Loading [MathJax]/jax/output/SVG/jax.js
Review

Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion

  • Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.

    Citation: Amanova Sholpan, Alexandre Lamas, Alberto Cepeda, Carlos Manuel Franco. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion[J]. AIMS Microbiology, 2021, 7(2): 238-256. doi: 10.3934/microbiol.2021015

    Related Papers:

    [1] Jun Hu, Jie Wu, Mengzhe Wang . Research on VIKOR group decision making using WOWA operator based on interval Pythagorean triangular fuzzy numbers. AIMS Mathematics, 2023, 8(11): 26237-26259. doi: 10.3934/math.20231338
    [2] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [3] Yanhong Su, Zengtai Gong, Na Qin . Complex interval-value intuitionistic fuzzy sets: Quaternion number representation, correlation coefficient and applications. AIMS Mathematics, 2024, 9(8): 19943-19966. doi: 10.3934/math.2024973
    [4] Tatjana Grbić, Slavica Medić, Nataša Duraković, Sandra Buhmiler, Slaviša Dumnić, Janja Jerebic . Liapounoff type inequality for pseudo-integral of interval-valued function. AIMS Mathematics, 2022, 7(4): 5444-5462. doi: 10.3934/math.2022302
    [5] Mustafa Ekici . On an axiomatization of the grey Banzhaf value. AIMS Mathematics, 2023, 8(12): 30405-30418. doi: 10.3934/math.20231552
    [6] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [7] Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Khalil Hadi Hakami, Hamad Zogan . An analysis of fractional integral calculus and inequalities by means of coordinated center-radius order relations. AIMS Mathematics, 2024, 9(11): 31087-31118. doi: 10.3934/math.20241499
    [8] Le Fu, Jingxuan Chen, Xuanchen Li, Chunfeng Suo . Novel information measures considering the closest crisp set on fuzzy multi-attribute decision making. AIMS Mathematics, 2025, 10(2): 2974-2997. doi: 10.3934/math.2025138
    [9] Li Li, Mengjing Hao . Interval-valued Pythagorean fuzzy entropy and its application to multi-criterion group decision-making. AIMS Mathematics, 2024, 9(5): 12511-12528. doi: 10.3934/math.2024612
    [10] Scala Riccardo, Schimperna Giulio . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Mathematics, 2016, 1(1): 64-76. doi: 10.3934/Math.2016.1.64
  • Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.



    Random numbers are very important in statistical, probability theory, and mathematical analysis in such complex cases, where the real numbers are difficult to record. The random numbers are generated from the uniform distribution when an interval is defined for their selection of random numbers. The random numbers are generated in sequence and depict the behavior of the real data. In addition, random data can be used for estimation and forecasting purposes. According to [1], "The method is based on running the model many times as in random sampling. For each sample, random variates are generated on each input variable; computations are run through the model yielding random outcomes on each output variable. Since each input is random, the outcomes are random. In the same way, they generated thousands of such samples and achieved thousands of outcomes for each output variable. In order to carry out this method, a large stream of random numbers was needed". To generate random numbers, a random generator is applied. The random numbers have no specific pattern and are generated from the chance process. Nowadays, the latest computer can be used to generate random numbers using a well-defined algorithm; see [1]. Bang et al. [2] investigated normality using random-number generating. Schulz et al. [3] presented a pattern-based approach. Tanyer [4] generated random numbers from uniform sampling. Kaya and Tuncer [5] proposed a method to generate biological random numbers. Tanackov et al. [6] presented a method to generate random numbers from the exponential distribution. Jacak et al. [7] presented the methods to generate pseudorandom numbers. More methods can be seen in [8,9,10].

    The neutrosophic statistical distributions were found to be more efficient than the distributions under classical statistics. The neutrosophic distributions can be applied to analyze the data that is given in neutrosophic numbers. Sherwani et al. [11] proposed neutrosophic normal distribution. Duan et al. [12] worked on neutrosophic exponential distribution. Aliev et al. [13] generated Z-random numbers from linear programming. Gao and Ralescu [14] studied the convergence of random numbers generated under an uncertain environment. More information on random numbers generators can be seen in [15,16,17,18]. In recent works, Aslam [19] introduced a truncated variable algorithm for generating random variates from the neutrosophic DUS-Weibull distribution. Additionally, in another study [20], novel methods incorporating sine-cosine and convolution techniques were introduced to generate random numbers within the framework of neutrosophy. Albassam et al. [21] showcased probability/cumulative density function plots and elucidated the characteristics of the neutrosophic Weibull distribution as introduced by [22]. The estimation and application of the neutrosophic Weibull distribution was also presented by [21].

    In [22], the Weibull distribution was introduced within the realm of neutrosophic statistics, offering a more inclusive perspective compared to its traditional counterpart in classical statistics. [21] further examined the properties of the neutrosophic Weibull distribution introduced by [22]. Despite an extensive review of existing literature, no prior research has been identified regarding the development of algorithms for generating random numbers using both the neutrosophic uniform and Weibull distributions. This paper aims to bridge this gap by presenting innovative random number generators tailored specifically for the neutrosophic uniform distribution and the neutrosophic Weibull distribution. The subsequent sections will provide detailed explanations of the algorithms devised to generate random numbers for these distributions. Additionally, the paper will feature multiple tables showcasing sets of random numbers across various degrees of indeterminacy. Upon thorough analysis, the results reveal a noticeable decline in random numbers as the degree of indeterminacy increases.

    Let xNU=xNL+xNUIxNU;IxNUϵ[IxLU,IxUU] be a neutrosophic random variable that follows the neutrosophic uniform distribution. Note that the first part xNL denotes the determinate part, xNUIxNU the indeterminate part, and IxNUϵ[IxLU,IxUU] the degree of indeterminacy. Suppose f(xNU)=f(xLU)+f(xUU)INU;INUϵ[ILU,IUU] presents the neutrosophic probability density function (npdf) of neutrosophic uniform distribution (NUD). Note that the npdf of NUD is based on two parts. The first part xNL, f(xLU) denotes the determinate part and presents the probability density function (pdf) of uniform distribution under classical statistics. The second part xNUIxNU, f(xUU)INU denotes the indeterminate part and IxNUϵ[IxLU,IxUU], INUϵ[ILU,IUU] are the measures of indeterminacy associated with neutrosophic random variable and the uniform distribution. The npdf of the uniform distribution by following [22] is given as

    f(xNU)=(1(bLaL))+(1(bUaU))IxNU;IxNUϵ[IxLU,IxUU],aNxNUbN, (1)

    where bNϵ[bL,bU] and aNϵ[aL,aU] are neutrosophic parameters of the NUD. The simplified form when L=U=SU of Eq (1) can be written as

    f(xNSU)=(1(bNSaNS))(1+IxNS);IxNSϵ[IxLS,IxUS],aNxNUbN. (2)

    Note here that the npdf of uniform distribution is a generalization of pdf of the uniform distribution. The neutrosophic uniform distribution reduces to the classical uniform distribution when IxUU = 0. The neutrosophic cumulative distribution function (ncdf) of the neutrosophic uniform distribution is given by

    F(xNU)=(xNLaL(bLaL))+(xNUaU(bUaU))IxNU;IxNUϵ[IxLU,IxUU],aNxNUbN. (3)

    Note that the first part presents the cumulative distribution function (cdf) of the uniform distribution under classical statistics, and the second part is the indeterminate part associated with ncdf. The ncdf reduces to cdf when IxUU = 0. The simplified form of ncdf of the Uniform distribution when L=U=S can be written as

    F(xNSU)=(xNSaNS(bNSaNS))(1+INS);INSϵ[ILS,IUS],aNxNUbN. (4)

    Aslam [22] introduced the neutrosophic Weibull distribution (NWD) originally. The neutrosophic form of the Weibull distribution is expressed by

    f(xNW)=f(xLW)+f(xUW)INW;INWϵ[ILW,IUW]. (5)

    The following npdf of the Weibull distribution is taken from [22] and reported as

    f(xNW)={(βα)(xLα)β1e(xLα)β}+{(βα)(xUα)β1e(xUα)β}INW;INWϵ[ILW,IUW]. (6)

    The simplified form of the npdf of the Weibull distribution when L=U=SW is expressed by

    f(xNSW)={(βα)(xSα)β1e(xSα)β}(1+INS);INSϵ[ILS,IUS], (7)

    where α and β are the scale and shape parameters of the Weibull distribution. The npdf of the Weibull distribution reduces to pdf of the Weibull distribution when INS=0. The ncdf of the Weibull distribution is expressed by

    F(xNSW)=1{e(xNSWα)β(1+INW)}+INW;INWϵ[ILW,IUW]. (8)

    The ncdf of the Weibull distribution reduces to cdf of the Weibull distribution under classical statistics when INW = 0. The neutrosophic mean of the Weibull distribution is given as [22]

    μNW=αΓ(1+1/β)(1+INW);INWϵ[ILW,IUW]. (9)

    The neutrosophic median of the Weibull distribution is given by

    ˜μNW=α(ln(2))1/β(1+INW);INWϵ[ILW,IUW]. (10)

    This section presents the methodology to generate random variates from the proposed neutrosophic uniform distribution and the neutrosophic Weibull distribution. Let uNϵ[uL,uU] be a neutrosophic random uniform from uNUN([0,0],[1,1]). The neutrosophic random numbers from NUD and NWD will be obtained as follows:

    Let

    uN=F(xNU)=(xNLaL(bLaL))+(xNUaU(bUaU))IxNU;IxNUϵ[IxLU,IxUU],aNxNUbN,

    or

    uN=F(xNU)=(xNSaNS(bNSaNS))(1+INS);INSϵ[ILS,IUS],aNxNUbN.

    The neutrosophic random numbers xNSU from NWD can be obtained using the following Eq (11)

    xNSU=aNS+(uN(1+INS))(bNSaNS);uNϵ[uL,uU],INSϵ[ILS,IUS]. (11)

    The random number from the Weibull distribution using classical statistics can be obtained when INS = 0 using the following Eq (12)

    x=a+u(ba);axb. (12)

    The neutrosophic random numbers from the NWD will be obtained using the following methodology.

    Let

    uN=F(xNSW)=1{e(xNSWα)β(1+INW)}+INW;INWϵ[ILW,IUW],uNϵ[uL,uU].

    The neutrosophic random numbers from NWD can be obtained through the following expression

    xNSW=α[ln(1(uNINW)1+INW)]1β;INWϵ[ILW,IUW],uNϵ[uL,uU]. (13)

    The NWD reduces to neutrosophic exponential distribution (NED) when β=1. The neutrosophic random numbers from the NED can be obtained as follows:

    xNSE=αln(1(uNINW)1+INW);INWϵ[ILW,IUW],uNϵ[uL,uU]. (14)

    The random numbers from the Weibull distribution using classical statistics can be obtained as

    xNSW=αln(1u)1β. (15)

    The random numbers from the exponential distribution using classical statistics can be obtained as

    xNSW=αln(1u). (16)

    The following routine can be run to generate n random numbers from the NUD.

    Step-1: Generate a uniform random number uN from uNUN([0,0],[1,1]).

    Step-2: Fix the values of INS.

    Step-3: Generate values of xNSU using the expression

    xNSU=aNS+(uN(1+INS))(bNSaNS);uNϵ[uL,uU],INSϵ[ILS,IUS].

    Step-4: From the routine, the first value of xNSU will be generated.

    Step-5: Repeat the routine k times to generate k random numbers from NUD.

    The following routine can be run to generate n random numbers from the NUD.

    Step-1: Generate a uniform random number uN from uNUN([0,0],[1,1]).

    Step-2: Fix the values of INS, α and β.

    Step-3: Generate values of xNSW using the expression

    xNSW=α[ln(1(uNINW)1+INW)]1β;INWϵ[ILW,IUW],uNϵ[uL,uU].

    Step-4: From the routine, the first value of xNSW will be generated.

    Step-5: Repeat the routine k times to generate k random numbers from NWD.

    To illustrate the proposed simulation methods, two examples will be discussed in this section.

    Suppose that xNSU is a neutrosophic uniform random variable with parameters ([20,20],[30,30]) and a random variate xNSU under indeterminacy is needed. To generate a random number from NUD, the following steps have been carried out.

    Step-1: Generate a uniform random number uN=0.05 from uNUN([0,0],[1,1]).

    Step-2: Fix the values of INS=0.1.

    Step-3: Generate values of xNSU using the expression xNSU=20+(0.05(1+0.1))(3020)=20.5.

    Step-4: From the routine, the first value of xNSU=20.5 will be generated.

    Step-5: Repeat the routine k times to generate k random numbers from NUD.

    Step-1: Generate a uniform random number uN=0.30 from uNUN([0,0],[1,1]).

    Step-2: Fix the values of INS=0.20, α=5, and β=0.5.

    Step-3: Generate values of xNSW using the expression xNSW=5[ln(1(uNINW)1+INW)]10.5=0.04.

    Step-4: From the routine, the first value of xNSW=0.04 will be generated.

    Step-5: Repeat the routine k times to generate k random numbers from NWD.

    In this section, random numbers are generated by simulation using the above-mentioned algorithms for NUD and NWD. To generate random numbers from NUD, several uniform numbers are generated from uNUN([0,0],[1,1]) and placed in Tables 1 and 2. In Tables 1 and 2, several values of INS are considered to generate random numbers from the NUD. Table 1 is depicted by assuming that NUD has the parameters aNS = 10 and bNS = 20 and Table 2 is shown by assuming that NUD has the parameters aNS = 20 and bNS = 30. From Tables 1 and 2, the following trends can be noted in random numbers generated from NUD.

    Table 1.  Random numbers from NUD when aNS = 10 and bNS = 20.
    u INS
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
    0.05 10.5 10.45 10.42 10.38 10.36 10.33 10.31 10.29 10.28 10.26 10.3 10.2
    0.1 11 10.91 10.83 10.77 10.71 10.67 10.63 10.59 10.56 10.53 10.5 10.5
    0.15 11.5 11.36 11.25 11.15 11.07 11.00 10.94 10.88 10.83 10.79 10.8 10.7
    0.2 12 11.82 11.67 11.54 11.43 11.33 11.25 11.18 11.11 11.05 11.0 11.0
    0.25 12.5 12.27 12.08 11.92 11.79 11.67 11.56 11.47 11.39 11.32 11.3 11.2
    0.3 13 12.73 12.50 12.31 12.14 12.00 11.88 11.76 11.67 11.58 11.5 11.4
    0.35 13.5 13.18 12.92 12.69 12.50 12.33 12.19 12.06 11.94 11.84 11.8 11.7
    0.4 14 13.64 13.33 13.08 12.86 12.67 12.50 12.35 12.22 12.11 12.0 11.9
    0.45 14.5 14.09 13.75 13.46 13.21 13.00 12.81 12.65 12.50 12.37 12.3 12.1
    0.5 15 14.55 14.17 13.85 13.57 13.33 13.13 12.94 12.78 12.63 12.5 12.4
    0.55 15.5 15.00 14.58 14.23 13.93 13.67 13.44 13.24 13.06 12.89 12.8 12.6
    0.6 16 15.45 15.00 14.62 14.29 14.00 13.75 13.53 13.33 13.16 13.0 12.9
    0.65 16.5 15.91 15.42 15.00 14.64 14.33 14.06 13.82 13.61 13.42 13.3 13.1
    0.7 17 16.36 15.83 15.38 15.00 14.67 14.38 14.12 13.89 13.68 13.5 13.3
    0.75 17.5 16.82 16.25 15.77 15.36 15.00 14.69 14.41 14.17 13.95 13.8 13.6
    0.8 18 17.27 16.67 16.15 15.71 15.33 15.00 14.71 14.44 14.21 14.0 13.8
    0.9 19 18.18 17.50 16.92 16.43 16.00 15.63 15.29 15.00 14.74 14.5 14.3
    0.95 19.5 18.64 17.92 17.31 16.79 16.33 15.94 15.59 15.28 15.00 14.8 14.5

     | Show Table
    DownLoad: CSV
    Table 2.  Random numbers from NUD when aNS = 20 and bNS = 30.
    u INS
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
    0.05 20.5 20.5 20.4 20.4 20.4 20.3 20.3 20.3 20.3 20.3 20.3 20.2
    0.1 21.0 20.9 20.8 20.8 20.7 20.7 20.6 20.6 20.6 20.5 20.5 20.5
    0.15 21.5 21.4 21.3 21.2 21.1 21.0 20.9 20.9 20.8 20.8 20.8 20.7
    0.2 22.0 21.8 21.7 21.5 21.4 21.3 21.3 21.2 21.1 21.1 21.0 21.0
    0.25 22.5 22.3 22.1 21.9 21.8 21.7 21.6 21.5 21.4 21.3 21.3 21.2
    0.3 23.0 22.7 22.5 22.3 22.1 22.0 21.9 21.8 21.7 21.6 21.5 21.4
    0.35 23.5 23.2 22.9 22.7 22.5 22.3 22.2 22.1 21.9 21.8 21.8 21.7
    0.4 24.0 23.6 23.3 23.1 22.9 22.7 22.5 22.4 22.2 22.1 22.0 21.9
    0.45 24.5 24.1 23.8 23.5 23.2 23.0 22.8 22.6 22.5 22.4 22.3 22.1
    0.5 25.0 24.5 24.2 23.8 23.6 23.3 23.1 22.9 22.8 22.6 22.5 22.4
    0.55 25.5 25.0 24.6 24.2 23.9 23.7 23.4 23.2 23.1 22.9 22.8 22.6
    0.6 26.0 25.5 25.0 24.6 24.3 24.0 23.8 23.5 23.3 23.2 23.0 22.9
    0.65 26.5 25.9 25.4 25.0 24.6 24.3 24.1 23.8 23.6 23.4 23.3 23.1
    0.7 27.0 26.4 25.8 25.4 25.0 24.7 24.4 24.1 23.9 23.7 23.5 23.3
    0.75 27.5 26.8 26.3 25.8 25.4 25.0 24.7 24.4 24.2 23.9 23.8 23.6
    0.8 28.0 27.3 26.7 26.2 25.7 25.3 25.0 24.7 24.4 24.2 24.0 23.8
    0.9 29.0 28.2 27.5 26.9 26.4 26.0 25.6 25.3 25.0 24.7 24.5 24.3
    0.95 29.5 28.6 27.9 27.3 26.8 26.3 25.9 25.6 25.3 25.0 24.8 24.5

     | Show Table
    DownLoad: CSV

    1) For fixed INS, aNS = 10 and bNS = 20, as the values of u increase from 0.05 to 0.95, there is an increasing trend in random numbers.

    2) For fixed u, aNS = 10 and bNS = 20, as the values of INS increase from 0 to 1.1, there is a decreasing trend in random numbers.

    3) For fixed values of u and INS, as the values of aNS and bNS increases, there is an increasing trend in random numbers.

    The random numbers for NWD are generated using the algorithm discussed in the last section. The random numbers for various values of u, INS, α, and β are considered. The random numbers when α=5 and β=0 are shown in Table 3. The random numbers when α=5 and β=1 are shown in Table 4. The random numbers when α=5 and β=2 are shown in Table 5.

    Table 3.  Random numbers from NUD when α=5 and β=0.5.
    u INS
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
    0.05 0.01 0.01 0.07 0.15 0.23 0.31 0.38 0.43 0.48 0.52 0.56 0.58
    0.1 0.06 0.00 0.03 0.10 0.18 0.25 0.32 0.38 0.43 0.48 0.51 0.54
    0.15 0.13 0.01 0.01 0.06 0.13 0.20 0.27 0.33 0.39 0.43 0.47 0.51
    0.2 0.25 0.05 0.00 0.03 0.08 0.15 0.22 0.28 0.34 0.39 0.43 0.47
    0.25 0.41 0.11 0.01 0.01 0.05 0.11 0.18 0.24 0.30 0.35 0.39 0.43
    0.3 0.64 0.21 0.04 0.00 0.02 0.07 0.13 0.20 0.25 0.31 0.35 0.39
    0.35 0.93 0.34 0.09 0.01 0.01 0.04 0.10 0.16 0.21 0.27 0.31 0.36
    0.4 1.30 0.53 0.17 0.03 0.00 0.02 0.06 0.12 0.17 0.23 0.28 0.32
    0.45 1.79 0.77 0.29 0.08 0.01 0.01 0.04 0.09 0.14 0.19 0.24 0.28
    0.5 2.40 1.08 0.44 0.15 0.03 0.00 0.02 0.06 0.11 0.16 0.21 0.25
    0.55 3.19 1.48 0.64 0.24 0.07 0.01 0.00 0.03 0.08 0.12 0.17 0.22
    0.6 4.20 1.99 0.91 0.38 0.13 0.02 0.00 0.02 0.05 0.10 0.14 0.19
    0.65 5.51 2.63 1.24 0.55 0.21 0.06 0.01 0.00 0.03 0.07 0.11 0.16
    0.7 7.25 3.47 1.67 0.77 0.32 0.11 0.02 0.00 0.01 0.05 0.09 0.13
    0.75 9.61 4.55 2.21 1.06 0.47 0.18 0.05 0.00 0.00 0.03 0.06 0.10
    0.8 12.95 5.99 2.92 1.42 0.67 0.28 0.10 0.02 0.00 0.01 0.04 0.08
    0.9 26.51 10.70 5.03 2.48 1.23 0.58 0.25 0.09 0.02 0.00 0.01 0.04
    0.95 44.87 14.87 6.67 3.26 1.63 0.79 0.36 0.14 0.04 0.00 0.00 0.02

     | Show Table
    DownLoad: CSV
    Table 4.  Random numbers from NUD when α=5 and β=1.
    u INS
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
    0.05 0.26 - - - - - - - - - - -
    0.1 0.53 0.00 - - - - - - - - - -
    0.15 0.81 0.23 - - - - - - - - - -
    0.2 1.12 0.48 0.00 - - - - - - - - -
    0.25 1.44 0.74 0.21 - - - - - - - - -
    0.3 1.78 1.01 0.44 0.00 - - - - - - - -
    0.35 2.15 1.31 0.68 0.20 - - - - - - - -
    0.4 2.55 1.62 0.93 0.41 0.00 - - - - - - -
    0.45 2.99 1.96 1.20 0.63 0.18 - - - - - - -
    0.5 3.47 2.32 1.49 0.86 0.38 0.00 - - - - - -
    0.55 3.99 2.72 1.79 1.11 0.58 0.17 - - - - - -
    0.6 4.58 3.15 2.13 1.37 0.80 0.35 0.00 - - - - -
    0.65 5.25 3.63 2.49 1.66 1.03 0.54 0.16 - - - - -
    0.7 6.02 4.16 2.89 1.96 1.27 0.74 0.33 0.00 - - - -
    0.75 6.93 4.77 3.33 2.30 1.54 0.96 0.51 0.15 - - - -
    0.8 8.05 5.47 3.82 2.67 1.82 1.19 0.70 0.31 0.00 - - -
    0.9 11.51 7.32 5.02 3.52 2.48 1.70 1.11 0.66 0.29 0.00 - -
    0.95 14.98 8.62 5.78 4.04 2.85 1.99 1.35 0.85 0.45 0.13 - -

     | Show Table
    DownLoad: CSV
    Table 5.  Random numbers from NUD when α=5 and β=2.
    u INS
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
    0.05 1.13 - - - - - - - - - - -
    0.1 1.62 0.00 - - - - - - - - - -
    0.15 2.02 1.08 - - - - - - - - - -
    0.2 2.36 1.55 0.00 - - - - - - - - -
    0.25 2.68 1.92 1.03 - - - - - - - - -
    0.3 2.99 2.25 1.48 0.00 - - - - - - - -
    0.35 3.28 2.56 1.84 0.99 - - - - - - - -
    0.4 3.57 2.85 2.16 1.42 0.00 - - - - - - -
    0.45 3.87 3.13 2.45 1.77 0.96 - - - - - - -
    0.5 4.16 3.41 2.73 2.07 1.37 0.00 - - - - - -
    0.55 4.47 3.69 3.00 2.35 1.70 0.92 - - - - - -
    0.6 4.79 3.97 3.26 2.62 2.00 1.33 0.00 - - - - -
    0.65 5.12 4.26 3.53 2.88 2.27 1.65 0.90 - - - - -
    0.7 5.49 4.56 3.80 3.13 2.52 1.93 1.28 0.00 - - - -
    0.75 5.89 4.88 4.08 3.39 2.77 2.19 1.59 0.87 - - - -
    0.8 6.34 5.23 4.37 3.65 3.02 2.44 1.87 1.24 0.00 - - -
    0.9 7.59 6.05 5.01 4.20 3.52 2.92 2.36 1.81 1.21 0.00 - -
    0.95 8.65 6.57 5.37 4.49 3.78 3.16 2.59 2.06 1.50 0.82 - -

     | Show Table
    DownLoad: CSV

    From Tables 35, the following trends can be noted in random numbers generated from NUD.

    1) For fixed INS, α=5 and β=0.5, as the values of u increase from 0.05 to 0.95, there is an increasing trend in random numbers generated from NWD.

    2) For fixed u, α=5, and β=0.5, as the values of INS increase from 0 to 1.1, there is an increasing trend in random numbers.

    3) For fixed values of INS and α, as the values of β increase, there is an increasing trend in random numbers.

    The algorithms to generate the random variables from NUD and NWD are depicted in Figures 1 and 2.

    Figure 1.  Algorithm to generate random numbers from NUD.
    Figure 2.  Algorithm to generate random numbers from NWD.

    In this section, the performance of simulations using classical simulation and neutrosophic simulation will be discussed using the random numbers from the NUD and the NWD distribution. As explained earlier, the proposed simulation method under neutrosophy will be reduced to the classical simulation method under classical statistics when no uncertainty is found in the data. To study the behavior of random numbers, random numbers from NUD when INS=1.1, aNS = 20, and bNS = 30 are considered and depicted in Figure 3. In Figure 3, it can be seen that the curve of random numbers from the classical simulation is higher than the curve of random numbers from the neutrosophic simulation. From Figure 3, it is clear that the proposed neutrosophic simulation method gives smaller values of random numbers than the random numbers generated by the neutrosophic simulation method. The random numbers from NWD when INS=0.9, α=5, and β=0.5 are considered and their curves are shown in Figure 4. From Figure 4, it can be seen that random numbers generated by neutrosophic simulation are smaller than the random numbers generated by the classical simulation method under classical statistics. The random numbers generated by the neutrosophic simulation are close to zero. The random numbers from NWD when INS=0.1, α=5, and β=1 (exponential distribution) are considered and their curves are shown in Figure 5. From Figure 5, it can be seen that the curve of random numbers generated by neutrosophic simulation is lower than the curve of random numbers generated by the classical simulation method under classical statistics. The random numbers from NWD when INS=0.1, α=5, and β=2 are considered and their curves are shown in Figure 6. From Figure 6, it can be seen that the curve of random numbers generated by neutrosophic simulation is lower than the curve of random numbers generated by the classical simulation method under classical statistics. From Figures 46, it can be concluded that the proposed simulation gives smaller values of random numbers as compared to the classical simulation method under classical statistics.

    Figure 3.  Random numbers behavior from NUD when INS=1.1, aNS = 20, and bNS = 30.
    Figure 4.  Random numbers behavior from NWD when INS=0.9, and when α=5, and β=0.5.
    Figure 5.  Random numbers behavior from NWD when INS=0.1, and when α=5, and β=1.
    Figure 6.  Random numbers behavior from NWD when INS=0.1, and when α=5, and β=2.

    The simulation method under neutrosophic statistics and classical methods was discussed in the last sections. From Tables 1 and 2, it can be seen that random numbers from the NUD can be generated when INS<1, INS=1 and INS>1. On the other hand, the random numbers from the NWD can be generated for INS<1, INS=1, and INS>1 when the shape parameter β<1. From Table 4 and 5, it can be noted that for several cases, the NWD generates negative results or random numbers do not exist. Based on the simulation studies, it can be concluded that the NWD generates random numbers INS<1, INS=1, and INS>1 only when β<1. To generate random numbers from NWD when β1, the following expression will be used

    xNSW=α[ln(1uN+INW1+INW)]1β;1uN+INW0.

    In this paper, we initially introduced the NUD and presented a novel method for generating random numbers from both NUD and the NWD. We also introduced algorithms for generating random numbers within the context of neutrosophy. These algorithms were applied to generate random numbers from both distributions using various parameters. We conducted an extensive discussion on the behavior of these random numbers, observing that random numbers generated under neutrosophy tend to be smaller than those generated under uncertain environments. It is worth noting that generating random numbers from computers is a common practice. Tables 15 within this paper offer valuable insights into how the degree of determinacy influences random number generation. Additionally, these tables can be utilized for simulation purposes in fields marked by uncertainty, such as reliability, environmental studies, and medical science. From our study, we conclude that the proposed method for generating random numbers from NUD and NWD can be effectively applied in complex scenarios. In future research, exploring the statistical properties of the proposed NUD would be advantageous. Additionally, investigating the proposed algorithm utilizing the accept-reject method could be pursued as a future research avenue. Moreover, there is potential to develop algorithms using other statistical distributions for further investigation.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality and presentation of the paper.

    The authors declare no conflicts of interest.



    Conflict of interest



    The authors declare no conflict of interest.

    Author contributions



    Amanova Sholpan and Alexandre Lamas draft the original manuscript and Alberto Cepeda and Carlos Manuel Franco revised the manuscript. All the authors approved the final version of the manuscript.

    [1] Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, et al. (2014) Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res Microbiol 165: 526-530. doi: 10.1016/j.resmic.2014.07.004
    [2] European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (2019) The European Union One Health 2018 Zoonoses Report. EFSA J 17: e05926.
    [3] Lamas A, Miranda JM, Regal P, et al. (2018) A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol Res 206: 60-73. doi: 10.1016/j.micres.2017.09.010
    [4] Cox NA, Cason JA, Richardson LJ (2011) Minimization of Salmonella contamination on raw poultry. Annu Rev Food Sci Technol 2: 75-95. doi: 10.1146/annurev-food-022510-133715
    [5] Guillén S, Marcén M, Álvarez I, et al. (2020) Stress resistance of emerging poultry-associated Salmonella serovars. Int J Food Microbiol 335. doi: 10.1016/j.ijfoodmicro.2020.108884
    [6] Arunima A, Swain SK, Ray S, et al. (2020) RpoS-regulated SEN1538 gene promotes resistance to stress and influences Salmonella enterica serovar enteritidis virulence. Virulence 11: 295-314. doi: 10.1080/21505594.2020.1743540
    [7] Wang H, Huang M, Zeng X, et al. (2020) Resistance profiles of Salmonella isolates exposed to stresses and the expression of small non-coding RNAs. Front Microbiol 11: 130. doi: 10.3389/fmicb.2020.00130
    [8] Dong R, Qin X, He S, et al. (2021) DsrA confers resistance to oxidative stress in Salmonella enterica serovar Typhimurium. Food Control 121.
    [9] Azimi S, Klementiev AD, Whiteley M, et al. (2020) Bacterial quorum sensing during infection. Annu Rev Microbiol 74: 201-219. doi: 10.1146/annurev-micro-032020-093845
    [10] Wu L, Luo Y (2021) Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front Microbiol 12.
    [11] Almeida FAD, Pinto UM, Vanetti MCD (2016) Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules. Microb Pathog 99: 178-190. doi: 10.1016/j.micpath.2016.08.024
    [12] Tomasz A (1965) Control of the competent state in pneumococcus by a hormone-like cell product: An example for a new type of regulatory mechanism in bacteria. Nature 208: 155-159. doi: 10.1038/208155a0
    [13] Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104: 313-322. doi: 10.1128/jb.104.1.313-322.1970
    [14] Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551: 313-320. doi: 10.1038/nature24624
    [15] Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell 32: 773-781. doi: 10.1016/0092-8674(83)90063-6
    [16] Engebrecht JA, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81: 4154-4158. doi: 10.1073/pnas.81.13.4154
    [17] Eberhard A, Burlingame AL, Eberhard C, et al. (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20: 2444-2449. doi: 10.1021/bi00512a013
    [18] Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: The LuxR-LuxI family of cell density- responsive transcriptional regulators. J Bacteriol 176: 269-275. doi: 10.1128/jb.176.2.269-275.1994
    [19] Williams P, Winzer K, Chan WC, et al. (2007) Look who's talking: Communication and quorum sensing in the bacterial world. Philos Trans R Soc B Biol Sci 362: 1119-1134. doi: 10.1098/rstb.2007.2039
    [20] Skandamis PN, Nychas GE (2012) Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78: 5473-5482. doi: 10.1128/AEM.00468-12
    [21] Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed 48: 5908-5911. doi: 10.1002/anie.200901550
    [22] Smith D, Wang J, Swatton JE, et al. (2007) Variations on a theme: Diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in Gram-negative bacteria. Sci Prog 89 PART 3: 167-211.
    [23] Winzer K, Hardie KR, Williams P (2003) LuxS and Autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol 53.
    [24] Reading NC, Torres AG, Kendall MM, et al. (2007) A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189: 2468-2476. doi: 10.1128/JB.01848-06
    [25] Dunny GM, Leonard BAB (1997) Cell-cell communication in gram-positive bacteria. Annu Rev Microbiol 51: 527-564. doi: 10.1146/annurev.micro.51.1.527
    [26] Lupp C, Urbanowski M, Greenberg EP, et al. (2003) The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol Microbiol 50: 319-331. doi: 10.1046/j.1365-2958.2003.t01-1-03585.x
    [27] Visick KL, Foster J, Doino J, et al. (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182: 4578-4586. doi: 10.1128/JB.182.16.4578-4586.2000
    [28] Ahmer BMM, Van Reeuwijk J, Timmers CD, et al. (1998) Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180: 1185-1193. doi: 10.1128/JB.180.5.1185-1193.1998
    [29] Patankar AV, González JE (2009) Orphan LuxR regulators of quorum sensing: Review article. FEMS Microbiol Rev 33: 739-756. doi: 10.1111/j.1574-6976.2009.00163.x
    [30] Desai PT, Porwollik S, Long F, et al. (2013) Evolutionary genomics of Salmonella enterica subspecies. mBio 4.
    [31] McQuiston JR, Fields PI, Tauxe RV, et al. (2008) Do Salmonella carry spare tyres? Trends Microbiol 16: 142-148. doi: 10.1016/j.tim.2008.01.009
    [32] Doolittle RF, Feng D, Tsang S, et al. (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470-477. doi: 10.1126/science.271.5248.470
    [33] Michael B, Smith JN, Swift S, et al. (2001) SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183: 5733-5742. doi: 10.1128/JB.183.19.5733-5742.2001
    [34] Dyszel JL, Smith JN, Lucas DE, et al. (2010) Salmonella enterica serovar typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. J Bacteriol 192: 29-37. doi: 10.1128/JB.01139-09
    [35] Nicholson B, David L (2000) DNA methylation-dependent regulation of Pef expression in Salmonella typhimuriumMol Microbiol 35: 728-742. doi: 10.1046/j.1365-2958.2000.01743.x
    [36] Miki T, Okada N, Shimada Y, et al. (2004) Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in Salmonella enterica serovar Typhimurium. Microb Pathog 37: 65-72. doi: 10.1016/j.micpath.2004.04.006
    [37] Smith JN, Ahmer BMM (2003) Detection of other microbial species by Salmonella: Expression of the SdiA regulon. J Bacteriol 185: 1357-1366. doi: 10.1128/JB.185.4.1357-1366.2003
    [38] Samudrala R, Heffron F, McDermott JE (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type iii secretion systems. PLoS Pathog 5: e1000375. doi: 10.1371/journal.ppat.1000375
    [39] Rosselin M, Virlogeux-Payant I, Roy C, et al. (2010) Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization. Cell Res 20: 647-664. doi: 10.1038/cr.2010.45
    [40] Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96: 1639-1644. doi: 10.1073/pnas.96.4.1639
    [41] Bassler BL, Wright M, Silverman MR (1994) Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyiMol Microbiol 12: 403-412. doi: 10.1111/j.1365-2958.1994.tb01029.x
    [42] Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37: 156-181. doi: 10.1111/j.1574-6976.2012.00345.x
    [43] Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100: 14549-14554. doi: 10.1073/pnas.1934514100
    [44] Herzberg M, Kaye IK, Peti W, et al. (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188: 587-598. doi: 10.1128/JB.188.2.587-598.2006
    [45] Xue T, Zhao L, Sun H, et al. (2009) LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Res 19: 1258-1268. doi: 10.1038/cr.2009.91
    [46] Pereira CS, Santos AJM, Bejerano-Sagie M, et al. (2012) Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2. Mol Microbiol 84: 93-104. doi: 10.1111/j.1365-2958.2012.08010.x
    [47] Sperandio V, Torres AG, Jarvis B, et al. (2003) Bacteria-host communication: The language of hormones. Proc Natl Acad Sci USA 100: 8951-8956. doi: 10.1073/pnas.1537100100
    [48] Walters M, Sperandio V (2006) Quorum sensing in Escherichia coli and SalmonellaInt J Med Microbiol 296: 125-131. doi: 10.1016/j.ijmm.2006.01.041
    [49] Moreira CG, Sperandio V (2012) Interplay between the qsec and qsee bacterial adrenergic sensor kinases in Salmonella enterica serovar typhimurium pathogenesis. Infect Immun 80: 4344-4353. doi: 10.1128/IAI.00803-12
    [50] Moreira CG, Weinshenker D, Sperandio V (2010) QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 78: 914-926. doi: 10.1128/IAI.01038-09
    [51] Bearson BL, Bearson SMD, Lee IS, et al. (2010) The Salmonella enterica serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase. Microb Pathog 48: 214-219. doi: 10.1016/j.micpath.2010.03.005
    [52] Clarke MB, Hughes DT, Zhu C, et al. (2006) The QseC sensor kinase: A bacterial adrenergic receptor. Proc Natl Acad Sci USA 103: 10420-10425. doi: 10.1073/pnas.0604343103
    [53] Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136: 615-628. doi: 10.1016/j.cell.2009.01.043
    [54] Mandin P, Guillier M (2013) Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr Opin Microbiol 16: 125-132. doi: 10.1016/j.mib.2012.12.005
    [55] Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8: 116-127. doi: 10.1016/j.chom.2010.06.008
    [56] Papenfort K, Sun Y, Miyakoshi M, et al. (2013) Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153: 426-437. doi: 10.1016/j.cell.2013.03.003
    [57] Lenz DH, Mok KC, Lilley BN, et al. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio choleraeCell 118: 69-82. doi: 10.1016/j.cell.2004.06.009
    [58] Hammer BK, Bassler BL (2007) Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio choleraeProc Natl Acad Sci 104: 11145-11149. doi: 10.1073/pnas.0703860104
    [59] Svenningsen SL, Waters CM, Bassler BL (2008) A negative feedback loop involving small RNAs accelerates Vibrio cholerae's transition out of quorum-sensing mode. Genes Dev 22: 226-238. doi: 10.1101/gad.1629908
    [60] Tu KC, Waters CM, Svenningsen SL, et al. (2008) A small-RNA-mediated negative feedback loop controls quorum-sensing dynamics in Vibrio harveyiMol Microbiol 70: 896-907.
    [61] Tu KC, Long T, Svenningsen SL, et al. (2010) Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol Cell 37: 567-579. doi: 10.1016/j.molcel.2010.01.022
    [62] Kay E, Humair B, Dénervaud V, et al. (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosaJ Bacteriol 188: 6026. doi: 10.1128/JB.00409-06
    [63] Chen R, Wei X, Li Z, et al. (2019) Identification of a small RNA that directly controls the translation of the quorum sensing signal synthase gene rhlI in Pseudomonas aeruginosaEnviron Microbiol 21: 2933-2947. doi: 10.1111/1462-2920.14686
    [64] Malgaonkar A, Nair M (2019) Quorum sensing in Pseudomonas aeruginosa mediated by RhlR is regulated by a small RNA PhrD. Sci Rep 9: 1-11. doi: 10.1038/s41598-018-36488-9
    [65] Li J, Attila C, Wang L, et al. (2007) Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 189: 6011. doi: 10.1128/JB.00014-07
    [66] Arvanitoyannis IS, Stratakos AC (2012) Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: a review. Food Bioprocess Technol 5: 1423-1446. doi: 10.1007/s11947-012-0803-z
    [67] Lamas A, Miranda JM, Vázquez B, et al. (2016) Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Int J Food Microbiol 238: 63-67. doi: 10.1016/j.ijfoodmicro.2016.08.043
    [68] Almeida FA, Pimentel-Filho NJ, Pinto UM, et al. (2017) Acyl homoserine lactone-based quorum sensing stimulates biofilm formation by Salmonella Enteritidis in anaerobic conditions. Arch Microbiol 199: 475-486. doi: 10.1007/s00203-016-1313-6
    [69] Carneiro DG, Almeida FA, Aguilar AP, et al. (2020) Salmonella enterica optimizes metabolism after addition of acyl-homoserine lactone under anaerobic conditions. Front Microbiol 11. doi: 10.3389/fmicb.2020.01459
    [70] Donlan RM, Costerton JW (2002) Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167-193. doi: 10.1128/CMR.15.2.167-193.2002
    [71] Ćwiek K, Bugla-Płoskońska G, Wieliczko A (2019) Salmonella biofilm development: Structure and significance. Postepy Hig Med Dosw 73: 937-943. doi: 10.5604/01.3001.0013.7866
    [72] Trampari E, Holden ER, Wickham GJ, et al. (2021) Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. npj Biofilms Microbiomes 7. doi: 10.1038/s41522-020-00178-0
    [73] Steenackers H, Hermans K, Vanderleyden J, et al. (2012) Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 45: 502-531. doi: 10.1016/j.foodres.2011.01.038
    [74] Abraham W (2016) Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics 5: 3. doi: 10.3390/antibiotics5010003
    [75] Jamuna Bai A, Ravishankar Rai V (2016) Effect of small chain N acyl homoserine lactone quorum sensing signals on biofilms of food-borne pathogens. J Food Sci Technol 53: 3609-3614. doi: 10.1007/s13197-016-2346-1
    [76] Blana V, Georgomanou A, Giaouris E (2017) Assessing biofilm formation by Salmonella enterica serovar Typhimurium on abiotic substrata in the presence of quorum sensing signals produced by Hafnia alveiFood Control 80: 83-91. doi: 10.1016/j.foodcont.2017.04.037
    [77] Campos-Galvão MEM, Ribon AOB, Araújo EF, et al. (2016) Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. J Basic Microbiol 56: 493-501. doi: 10.1002/jobm.201500471
    [78] Dourou D, Ammor MS, Skandamis PN, et al. (2011) Growth of Salmonella enteritidis and Salmonella typhimurium in the presence of quorum sensing signalling compounds produced by spoilage and pathogenic bacteria. Food Microbiol 28: 1011-1018. doi: 10.1016/j.fm.2011.02.004
    [79] Yoon Y, Sofos JN (2010) Absence of association of autoinducer-2-based quorum sensing with heat and acid resistance of SalmonellaJ Food Sci 75: M444-M448. doi: 10.1111/j.1750-3841.2010.01744.x
    [80] Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18: 96-104. doi: 10.1016/j.mib.2014.02.008
    [81] Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10: 183-193. doi: 10.1111/j.1541-4337.2011.00150.x
    [82] Almasoud A, Hettiarachchy N, Rayaprolu S, et al. (2016) Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157:H7 and Salmonella Typhimurium. LWT-Food Sci Technol 66: 560-564. doi: 10.1016/j.lwt.2015.11.013
    [83] Amrutha B, Sundar K, Shetty PH (2017) Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb Pathog 111: 156-162. doi: 10.1016/j.micpath.2017.08.042
    [84] Luiz de Freitas L, Aparecida dos Santos CI, Carneiro DG, et al. (2020) Nisin and acid resistance in Salmonella is enhanced by N-dodecanoyl-homoserine lactone. Microb Pathog 147. doi: 10.1016/j.micpath.2020.104320
    [85] Amrutha B, Sundar K, Shetty PH (2017) Spice oil nanoemulsions: Potential natural inhibitors against pathogenic E. coli and Salmonella spp. from fresh fruits and vegetables. LWT-Food Sci Technol 79: 152-159. doi: 10.1016/j.lwt.2017.01.031
    [86] Hakimi Alni R, Ghorban K, Dadmanesh M (2020) Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech 10. doi: 10.1007/s13205-020-02286-2
    [87] Li G, Yan C, Xu YF, et al. (2014) Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential. Appl Environ Microbiol 80: 6204-6211. doi: 10.1128/AEM.01458-14
    [88] Ma Z, Zhang R, Hai D, et al. (2019) Antibiofilm activity and modes of action of a novel β-sheet peptide against multidrug-resistant Salmonella entericaFood Res Int 125.
    [89] Federle MJ (2009) Autoinducer-2-based chemical communication in bacteria: Complexities of interspecies signaling. Contrib Microbiol 16.
    [90] Jesudhasan PR, Cepeda ML, Widmer K, et al. (2010) Transcriptome analysis of genes controlled by luxS/Autoinducer-2 in Salmonella enterica serovar typhimurium. Foodborne Pathog Dis 7: 399-410. doi: 10.1089/fpd.2009.0372
    [91] Choi J, Shin D, Ryu S (2007) Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: The luxS gene is necessary for expression of genes in pathogenicity island 1. Infect Immun 75: 4885-4890. doi: 10.1128/IAI.01942-06
    [92] Nesse LL, Berg K, Vestby LK, et al. (2011) Salmonella Typhimurium invasion of HEp-2 epithelial cells in vitro is increased by N-acylhomoserine lactone quorum sensing signals. Acta Vet Scand 53. doi: 10.1186/1751-0147-53-44
    [93] Abed N, Grépinet O, Canepa S, et al. (2014) Direct regulation of the pefI-srgC operon encoding the Rck invasin by the quorum-sensing regulator SdiA in SalmonellaTyphimuriumMol Microbiol 94: 254-271. doi: 10.1111/mmi.12738
    [94] Widmer KW, Jesudhasan P, Pillai SD (2012) Fatty acid modulation of autoinducer (AI-2) influenced growth and macrophage invasion by Salmonella TyphimuriumFoodborne pathog Dis 9: 211-217. doi: 10.1089/fpd.2011.0949
    [95] Smith JN, Dyszel JL, Soares JA, et al. (2008) SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles. PLoS ONE 3.
    [96] Luiz de Freitas L, Pereira da Silva F, Fernandes KM, et al. (2021) The virulence of Salmonella Enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb Pathog 152. doi: 10.1016/j.micpath.2021.104730
    [97] Thompson JA, Oliveira R, Djukovic A, et al. (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10: 1861-1871. doi: 10.1016/j.celrep.2015.02.049
    [98] Ismail AS, Valastyan JS, Bassler BL (2016) A Host-Produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host and Microbe 19: 470-480. doi: 10.1016/j.chom.2016.02.020
    [99] Roy V, Fernandes R, Tsao C, et al. (2010) Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol 5: 223-232. doi: 10.1021/cb9002738
    [100] Hiller CC, Lucca V, Carvalho D, et al. (2019) Influence of catecholamines on biofilm formation by Salmonella EnteritidisMicrob Pathog 130: 54-58. doi: 10.1016/j.micpath.2019.02.032
    [101] Freestone PPE, Haigh RD, Lyte M (2007) Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocoliticaFEMS Microbiol Lett 269: 221-228. doi: 10.1111/j.1574-6968.2006.00619.x
    [102] Pullinger GD, Van Diemen PM, Carnell SC, et al. (2010) 6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs. Vet Res 41: 68. doi: 10.1051/vetres/2010040
    [103] Dichtl S, Demetz E, Haschka D, et al. (2019) Dopamine is a siderophore-like iron chelator that promotes Salmonella enterica serovar typhimurium virulence in mice. MBio 10. doi: 10.1128/mBio.02624-18
    [104] Lucca V, Borges KA, Furian TQ, et al. (2020) Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb Pathog 138: 103799. doi: 10.1016/j.micpath.2019.103799
    [105] Reiske L, Schmucker SS, Steuber J, et al. (2020) Interkingdom cross-talk in times of stress: Salmonella Typhimurium grown in the presence of catecholamines inhibits porcine immune functionality in vitroFrontiers in Immunology 11: 2444. doi: 10.3389/fimmu.2020.572056
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6400) PDF downloads(359) Cited by(30)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog