[0, 1]\subseteq [u, \nu]\to \mathbb{R} be anon-negative real valued function such that h\not\equiv 0 and let \widetilde{\mathcal{Q}}:[u, \nu]\to {\mathbb{F}}_{0} be a fuzzy-IVF, whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:[u, \nu]\to {{\mathcal{K}}_{C}}^{+}\subset {\mathcal{K}}_{C} are given by
{\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right], | (33) |
for all \mathcal{z}\in [u, \nu] and for all \gamma \in \left[0, 1\right] . Then, \widetilde{\mathcal{Q}} is h -convex fuzzy-IVF on [u, \nu], if and only if, for all \gamma \in \left[0, 1\right], {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex function.
Proof. The demonstration of proof of Theorem 2.14 is similar to the demonstration proof of Theorem 6 in [28].
Example 2.15. We consider h\left(\tau \right) = \tau, for \tau \in \left[0, 1\right] and the fuzzy-IVF \widetilde{\mathcal{Q}}:[0, 4]\to {\mathbb{F}}_{0} defined by
\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma }{2{e}^{{\mathcal{z}}^{2}}}\;\;\;\sigma \in \left[0, 2{e}^{{\mathcal{z}}^{2}}\right]\\ \frac{4{e}^{{\mathcal{z}}^{2}}-\sigma }{2{e}^{{\mathcal{z}}^{2}}}\;\;\;\sigma \in (2{e}^{{\mathcal{z}}^{2}}, 4{e}^{{\mathcal{z}}^{2}}]\\ 0\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}, \end{array}\right. |
then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[2\gamma {e}^{{\mathcal{z}}^{2}}, 2(2-\gamma){e}^{{\mathcal{z}}^{2}}\right] . Since end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex functions for each \gamma \in [0, 1] . Hence \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF.
In this section, we will prove some new Hermite-Hadamard type inequalities for h -convex fuzzy-IVFs by means of fuzzy order relation via Riemann Liouville fractional integral operator. In what follows, we denote by L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) the family of Lebesgue measureable fuzzy-IVFs.
Theorem 3.1. Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF on \left[u, \nu \right], whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . | (34) |
If \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is concave fuzzy-IVF, then
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\succcurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\succcurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau \text{.} | (35) |
Proof. Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF. Then, by hypothesis, we have
\frac{1}{h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \widetilde{\mathcal{Q}}\left(\tau u+\left(1-\tau \right)\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\left(1-\tau \right)u+\tau \nu \right). |
Therefore, for every \gamma \in [0, 1] , we have
\begin{array}{c}\frac{1}{h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right), \\ \frac{1}{h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right).\end{array} |
Multiplying both sides by {\tau }^{\alpha -1} and integrating the obtained result with respect to \tau over \left(\mathrm{0, 1}\right) , we have
\frac{1}{h\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)d\tau |
\le {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)d\tau +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \text{, } |
\frac{1}{h\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)d\tau |
\le {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)d\tau +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \text{.} |
Let \mathcal{x} = \tau u+(1-\tau)\nu and \mathcal{z} = \left(1-\tau \right)u+\tau \nu. Then, we have
\begin{array}{c}\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le \frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\nu -\mathcal{x})}^{\alpha -1}{\mathcal{Q}}_{*}(\mathcal{x}, \gamma )dx+\frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\mathcal{z}-u)}^{\alpha -1}{\mathcal{Q}}_{*}(\mathcal{z}, \gamma )dz\\ \frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le \frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\nu -\mathcal{x})}^{\alpha -1}{\mathcal{Q}}^{*}\left(\mathcal{x}, \gamma \right)dx+\frac{1}{{\left(\nu -u\right)}^{\alpha }}\underset{u}{\overset{\nu }{\int }}{(\mathcal{z}-u)}^{\alpha -1}{\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)dz, \end{array} |
\begin{array}{c}\le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\right]\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\right].\end{array} |
That is
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\left[{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right), {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\right] |
{\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\right], \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\right]\right]\text{, } |
thus,
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right){\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\right]. | (36) |
In a similar way as above, we have
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\right]{\le }_{I}\left[{\mathcal{Q}}_{\gamma }\left(u\right)+{\mathcal{Q}}_{\gamma }\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . | (37) |
Combining (36) and (37), we have
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right){\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\right] |
{\le }_{I}\left[{\mathcal{Q}}_{\gamma }\left(u\right)+{\mathcal{Q}}_{\gamma }\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau \text{, } |
that is
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\preccurlyeq \left[\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . |
Hence, the required result.
Remark 3.2 From Theorem 3.1 we clearly see that:
If \alpha = 1 , then Theorem 3.1 reduces to the result for h-convex fuzzy-IVF:
\frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{\nu -u}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \left[\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\right]{\int }_{0}^{1}h\left(\tau \right)d\tau . | (38) |
If h\left(\tau \right) = \tau , then Theorem 3.1 reduces to the result for convex fuzzy-IVF:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha +1\right)}{{2\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (39) |
Let \alpha = 1 and h\left(\tau \right) = \tau . Then, Theorem 3.1 reduces to the result for convex-IVF given in [28]:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{\nu -u}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (40) |
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and \gamma = 1, then, from Theorem 3.1 we get following inequality given in [12]:
\frac{1}{\alpha h\left(\frac{1}{2}\right)}\mathcal{Q}\left(\frac{u+\nu }{2}\right)\le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\mathcal{Q}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathcal{Q}\left(u\right)\right]\le \left[\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau . | (41) |
Let \alpha = 1 = \gamma and {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) . Then, from Theorem 3.1 we obtain following inequality given in [2]:
\frac{1}{2h\left(\frac{1}{2}\right)}\mathcal{Q}\left(\frac{u+\nu }{2}\right)\le \frac{1}{\nu -u}\left(R\right){\int }_{u}^{\nu }\mathcal{Q}\left(\mathcal{z}\right)d\mathcal{z}\le \left[\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)\right]{\int }_{0}^{1}h\left(\tau \right)d\tau . | (42) |
Example 3.3. Let = \frac{1}{2} , h\left(\tau \right) = \tau , for all \tau \in \left[0, 1\right] and the fuzzy-IVF \widetilde{\mathcal{Q}}:\left[u, \nu \right] = \left[2, 3\right]\to {\mathbb{F}}_{0}, defined by
\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\theta \right) = \left\{\begin{array}{c}\frac{\theta }{2-{\mathcal{z}}^{\frac{1}{2}}}, \;\;\; \theta \in \left[0, 2-{\mathcal{z}}^{\frac{1}{2}}\right]\\ \frac{2\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)-\theta }{2-{\mathcal{z}}^{\frac{1}{2}}}, \;\;\; \theta \in (2-{\mathcal{z}}^{\frac{1}{2}}, 2\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)]\\ 0, \;\;\;\;\;\;\;\;\;{\rm{otherwise}}.\end{array}\right. |
Then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[\gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right), (2-\gamma)\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)\right] . Since left and right end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = \gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) = (2-\gamma)\left(2-{\mathcal{z}}^{\frac{1}{2}}\right) , are h -convex functions for each \gamma \in [0, 1] , then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF. We clearly see that \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right) = {\mathcal{Q}}_{*}\left(\frac{5}{2}, \gamma \right) = \gamma \frac{4-\sqrt{10}}{8} |
\frac{1}{\alpha h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right) = {\mathcal{Q}}^{*}\left(\frac{5}{2}, \gamma \right) = \left(2-\gamma \right)\frac{4-\sqrt{10}}{8}, |
\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau = \gamma \left(4-\sqrt{2}-\sqrt{3}\right) |
\frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}{\tau }^{\alpha -1}\left[h\left(\tau \right)-h\left(1-\tau \right)\right]d\tau = (2-\gamma )\left(4-\sqrt{2}-\sqrt{3}\right). |
Note that
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\right] |
= \frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(3-\mathcal{z}\right)}^{\frac{-1}{2}}. \gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
+\frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(\mathcal{z}-2\right)}^{\frac{-1}{2}}. \gamma \left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
= \frac{1}{2}\gamma \left[\frac{7393}{\mathrm{10,000}}+\frac{9501}{\mathrm{10,000}}\right] |
= \gamma \frac{8447}{\mathrm{20,000}}. |
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\right] |
= \frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(3-\mathcal{z}\right)}^{\frac{-1}{2}}. (2-\gamma )\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
+\frac{{\mathit{\Gamma}} \left(\frac{1}{2}\right)}{2}\frac{1}{\sqrt{\pi }}\underset{2}{\overset{3}{\int }}{\left(\mathcal{z}-2\right)}^{\frac{-1}{2}}. (2-\gamma )\left(2-{\mathcal{z}}^{\frac{1}{2}}\right)d\mathcal{z} |
= \frac{1}{2}\left(2-\gamma \right)\left[\frac{7393}{\mathrm{10,000}}+\frac{9501}{\mathrm{10,000}}\right] |
= \left(2-\gamma \right)\frac{8447}{\mathrm{20,000}}. |
Therefore
\left[\gamma \frac{4-\sqrt{10}}{8}, (2-\gamma )\frac{4-\sqrt{10}}{8}\right]{\le }_{I}\left[\gamma \frac{8447}{\mathrm{20,000}}, (2-\gamma )\frac{8447}{\mathrm{20,000}}\right] |
{\le }_{I}\left[\gamma \left(4-\sqrt{2}-\sqrt{3}\right), (2-\gamma )\left(4-\sqrt{2}-\sqrt{3}\right)\right]\text{, } |
and Theorem 3.1 is verified.
From Theorem 3.4 and Theorem 3.5, we obtain some fuzzy-interval fractional integral inequalities related to fuzzy-interval fractional HH -inequalities
Theorem 3.4. Let \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs on \left[u, \nu \right] , respectively, whose \gamma -levels {\mathcal{Q}}_{\gamma }, {\mathcal{P}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are defined by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] and {\mathcal{P}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{P}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{P}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\widetilde{\times }\widetilde{\mathcal{P}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\preccurlyeq \widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau +\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . |
Where \widetilde{\Delta }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right), \widetilde{\nabla }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right), and {\Delta }_{\gamma }\left(u, \nu \right) = \left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right] and {\nabla }_{\gamma }\left(u, \nu \right) = \left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right].
Proof. Since \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}} both are {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs then, for each \gamma \in \left[0, 1\right] we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{1}\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right) \\ {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{1}\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right). \\ \end{array} |
and
\begin{array}{c} {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{2}\left(\tau \right){\mathcal{P}}_{*}\left(u, \gamma \right)+{h}_{2}\left(1-\tau \right){\mathcal{P}}_{*}\left(\nu , \gamma \right) \\ {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\le {h}_{2}\left(\tau \right){\mathcal{P}}^{*}\left(u, \gamma \right)+{h}_{2}\left(1-\tau \right){\mathcal{P}}^{*}\left(\nu , \gamma \right). \end{array} |
From the definition of h-convex fuzzy-IVFs it follows that \widetilde{0}\preccurlyeq \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) and \widetilde{0}\preccurlyeq \widetilde{\mathcal{P}}\left(\mathcal{z}\right) , so
\begin{array}{c} {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ \le {h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ \le {h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right).\end{array} | (43) |
Analogously, we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\\ \le {h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\\ \le {h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)\\ +{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right). \end{array} | (44) |
Adding (43) and (44), we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right) \\ \le \left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]\left[{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right]\\ +\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]\left[{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right]\\ {\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right) \\ \le \left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]\left[{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right]\\ +\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]\left[{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right].\end{array} | (45) |
Taking multiplication of (45) with {\tau }^{\alpha -1} and integrating the obtained result with respect to \tau over (0, 1), we have
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \\ \le {\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)d\tau \\ \le {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .\end{array} |
It follows that,
\begin{array}{c} \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\right]\\ \le {\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .\\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)\right]\\ \le {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . \\ \end{array} |
It follows that
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right), \\{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)\right] |
{\le }_{I}\left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau |
+\left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau \text{, } |
that is
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)\times {\mathcal{P}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\times {\mathcal{P}}_{\gamma }\left(u\right)\right] |
{\le }_{I}{\Delta }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau |
+{\nabla }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . |
Thus,
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right] \\ \;\;\;\;\;\;\;\;\;\preccurlyeq \widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ \;\;\;\;\;\;\;\;\;+\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . |
and the theorem has been established.
Theorem 3.5. Let \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be two {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs, respectively, whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }, {\mathcal{P}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] and {\mathcal{P}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{P}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{P}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\widetilde{\times }\widetilde{\mathcal{P}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then
\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{u+\nu }{2}\right) |
\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\widetilde{+}\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \widetilde{+}\widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau . |
Where \widetilde{\Delta }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right), \widetilde{\nabla }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right), and {\Delta }_{\gamma }\left(u, \nu \right) = \left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right] and {\nabla }_{\gamma }\left(u, \nu \right) = \left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right].
Proof. Consider \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} are {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs. Then, by hypothesis, for each \gamma \in \left[0, 1\right], we have
\begin{array}{c}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\end{array} |
\begin{array}{c}\le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ \le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right], \end{array} |
\begin{array}{c}\le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left(\tau {\mathcal{Q}}_{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right)\\ \times \left(\left(1-\tau \right){\mathcal{P}}_{*}\left(u, \gamma \right)+\tau {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right)\\ +\left({\left(1-\tau \right)\mathcal{Q}}_{*}\left(u, \gamma \right)+\tau {\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right)\\ \times \left(\tau {\mathcal{P}}_{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{P}}_{*}\left(\nu , \gamma \right)\right)\end{array}\right] \\ \le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left(\tau {\mathcal{Q}}^{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right)\\ \times \left(\left(1-\tau \right){\mathcal{P}}^{*}\left(u, \gamma \right)+\tau {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right)\\ +\left(\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+\tau {\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right)\\ \times \left(\tau {\mathcal{P}}^{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{P}}^{*}\left(\nu , \gamma \right)\right)\end{array}\right], \end{array} |
\begin{array}{c} = {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right] \\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right\}{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right)\\ +\left\{{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right\}{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right)\end{array}\right] \\ = {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right] \\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right\}{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\\ +\left\{{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right\}{\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\end{array}\right].\end{array} | (46) |
Taking multiplication of (46) with {\tau }^{\alpha -1} and integrating over (0, 1), we get
\begin{array}{c}\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right){\times \mathcal{P}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu \right){\times \mathcal{P}}_{*}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u\right){\times \mathcal{P}}_{*}\left(u\right)\right] \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ +{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ \frac{1}{{\alpha h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu \right)\times {\mathcal{P}}^{*}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u\right)\times {\mathcal{P}}^{*}\left(u\right)\right] \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ +{\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau , \end{array} |
It follows that
\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right)\times {\mathcal{P}}_{\gamma }\left(\frac{u+\nu }{2}\right) |
{\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)\times {\mathcal{P}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\times {\mathcal{P}}_{\gamma }\left(u\right)\right] |
{+\nabla }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau |
+{\Delta }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \text{, } |
that is
\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\widetilde{+}\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \widetilde{+}\widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau . |
Hence, the required result.
The Theorem 3.6 and Theorem 3.7 are directly connected with right and left part of classical HH -Fejér inequality, respectively. Now firstly, we obtain the right part of classical HH -Fejér inequality through fuzzy Riemann Liouville fractional integral is known as second fuzzy fractional HH -Fejér inequality.
Theorem 3.6. (Second fuzzy fractional HH -Fejér inequality) Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h -convex fuzzy-IVF with u < \nu , whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and {\mathit{\Omega}} :\left[u, \nu \right]\to \mathbb{R}, {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0, symmetric with respect to \frac{u+\nu }{2}, then
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}. | (47) |
If \widetilde{\mathcal{Q}} is concave fuzzy-IVF, then inequality (47) is reversed.
Proof. Let \widetilde{\mathcal{Q}} be a h-convex fuzzy-IVF and {\tau }^{\alpha -1}{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\ge 0 . Then, for each \gamma \in \left[0, 1\right], we have
{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+h\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) |
{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+h\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right), | (48) |
And
{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+h\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) |
{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) |
\le {\tau }^{\alpha -1}\left(h\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+h\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right). | (49) |
After adding (48) and (49), and integrating over \left[0, 1\right], we get
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(u, \gamma \right)\left\{h\left(\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(1-\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\\ +{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\left\{h\left(1-\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\end{array}\right]d\tau , \\ = {\mathcal{Q}}_{*}\left(u, \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\end{array}d\tau \\ +{\mathcal{Q}}_{*}\left(\nu , \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}d\tau , \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)d\tau \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(u, \gamma \right)\left\{h\left(\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(1-\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\\ +{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\left\{h\left(1-\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\end{array}\right]d\tau , \\ = {\mathcal{Q}}^{*}\left(u, \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\end{array}d\tau \\ +{\mathcal{Q}}^{*}\left(\nu , \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}d\tau . \end{array} | (50) |
Taking right hand side of inequality (50), we have
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(u-\nu -\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\nu -u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(u-\nu -\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right], \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]. \\ \end{array} | (51) |
From (51), we have
\begin{array}{c} \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right]\le \frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}\\ \\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] \le \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}, \end{array} |
that is
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right), {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] |
{\le }_{I}\left[\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}, \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}\right]{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\text{, } |
hence
\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}. |
Now, we obtain the following result connected with left part of classical HH -Fejér inequality for h-convex fuzzy-IVF through fuzzy order relation which is known as first fuzzy fractional HH -Fejér inequality.
Theorem 3.7. (First fuzzy fractional HH -Fejér inequality) Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF with u < \nu , whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and {\mathit{\Omega}} :\left[u, \nu \right]\to \mathbb{R}, {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0, symmetric with respect to \frac{u+\nu }{2}, then
\frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\text{.} | (52) |
If \widetilde{\mathcal{Q}} is concave fuzzy-IVF, then inequality (52) is reversed.
Proof. Since \widetilde{\mathcal{Q}} is a h-convex fuzzy-IVF, then for \gamma \in \left[0, 1\right], we have
\begin{array}{c} {\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le h\left(\frac{1}{2}\right)\left({\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\right)\\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le h\left(\frac{1}{2}\right)\left({\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\right).\end{array} | (53) |
Since {\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) = {\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) , then by multiplying (53) by {\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) and integrate it with respect to \tau over \left[0, 1\right], we obtain
\begin{array}{c} {\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\right), \\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\right).\end{array} | (54) |
Let \mathcal{z} = \left(1-\tau \right)u+\tau \nu . Then, right hand side of inequality (54), we have
\begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(u-\nu -\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\nu -u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(u-\nu -\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right], \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]. \end{array} | (55) |
Then from (55), we have
\begin{array}{c} \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right]\\ \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right], \end{array} |
from which, we have
\begin{array}{c} \frac{1}{2h\left(\frac{1}{2}\right)}\left[{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right), {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\right]\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\\ {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right), {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right], \\ \end{array} |
it follows that
\frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }{\mathit{\Omega}} \left(u\right)\right]\text{, } |
that is
\frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]. |
This completes the proof.
Remark 3.8. If {\mathit{\Omega}} \left(\mathcal{z}\right) = 1 , then from Theorem 3.6 and Theorem 3.7, we get Theorem 3.1.
If h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we get following factional HH -Fejér inequality:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\text{.} |
Let h\left(\tau \right) = \tau and \alpha = 1 . Then, from Theorem 3.6 and Theorem 3.7, we obtain following HH -Fejér inequality for convex fuzzy-IVF which is also new one.
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{{\int }_{u}^{\nu }{\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z}}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (57) |
Let h\left(\tau \right) = \tau and \alpha = 1 = {\mathit{\Omega}} \left(\mathcal{z}\right) . Then, from Theorem 3.6 and Theorem 3.7, we obtain following HH -inequality for convex fuzzy-IVF given in [28]:
\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} | (58) |
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, following HH -Fejér inequality for classical function following inequality given in [9]:
\mathcal{Q}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\mathcal{Q}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathcal{Q}{\mathit{\Omega}} \left(u\right)\right]\le \frac{\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)}{2}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\text{.} | (59) |
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and \alpha = 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we obtain the classical HH -Fejér inequality (2).
If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and {\mathit{\Omega}} \left(\mathcal{z}\right) = \alpha = 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we get the classical HH -inequality (1).
Example 3.9. We consider the fuzzy-IVF \widetilde{\mathcal{Q}}:\left[0, 2\right]\to {\mathbb{F}}_{0} defined by,
\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma }{2-\sqrt{\mathcal{z}}}, \;\;\;\; \sigma \in \left[0, 2-\sqrt{\mathcal{z}}\right], \\ \frac{2\left(2-\sqrt{\mathcal{z}}\right)-\sigma }{2-\sqrt{\mathcal{z}}}, \;\;\;\; \sigma \in \left(2-\sqrt{\mathcal{z}}, 2\left(2-\sqrt{\mathcal{z}}\right)\right], \\ 0, \;\;\;\;\;\;\;\;\;\;\; {\rm{otherwise}}.\end{array}\right. |
Then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[\gamma \left(2-\sqrt{\mathcal{z}}\right), (2-\gamma)\left(2-\sqrt{\mathcal{z}}\right)\right] . Since end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex functions for each \gamma \in [0, 1] , then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF. If
{\mathit{\Omega}} \left(\mathcal{z}\right) = \left\{\begin{array}{c}\sqrt{\mathcal{z}}, \;\;\;\; \sigma \in \left[0, 1\right], \\ \sqrt{2-\mathcal{z}}, \;\;\;\; \sigma \in \left(1, 2\right], \end{array}\right. |
then {\mathit{\Omega}} \left(2-\mathcal{z}\right) = {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0 , for all \mathcal{z}\in \left[0, 2\right] . Since {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = \gamma \left(2-\sqrt{\mathcal{z}}\right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) = (2-\gamma)\left(2-\sqrt{\mathcal{z}}\right) . If h\left(\tau \right) = \tau and \alpha = \frac{1}{2} , then we compute the following:
\begin{array}{c}\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array} = \frac{\pi }{\sqrt{2}}\gamma \left(\frac{4-\sqrt{2}}{2}\right), \\ \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array} = \frac{\pi }{\sqrt{2}}(2-\gamma )\left(\frac{4-\sqrt{2}}{2}\right), \end{array} | (60) |
\begin{array}{c}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right] = \frac{1}{\sqrt{\pi }}\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), \\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] = \frac{1}{\sqrt{\pi }}(2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right). \end{array} | (61) |
From (61) and (62), we have
\frac{1}{\sqrt{\pi }}\left[\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), (2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{\pi }{\sqrt{2}}\left[\gamma \left(\frac{4-\sqrt{2}}{2}\right), (2-\gamma )\left(\frac{4-\sqrt{2}}{2}\right)\right], \; {\rm{for \;each}} \; \gamma \in \left[0, 1\right]. |
Hence, Theorem 10 is verified.
For Theorem 11, we have
\begin{array}{c}{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\\ = \frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(2-\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left(\gamma \left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}+\frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left(\gamma \left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}\\ = \frac{1}{\sqrt{\pi }}\gamma \left(\pi +\frac{8-8\sqrt{2}}{3}\right)+\frac{1}{\sqrt{\pi }}\gamma \left(\pi -\frac{4}{3}\right) = \frac{1}{\sqrt{\pi }}\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right) \\ {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\\ = \frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(2-\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left((2-\gamma )\left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}+\frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left((2-\gamma )\left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}\\ = \frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(\pi +\frac{8-8\sqrt{2}}{3}\right)+\frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(\pi -\frac{4}{3}\right) = \frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(2\pi +\frac{4-8\sqrt{2}}{3}\right). \end{array} | (62) |
\begin{array}{c}\frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right] = \gamma \sqrt{\pi }, \\ \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right] = \left(2-\gamma \right)\sqrt{\pi }. \end{array} | (63) |
From (63) and (63), we have
\sqrt{\pi }\left[\gamma , \left(2-\gamma \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{\sqrt{\pi }}\left[\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), (2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right)\right], \; {\rm{for \;each}} \; \gamma \in \left[0, 1\right]. |
In this study, we used fuzzy-interval Riemann-Liouville fractional integrals to prove some new Hermite-Hadamard inequalities for h-convex fuzzy IVFs. The results are consistent with those found in [1,2,7,16,26,28]. Furthermore, these results could be expanded in the future for different types of convexities and fractional integrals.
This work was supported by the Taif University Researchers Supporting Project Number (TURSP-2020/96), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] | Z. Liu, A. Qin, B. Zhao, S. T. Ata-Ul-Karim, J. Xiao, J. Sun, et al., Yield response of spring maize to inter-row subsoiling and soil water deficit in Northern China, PLoS One, 11 (2016). |
[2] |
W. Feng, M. Zhong, J. M. Lemoine, R. Biancale, H. T. Hsu, J. Xia, Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements, Water Resour. Res., 49 (2013), 2110–2118. doi: 10.1002/wrcr.20192
![]() |
[3] |
X. Yang, Y. Chen, S. Pacenka, W. Gao, L. Ma, G. Wang, et al., Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain, J. Hydrol., 522 (2015), 428–438. doi: 10.1016/j.jhydrol.2015.01.010
![]() |
[4] |
L. Min, Y. Shen, H. Pei, Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain, J. Hydrol., 527 (2015), 305–315. doi: 10.1016/j.jhydrol.2015.04.064
![]() |
[5] | J. Liu, G. Cao, C. Zheng, Sustainability of groundwater resources in the North China Plain, Sustaining Groundwater Res., (2011), 69–87. |
[6] | X. Yang, Y. Chen, S. Pacenka, W. Gao, M. Zhang, P. Sui, T. S. Steenhuis, Recharge and groundwater use in the north china plain for six irrigated crops for an eleven year period, PLoS One, 10 (2015), 1–17. |
[7] |
H. Gong, Y. Pan, L. Zheng, X. Li, L. Zhu, C. Zhang, et al., Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015), Hydrogeol. J., 26 (2018), 1417–1427. doi: 10.1007/s10040-018-1768-4
![]() |
[8] | L. Wang, J. Xie, Z. Luo, Y. Niu, J. A. Coulter, R. Zhang, et al., Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China, Agric. Water Manage., 243 (2021). |
[9] | M. N. Khan, M. Mobin, Z. K. Abbas, S. A. Alamri, Fertilizers and their contaminants in soils, surface and groundwater, Encycl. Anthropocene, 5 (2018), 225–240. |
[10] |
Z. Cui, X. Chen, F. Zhang, Current Nitrogen management status and measures to improve the intensive wheat-maize system in China, Ambio, 39 (2010), 376–384. doi: 10.1007/s13280-010-0076-6
![]() |
[11] |
J. Letey, P. Vaughan, Soil type, crop and irrigation technique affect nitrogen leaching to groundwater, Calif. Agric., 67 (2013), 231–241. doi: 10.3733/ca.E.v067n04p231
![]() |
[12] |
X. Ju, C. Zhang, Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review, J. Integr. Agric., 16 (2017), 2848–2862. doi: 10.1016/S2095-3119(17)61743-X
![]() |
[13] |
Z. Wang, J. Li, Y. Li, Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain, Agric. Water Manage., 142 (2014), 19–28. doi: 10.1016/j.agwat.2014.04.013
![]() |
[14] |
Ö. Çetin, E. Akalp, Efficient use of water and fertilizers in irrigated agriculture: drip irrigation and fertigation, Acta Hortic. Regiotect., 22 (2019), 97–102. doi: 10.2478/ahr-2019-0019
![]() |
[15] |
D. Zaccaria, M. T. Carrillo-Cobo, A. Montazar, D. H. Putnam, K. Bali, Assessing the viability of sub-surface drip irrigation for resource-efficient alfalfa production in central and Southern California, Water, 9 (2017), 837. doi: 10.3390/w9110837
![]() |
[16] |
M. Umair, T. Hussain, H. Jiang, A. Ahmad, J. Yao, Y. Qi, et al., Water-saving potential of subsurface drip irrigation for winter wheat, Sustainability, 11 (2019), 2978. doi: 10.3390/su11102978
![]() |
[17] |
H. M. Darouich, C. M. G. Pedras, J. M. Gonçalves, L. S. Pereira, Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton, Biosyst. Eng., 122 (2014), 74–90. doi: 10.1016/j.biosystemseng.2014.03.010
![]() |
[18] | D. Yang, S. Li, S. Kang, T. Du, P. Guo, X. Mao, et al., Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China, Agric. Water Manage., 232 (2020). |
[19] | Y. Wei, L. Sun, S. Wang, Y. Wang, Z. Zhang, Q. Chen, et al., Effects of different irrigation methods on water distribution and nitrate nitrogen transport of cucumber in greenhouse, Nongye Gongcheng Xuebao/Trans. Chinese Soc. Agric. Eng., 26 (2010), 67–72. |
[20] |
J. E. Ayars, A. Fulton, B. Taylor, Subsurface drip irrigation in California–Here to stay?, Agric. Water Manage., 157 (2015), 39–47. doi: 10.1016/j.agwat.2015.01.001
![]() |
[21] |
S. J. Leghari, K. Hu, Y. Wei, T. C. Wang, T. A. Bhutto, M. Buriro, Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan. Agric. Water Manage., 255 (2021), 107033. doi: 10.1016/j.agwat.2021.107033
![]() |
[22] | Y. Wang, S. Li, H. Liang, K. Hu, S. Qin, H. Guo, Comparison of water-and nitrogen-use efficiency over drip irrigation with border irrigation based on a model approach, Agronomy, 10 (2020), 1890. |
[23] |
Z. Zhao, X. Qin, Z. Wang, E. Wang, Performance of different cropping systems across precipitation gradient in North China Plain, Agric. For. Meteorol., 259 (2018), 162–172. doi: 10.1016/j.agrformet.2018.04.019
![]() |
[24] |
X. L. Yang, Y. Q. Chen, T. S. Steenhuis, S. Pacenka, W. S. Gao, L. Ma, et al., Mitigating groundwater depletion in North China plain with cropping system that alternate deep and shallow rooted crops, Front. Plant Sci., 8 (2017), 980. doi: 10.3389/fpls.2017.00980
![]() |
[25] | S. Lorvanleuang, Y. Zhao, Automatic irrigation system using android, OALib, 5 (2018). |
[26] |
J. Wang, P. Wang, Q. Qin, H. Wang, The effects of land subsidence and rehabilitation on soil hydraulic properties in a mining area in the Loess Plateau of China, Catena, 159 (2017), 51–59. doi: 10.1016/j.catena.2017.08.001
![]() |
[27] | A. N. Beretta, A. V. Silbermann, L. Paladino, D. Torres, D. Bassahun, R. Musselli, et al., Soil texture analyses using a hydrometer: modification of the Bouyoucos method, Cienc. Invest. Agrar., 41 (2014), 263–271. |
[28] |
M. T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44 (1980), 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
![]() |
[29] |
S. Zhang, Y. Wei, M. N. Kandhro, F. Wu, Evaluation of FDR MI2X and new WiTu technology sensors to determine soil water content in the corn and weed field, AIMS Agric. Food, 5 (2020), 169–180. doi: 10.3934/agrfood.2020.1.169
![]() |
[30] |
S. J. Leghari, K. Hu, H. Liang, Y. Wei, Modeling water and nitrogen balance of different cropping systems in the North China Plain, Agronomy, 9 (2019), 696. doi: 10.3390/agronomy9110696
![]() |
[31] | J. Šimůnek, A. M. Šejna, H. Saito, M. Sakai, M. T. V. Genuchten, The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Software Ser., 2013. |
[32] |
J. D. Hanson, L. R. Ahuja, M. D. Shaffer, K. W. Rojas, D. G. DeCoursey, H. Farahani, et al., RZWQM: Simulating the effects of management on water quality and crop production, Agric. Syst., 57 (1998), 161–195. doi: 10.1016/S0308-521X(98)00002-X
![]() |
[33] | R. G. Allen, L. S. Pereira, D. Raes, M. Smith, Crop evapotranspiration: Guidelines for computing crop requirements, Irrig. Drain. Pap., 56 (1980) |
[34] | A. Y. Hachum, J. F. Alfaro, Rain infiltration into layered soils: prediction, J. Irrig. Drain. Div. ASCE., 106 (1980). |
[35] |
Y. Pachepsky, D. Timlin, W. Rawls, Generalized Richards' equation to simulate water transport in unsaturated soils, J. Hydrol., 272 (2003), 3–13. doi: 10.1016/S0022-1694(02)00251-2
![]() |
[36] |
J. W. Jung, K. S. Yoon, D. H. Choi, S. S. Lim, W. J. Choi, S. M. Choi, et al., Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes, Agric. Water Manage., 110 (2012), 78–83. doi: 10.1016/j.agwat.2012.03.014
![]() |
[37] | S. Hansen, P. Abrahamsen, C. T. Petersen, M. Styczen, Daisy: model use, calibration, and validation, 55 (2012), 1315–1333. |
[38] | H. Liang, K. Hu, W. D. Batchelor, Z. Qi, B. Li, An integrated soil-crop system model for water and nitrogen management in North China, Sci. Rep., 6 (2016). |
[39] |
D. N. Moriasi, J. G. Arnold, M. W. V. Liew, R. L. Bingner, R. D. Harmel, T. L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans., Asabe., 50 (2007), 885–900. doi: 10.13031/2013.23153
![]() |
[40] |
C. J. Willmott, On the validation of models, Phys. Geogr., 2 (1981), 184–194. doi: 10.1080/02723646.1981.10642213
![]() |
[41] | M. M. Mukaka, Statistics corner: A guide to appropriate use of correlation coefficient in medical research, Malawi Med. J., 24 (2012), 69–71. |
[42] | M. Razaq, P. Zhang, H. L. Shen, Salahuddin, Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono, PLoS One, 12 (2017). |
[43] |
A. A. Siyal, A. S. Mashori, K. L. Bristow, M. T. V. Genuchten, Alternate furrow irrigation can radically improve water productivity of okra, Agric. Water Manage., 173 (2016), 55–60. doi: 10.1016/j.agwat.2016.04.026
![]() |
[44] | G. Murray-Tortarolo, V. J. Jaramillo, M. Maass, P. Friedlingstein, S. Sitch, The decreasing range between dry- and wet-season precipitation over land and its effect on vegetation primary productivity, PLoS One, 12 (2017). |
[45] |
X. Gao, X. Chen, T. W. Biggs, H. Yao, Separating wet and dry years to improve calibration of SWAT in Barrett watershed, Southern California, Water, 10 (2018), 274. doi: 10.3390/w10030274
![]() |
[46] | X. Shi, W. D. Batchelor, H. Liang, S. Li, B. Li, K. Hu, Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach, Agric. Water Manage., 234 (2020). |
[47] |
Y. He, H. Liang, K. Hu, H. Wang, L. Hou, Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China, Agric. Water Manage., 210 (2018), 316–323. doi: 10.1016/j.agwat.2018.08.017
![]() |
[48] |
H. Liang, K. Hu, W. Qin, Q. Zuo, L. Guo, Y. Tao, et al., Ground cover rice production system reduces water consumption and nitrogen loss and increases water and nitrogen use efficiencies, F. Crop. Res., 233 (2019), 70–79. doi: 10.1016/j.fcr.2019.01.003
![]() |
[49] | Q. Xu, K. Hu, H. Liang, S. J. Leghari, M. T. Knudsen, Incorporating the WHCNS model to assess water and nitrogen footprint of alternative cropping systems for grain production in the North China Plain, J. Clean. Prod., 263 (2020). |
[50] |
Y. Liang, Y. Jiang, M. Du, B. Li, L. Chen, M. Chen, et al., ZmASR3 from the maize ASR gene family positively regulates drought tolerance in transgenic arabidopsis, Int. J. Mol. Sci., 20 (2019), 2278. doi: 10.3390/ijms20092278
![]() |
[51] |
H. Liang, K. Hu, W. Qin, Q. Zuo, Y. Zhang, Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system, F. Crop. Res., 201 (2017), 97–107. doi: 10.1016/j.fcr.2016.11.003
![]() |
[52] |
S. K. Jha, T. S. Ramatshaba, G. Wang, Y. Liang, H. Liu, Y. Gao, et al., Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain, Agric. Water Manage., 217 (2019), 292–302. doi: 10.1016/j.agwat.2019.03.011
![]() |
[53] | S. Kang, L. Zhang, Y. Liang, X. Hu, H. Cai, B. Gu, Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China, Agric. Water Manage., 55 (2002), 203–216. |
[54] |
G. Wang, Q. Fang, B. Wu, H. Yang, Z. Xu, Relationship between soil erodibility and modeled infiltration rate in different soils, J. Hydrol., 528 (2015), 408–418. doi: 10.1016/j.jhydrol.2015.06.044
![]() |
[55] |
B. Zhou, X. Sun, Z. Ding, W. Ma, M. Zhao, Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency, Crop Sci., 57 (2017), 1687–1703. doi: 10.2135/cropsci2016.07.0623
![]() |
[56] |
S. E. El-Hendawy, E. M. Hokam, U. Schmidhalter, Drip irrigation frequency: The effects and their interaction with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions, J. Agron. Crop Sci., 194 (2008), 180–192. doi: 10.1111/j.1439-037X.2008.00304.x
![]() |
[57] |
O. S. Sandhu, R. K. Gupta, H. S. Thind, M. L. Jat, H. S. Sidhu, Yadvinder-Singh, Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India, Agric. Water Manage., 219 (2019), 19–26. doi: 10.1016/j.agwat.2019.03.040
![]() |
[58] | S. J. Leghari, N. A. Wahocho, G. M. Laghari, A. HafeezLaghari, G. MustafaBhabhan, K. H. Talpur, et al., Role of nitrogen for plant growth and development : A review, Adv. Environ. Biol., 10 (2016), 209–218. |
[59] |
Y. Li, H. Liu, G. Huang, R. Zhang, H. Yang, Nitrate nitrogen accumulation and leaching pattern at a winter wheat: summer maize cropping field in the North China Plain, Environ. Earth Sci., 75 (2016), 118. doi: 10.1007/s12665-015-4867-8
![]() |
[60] |
D. Wu, X. Xu, Y. Chen, H. Shao, E. Sokolowski, G. Mi, Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China, Agric. Water Manage., 213 (2019), 200–211. doi: 10.1016/j.agwat.2018.10.018
![]() |
[61] |
A. Gadédjisso-Tossou, T. Avellán, N. Schütze, Potential of deficit and supplemental irrigation under climate variability in northern Togo, West Africa, Water, 10 (2018), 1803.. doi: 10.3390/w10121803
![]() |
[62] |
W. Zhao, L. Liu, Q. Shen, J. Yang, X. Han, F. Tian, et al., Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat, Water, 12 (2020), 2127. doi: 10.3390/w12082127
![]() |
[63] |
Y. Liu, H. Yang, J. Li, Y. Li, H. Yan, Estimation of irrigation requirements for drip-irrigated maize in a sub-humid climate, J. Integr. Agric., 17 (2018), 677–692. doi: 10.1016/S2095-3119(17)61833-1
![]() |
1. | Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings, 2022, 10, 2227-7390, 611, 10.3390/math10040611 | |
2. | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, 2021, 18, 1551-0018, 6552, 10.3934/mbe.2021325 | |
3. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Fuzzy Mixed Variational-like and Integral Inequalities for Strongly Preinvex Fuzzy Mappings, 2021, 13, 2073-8994, 1816, 10.3390/sym13101816 | |
4. | Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639 | |
5. | Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities, 2023, 8, 2473-6988, 6777, 10.3934/math.2023345 | |
6. | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, 2021, 7, 2473-6988, 349, 10.3934/math.2022024 | |
7. | Muhammad Bilal Khan, Muhammad Aslam Noor, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Khalida Inayat Noor, Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals, 2021, 14, 1875-6883, 10.1007/s44196-021-00009-w | |
8. | Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083 | |
9. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Mohamed S. Soliman, Muhammad Aslam Noor, Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 622, 10.3390/axioms11110622 | |
10. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, 2021, 19, 1551-0018, 812, 10.3934/mbe.2022037 | |
11. | Muhammad Bilal Khan, Muhammad Aslam Noor, Mohammed M. Al‐Shomrani, Lazim Abdullah, Some novel inequalities for LR‐h‐convex interval‐valued functions by means of pseudo‐order relation, 2022, 45, 0170-4214, 1310, 10.1002/mma.7855 | |
12. | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman, Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings, 2022, 7, 2473-6988, 15659, 10.3934/math.2022857 | |
13. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions, 2022, 14, 2073-8994, 313, 10.3390/sym14020313 | |
14. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman, Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities, 2022, 14, 2073-8994, 341, 10.3390/sym14020341 | |
15. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Pshtiwan Othman Mohammed, Mohamed S. Soliman, Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions, 2022, 15, 1875-6883, 10.1007/s44196-022-00081-w | |
16. | Muhammad Bilal Khan, Muhammad Aslam Noor, Khalida Inayat Noor, Kottakkaran Sooppy Nisar, Khadiga Ahmed Ismail, Ashraf Elfasakhany, Some Inequalities for LR-\left({h}_{1}, {h}_{2}\right)-Convex Interval-Valued Functions by Means of Pseudo Order Relation, 2021, 14, 1875-6883, 10.1007/s44196-021-00032-x | |
17. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, 2021, 7, 2473-6988, 1507, 10.3934/math.2022089 | |
18. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Jorge E. Macías-Díaz, Y.S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, 2022, 61, 11100168, 7089, 10.1016/j.aej.2021.12.052 | |
19. | Hüseyin Irmak, An extensive note on various fractional-order type operators and some of their effects to certain holomorphic functions, 2022, 21, 2300-133X, 7, 10.2478/aupcsm-2022-0001 | |
20. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, 2022, 7, 2473-6988, 4338, 10.3934/math.2022241 | |
21. | Muhammad Bilal Khan, Muhammad Aslam Noor, Hatim Ghazi Zaini, Gustavo Santos-García, Mohamed S. Soliman, The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals, 2022, 15, 1875-6883, 10.1007/s44196-022-00127-z | |
22. | Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322 | |
23. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation, 2022, 10, 2227-7390, 204, 10.3390/math10020204 | |
24. | Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, Mohamed S. Soliman, Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus, 2022, 10, 2227-7390, 534, 10.3390/math10040534 | |
25. | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, José António Tenreiro Machado, Juan L. G. Guirao, Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings, 2021, 13, 2073-8994, 2352, 10.3390/sym13122352 | |
26. | Conghui Xiong, Dan Fang, Xuebing Zou, Wei Yu, Fuzzy Mathematics-Based Evaluation Method for Comprehensive River Improvement Project Benefits, 2024, 12, 2169-3536, 126344, 10.1109/ACCESS.2024.3455320 | |
27. | José Ramón Rabuñal, María Soto, Juan Ignacio Morales, Diego Lombao, Miguel Ángel Soares-Remiseiro, Juan Luis Fernández-Marchena, Josep Vallverdú, Las ocupaciones tardiglaciares de la Cova de Les Borres (La Febró, Tarragona), 2024, 81, 1988-3218, 992, 10.3989/tp.2024.992 |