Complex interval-valued intuitionistic fuzzy sets not only consider uncertainty and periodicity semantics at the same time but also choose to express the information value with an interval value to give experts more freedom and make the solution to the problem more reasonable. In this study, we used the interval quaternion number space to generalize and extend the utility of complex interval-valued intuitionistic fuzzy sets, analyze their order relation, and offer new operations based on interval quaternion numbers. We proposed a new score function and correlation coefficient under interval quaternion representation. We applied the interval quaternion representation and correlation coefficient to a multi-criterion decision making model and applied the model to enterprise decision-making.
Citation: Yanhong Su, Zengtai Gong, Na Qin. Complex interval-value intuitionistic fuzzy sets: Quaternion number representation, correlation coefficient and applications[J]. AIMS Mathematics, 2024, 9(8): 19943-19966. doi: 10.3934/math.2024973
[1] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[2] | Minghung Lin, Yiyou Hou, Maryam A. Al-Towailb, Hassan Saberi-Nik . The global attractive sets and synchronization of a fractional-order complex dynamical system. AIMS Mathematics, 2023, 8(2): 3523-3541. doi: 10.3934/math.2023179 |
[3] | Rahat Zarin, Amir Khan, Aurangzeb, Ali Akgül, Esra Karatas Akgül, Usa Wannasingha Humphries . Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Mathematics, 2022, 7(9): 15939-15964. doi: 10.3934/math.2022872 |
[4] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268 |
[5] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[6] | Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148 |
[7] | Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312 |
[8] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[9] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[10] | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052 |
Complex interval-valued intuitionistic fuzzy sets not only consider uncertainty and periodicity semantics at the same time but also choose to express the information value with an interval value to give experts more freedom and make the solution to the problem more reasonable. In this study, we used the interval quaternion number space to generalize and extend the utility of complex interval-valued intuitionistic fuzzy sets, analyze their order relation, and offer new operations based on interval quaternion numbers. We proposed a new score function and correlation coefficient under interval quaternion representation. We applied the interval quaternion representation and correlation coefficient to a multi-criterion decision making model and applied the model to enterprise decision-making.
As we all know, the study of variable exponent function space inspired by nonlinear elasticity theory and nonstandard growth differential equations is one of the key contents of harmonic analysis in the past three decades, attracting extensive attention from many scholars. In [19], the theory of function spaces with variable exponent was progressed since some elementary properties were established by Kováčik and Rákosník, and they studied many basic properties of variable exponent Lebesgue spaces and Sobolev spaces on Rn. Later, the Lebesgue spaces with variable exponent Lp(⋅)(Rn) were extensively investigated; see [7,8,22]. In [14], Izuki first introduced the Herz spaces with variable exponent ˙Kα,qp(⋅)(Rn), which are generalizations of the Herz spaces ˙Kα,qp(Rn), and considered the boundedness of commutators of fractional integrals on Herz spaces with variable exponent. In [13], Izuki introduced the Herz-Morrey spaces with variable exponent M˙Kα,λq,p(⋅)(Rn), which are generalizations of the Herz-Morrey spaces M˙Kα,λq,p(Rn), and studied the boundedness of vector valued sublinear operators on Herz-Morrey spaces with variable exponent M˙Kα,λq,p(⋅)(Rn). On the other hand, in the study of boundary value problems for the Laplace equation on Lipschitz domains, the classical theory of Muckenhoupt weights is a powerful tool in harmonic analysis; see [21]. Generalized Muckenhoupt weights with variable exponent have been intensively studied; see [4,5].
In [11], Hardy defined the classical Hardy operators as:
P(f)(x):=1x∫x0f(t)dt,x>0. | (1.1) |
In [6], Christ and Grafakos defined the n−dimensional Hardy operators as:
H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, | (1.2) |
and established the boundedness of P(f)(x) in Lp(Rn), getting the best constants.
In [9], under the condition of 0≤β<n and |x|=√∑ni=1x2i, Fu et al. defined the n−dimensional fractional Hardy operators and its adjoint operators as:
Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let L1loc(Rn) be the collection of all locally integrable functions on Rn. Given a function b∈L1loc(Rn) and m∈N, Wang et al. [23] defined the mth order commutators of n−dimensional fractional Hardy operators and adjoint operators as:
Hmβ,bf(x):=1|x|n−β∫|t|<|x|(b(x)−b(t))mf(t)dt | (1.4) |
and
H∗mβ,bf(x):=∫|t|≥|x|(b(x)−b(t))mf(t)|t|n−βdt,x∈Rn∖{0}. | (1.5) |
Obviously, when m=0, H0β,b=Hβ, H∗0β,b=H∗β, and when m=1, H1β,b=Hβ,b, H∗1β,b=H∗β,b. More important results with regard to these commutators, see [20,26,27].
Due to the need of future calculation in this paper, let 0<β<n, and the fractional integral operator Iβ is defined as:
Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. | (1.6) |
Let 0≤β<n and f∈L1loc(Rn), and the fractional maximal operator Mβ is defined as:
Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn, | (1.7) |
where the supremum is taken over all balls B⊂Rn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.
Let f∈L1loc(Rn) and BMO(Rn) consist of all f∈L1loc(Rn) with BMO(Rn)<∞. b is a bounded mean oscillation function if ‖b‖BMO<∞, and the ‖b‖BMO is defined as follow:
‖b‖BMO:=supB∫B|b(x)−bB|dx, | (1.8) |
where the supremum is taken all over the balls B∈Rn and bB:=|B|−1∫Bb(y)dy. For a comprehensive review of the bounded mean oscillation (BMO) space, please see the book [10].
Recently, Muhammad Asim et al. established the estimates of fractional Hardy operators on weighted variable exponent Morrey-Herz spaces in [1]. Amjad Hussain et al. established the boundedness of the commutators of the Fractional Hardy operators on weighted variable Herz-Morrey spaces in [12]. Motivated by the mentioned work, in this paper, we will give the boundedness of the mth order commutators of n−dimensional fractional Hardy operators Hmβ,b and its adjoint operators H∗mβ,b on weighted variable exponent Morrey-Herz space M˙Kα,λq,p(⋅)(ω).
The paper is organized as follows. In Section 2, we provide some preliminary knowledge. The main results and their proofs are given in Section 3. In Section 4, we provide the conclusion of this paper. Throughout this paper, we use the following symbols and notations:
(1) For a constant R>0 and a point x∈Rn, we write B(x,R):={y∈Rn:|x−y|<R}.
(2) For any measurable set E⊂Rn, |E| denotes the Lebesgue measure, and χE means the characteristic function.
(3) Given k∈Z, we write Bk:=¯B(0,2k)={x∈Rn:|x|≤2k}.
(4) We define a family {Ak}∞k=−∞ by Ak:=Bk∖Bk−1={x∈Rn:2k−1<|x|≤2k}. Moreover χk denotes the characteristic function of Ak, namely, χk:=χAk.
(5) For any index 1<p(x)<∞, p′(x) denotes its conjugate index, namely, 1p(x)+1p′(x)=1.
(6) If there exists a positive constant C independent of the main parameters such that A≤CB, then we write A≲B. Additionally, A≈B means that both A≲B and B≲A hold.
Definition2.1. ([7]) Let p(⋅):Rn→[1,∞) be a measurable function.
(ⅰ) The Lebesgue space with variable exponent Lp(⋅)(Rn) is defined by
Lp(⋅)(Rn):={fismeasurablefunction:∫Rn(|f(x)|λ)p(x)dx<∞forsomeconstantλ>0}. |
(ⅱ) The spaces with variable exponent Lp(⋅)loc(Rn) are defined by
Lp(⋅)loc(Rn):={fismeasurablefunction:f∈Lp(⋅)(K)forallcompactsubsetsK⊂Rn}. |
The Lebesgue space Lp(⋅)(Rn) is a Banach space with the norm defined by
‖f‖Lp(⋅)(Rn):=inf{λ>0:∫Rn(|f(x)|λ)p(x)dx≤1}. |
Definition2.2. ([7]) (ⅰ) The set P(Rn) consists of all measurable functions p(⋅):Rn→[1,∞) satisfying
1<p−≤p(x)≤p+<∞, |
where
p−:=essinf{p(x):x∈Rn}>1,p+:=esssup{p(x):x∈Rn}<∞. |
(ⅱ) The set B(Rn) consists of all measurable function p(⋅)∈P(Rn) satisfying that the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition2.3. ([7]) Suppose that p(⋅) is a real-valued function on Rn. We say that
(ⅰ) Clogloc(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying
|p(x)−p(y)|≤−Clog(|x−y|),|x−y|≤12,x,y∈Rn. | (2.1) |
(ⅱ) Clog0(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying at origin
|p(x)−p0|≤Clog(e+1|x|),x∈Rn. | (2.2) |
(ⅲ) Clog∞(Rn) is the set of all local log-Hölder continuous functions satisfying at infinity
|p(x)−p∞|≤C∞log(e+|x|),x∈Rn. | (2.3) |
(ⅳ) Clog(Rn)=Clog∞(Rn)∩Clogloc(Rn) denotes the set of all global log-Hölder continuous functions p(⋅).
It was proved in [7] that if p(⋅)∈P(Rn)∩Clog(Rn), then the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition2.4. ([21]) Given a non-negative, measure function ω, for 1<p<∞, ω∈Ap if
[ω]Ap:=supB(1|B|∫Bω(x)dx)(1|B|∫Bω(x)1−p′dx)p−1<∞, |
where the supremum is taken over all balls B⊂Rn. Especially, we say ω∈A1 if
[ω]A1:=supB1|B|∫Bω(x)dxessinf{ω(x):x∈B}<∞. |
These weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, ω∈Ap, 1<p<∞, if and only if M:Lp(ω)→Lp(ω).
Definition2.5. ([15]) Suppose that p(⋅)∈P(Rn). A weight ω is in the class Ap(⋅) if
supB:ball|B|−1‖ω1p(⋅)χB‖Lp(⋅)‖ω−1p(⋅)χB‖Lp′(⋅)<∞. | (2.4) |
Obviously, if p(⋅)=p,1<p<∞, then the above definition reduces to the classical Muckenhoupt Ap class.
From [15], if p(⋅),q(⋅)∈P(Rn), and p(⋅)≤q(⋅), then A1⊂Ap(⋅)⊂Aq(⋅).
Definition2.6. ([15]) Let 0<β<n and p1(⋅),p2(⋅)∈P(Rn) such that 1p2(x)=1p1(x)−βn. A weight ω is said to be an A(p1(⋅),p2(⋅)) weight if
‖χB‖Lp2(⋅)(ωp2(⋅))‖χB‖(Lp1(⋅)(ωp1(⋅))′≤C|B|1−βn. | (2.5) |
Definition2.7. ([25]) Let p(⋅)∈P(Rn) and ω∈Ap(⋅). The weighted variable exponent Lebesgue space Lp(⋅)(ω) denotes the set of all complex-valued measurable functions f satisfying
Lp(⋅)(ω):={f:fω1p(⋅)∈Lp(⋅)(Rn)}. |
This is a Banach space equipped with the norm
‖f‖Lp(⋅)(ω):=‖fω1p(⋅)‖Lp(⋅)(Rn). |
Definition2.8. ([1]) Let ω be a weight on Rn, 0≤λ<∞, 0<q<∞, p(⋅)∈P(Rn), and α(⋅):Rn→R with α(⋅)∈L∞(Rn). The weighted variable exponent Morrey-Herz space M˙Kα(⋅),λq,p(⋅)(ω) is the set of all measurable functions f given by
M˙Kα(⋅),λq,p(⋅)(ω):={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα(⋅),λq,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα(⋅),λq,p(⋅)(ω):=supk0∈Z2−k0λ{k0∑k=−∞2kα(⋅)q‖fχk‖qLp(⋅)(ω)}1q. |
It is noted that M˙Kα(⋅),0q,p(⋅)(ω)=˙Kα(⋅)q,p(⋅)(ω) is the variable exponent weighted Herz space defined in [2].
Definition2.9. ([15]) Let M be the set of all complex-valued measurable functions defined on Rn and X be a linear subspace of M.
(1) The space X is said to be a Banach function space if there exists a function ‖⋅‖X:M→[0,∞] satisfying the following properties: Let f,g,fj∈M(j=1,2,…). Then
(a) f∈X holds if and only if ‖f‖X<∞.
(b) Norm property:
ⅰ. Positivity: ‖f‖X≥0.
ⅱ. Strict positivity: ‖f‖X=0 holds if and only if f(x)=0 for almost every x∈Rn.
ⅲ. Homogeneity: ‖λf‖X=|λ|⋅‖f‖X holds for all λ∈C.
ⅳ. Triangle inequality: ‖f+g‖X≤‖f‖X+‖g‖X.
(c) Symmetry: ‖f‖X=‖|f|‖X.
(d) Lattice property: If 0≤g(x)≤f(x) for almost every x∈Rn, then ‖g‖X≤‖f‖X.
(e) Fatou property: If 0≤fj(x)≤fj+1(x) for all j, and fj(x)→f(x) as j→∞ for almost every x∈Rn, then limj→∞‖fj‖X=‖f‖X.
(f) For every measurable set F⊂Rn such that |F|<∞, ‖χF‖X is finite. Additionally, there exists a constant CF>0 depending only on F so that ∫F|h(x)|dx≤CF‖h‖X holds for all h∈X.
(2) Suppose that X is a Banach function space equipped with a norm ‖⋅‖X. The associated space X′ is defined by
X′:={f∈M:‖f‖X′<∞}, |
where
‖f‖X′:=supg{|∫Rnf(x)g(x)dx|:‖g‖X≤1}. |
Lemma2.1. ([3]) Let X be a Banach function space, and then we have the following:
(ⅰ) The associated space X′ is also a Banach function space.
(ⅱ) ‖⋅‖(X′)′ and ‖⋅‖X are equivalent.
(ⅲ) If g∈X and f∈X′, then
∫Rn|f(x)g(x)|dx≤‖f‖X‖g‖X′ | (2.6) |
is the generalized Hölder inequality.
Lemma2.2. ([15]) If X is a Banach function space, then we have, for all balls B,
1≤|B|−1‖χB‖X‖χB‖X′. | (2.7) |
Lemma2.3. ([16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X, that is,
‖χ{Mf>λ}‖X≲λ−1‖f‖X |
is true for all f∈X and all λ>0. Then, we have
supB:ball1|B|‖χB‖X‖χB‖X′<∞. | (2.8) |
Lemma2.4. ([15]) Given a function W such that 0<W(x)<∞ for almost every x∈Rn, W∈Xloc(Rn) and W−1∈(X′)loc(Rn),
(ⅰ) X(Rn,W) is Banach function space equipped with the norm
‖f‖X(Rn,W):=‖fW‖X, | (2.9) |
where
X(Rn,W):={f∈M:fW∈X}. | (2.10) |
(ⅱ) The associated space X′(Rn,W−1) of X(Rn,W) is also a Banach function space.
Lemma2.5. ([15]) Let X be a Banach function space and M be bounded on X′. Then, there exists a constant δ∈(0,1) for all B⊂Rn and E⊂B,
‖χE‖X‖χB‖X≤(|E||B|)δ. | (2.11) |
The paper [19] shows that Lp(⋅)(Rn) is a Banach function space and the associated space Lp′(⋅)(Rn) with equivalent norm.
Remark2.6. ([1]) Let p(⋅)∈P(Rn), and by comparing the Lp(⋅)(ωp(⋅)) and Lp′(⋅)(ω−p′(⋅)) with the definition of X(Rn,W), we have the following:
(1) If we take W=ω and X=Lp(⋅)(Rn), then we get Lp(⋅)(Rn,ω)=Lp(⋅)(ωp(⋅)).
(2) If we consider W=ω−1 and X=Lp′(⋅)(Rn), then we get Lp′(⋅)(Rn,ω−1)=Lp′(⋅)(ω−p′(⋅)).
By virtue of Lemma 2.4, we get
(Lp(⋅)(Rn,ω))′=(Lp(⋅)(ωp(⋅)))′=Lp′(⋅)(ω−p′(⋅))=Lp′(⋅)(Rn,ω−1). |
Lemma2.7. ([17]) Let p(⋅)∈P(Rn)∩Clog(Rn) be a log-Hölder continuous function both at infinity and at origin, if ωp2(⋅)∈Ap2(⋅) implies ω−p′2(⋅)∈Ap′2(⋅). Thus, the Hardy-Littlewood operator is bounded on Lp′2(⋅)(ω−p′2(⋅)), and there exist constants δ1,δ2∈(0,1) such that
‖χE‖Lp2(⋅)(ωp2(⋅))‖χB‖Lp2(⋅)(ωp2(⋅))=‖χE‖(Lp′2(⋅)(ω−p′2(⋅)))′‖χB‖(Lp′2(⋅)(ω−p′2(⋅)))′≤C(|E||B|)δ1, | (2.12) |
and
‖χE‖(Lp2(⋅)(ωp2(⋅)))′‖χB‖(Lp2(⋅)(ωp2(⋅)))′≤C(|E||B|)δ2, | (2.13) |
for all balls B⊂Rn and all measurable sets E⊂B.
Lemma2.8. ([15]) Let p1(⋅)∈P(Rn)∩Clog(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(x)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then Iβ is bounded from Lp1(⋅)(ωp1(⋅)) to Lp2(⋅)(ωp2(⋅)).
Lemma2.9. ([24, Corollary 3.11]) Let b∈BMO(Rn),m∈N, and k,j∈Z with k>j. Then, we have
C−1‖b‖mBMO(Rn)≤supB1‖χB‖Lp(⋅)(ω)‖(b−bB)mχB‖Lp(⋅)(ω)≤C‖b‖mBMO(Rn). | (2.14) |
‖(b−bBj)mχBk‖Lp(⋅)(ω)≤C(k−j)m‖b‖mBMO(Rn)‖χBk‖Lp(⋅)(ω). | (2.15) |
Proposition3.1. ([12] Let q(⋅)∈P(Rn), 0<p<∞, and 0≤λ<∞. If α(⋅)∈L∞(Rn)∩Clog(Rn), then
‖f‖pM˙Kα(⋅),λp,q(⋅)(ωq(⋅))=supk0∈Z2−k0λpk0∑j=−∞2jα(⋅)p‖fχj‖pLq(⋅)(ωq(⋅))≤max{supk0∈Zk0<02−k0λp(k0∑j=−∞2jα(0)p‖fχj‖pLq(⋅)(ωq(⋅))),supk0∈Zk0≥0(2−k0λp(−1∑j=−∞2jα(0)p‖fχj‖pLq(⋅)(ωq(⋅)))+2−k0λp(k0∑j=02jα(∞)p‖fχj‖pLq(⋅)(ωq(⋅))))}. |
Theorem3.1. Let 0<q1≤q2<∞, p2(⋅)∈P(Rn)∩Clog(Rn) and p1(⋅) be such that 1p2(⋅)=1p1(⋅)−βn. Also, let ωp2(⋅)∈A1, b∈BMO(Rn), λ>0 and α(⋅)∈L∞(Rn)∩Clog(Rn) be log-Hölder continuous at the origin, with α(0)≤α(∞)<λ+nδ2−β, where δ2∈(0,1) is the constant appearing in (2.13). Then,
‖Hmβ,bf‖M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))≲‖b‖mBMO‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). | (3.1) |
Proof. For arbitrary f∈M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)), let fj=f⋅χj=f⋅χAj for every j∈Z, and then
f(x)=∞∑j=−∞f(x)⋅χj(x)=∞∑j=−∞fj(x). | (3.2) |
By the inequality of Cp, it is not difficult to see that
|Hmβ,bf(x)χk(x)|≤1|x|n−β∫|t|<|x||b(x)−b(t)|m|f(t)|dt⋅χk(x)≤1|x|n−β∫B(0,|x|)|b(x)−b(t)|m|f(t)|dt⋅χk(x)≤1|x|n−β∫Bk|b(x)−b(t)|m|f(t)|dt⋅χk(x)≤2−k(n−β)k∑j=−∞∫Aj|b(x)−b(t)|m|f(t)|dt⋅χk(x)≲2−k(n−β)k∑j=−∞∫Aj|b(x)−bAj|m|f(t)|dt⋅χk(x)+2−k(n−β)k∑j=−∞∫Aj|b(t)−bAj|m|f(t)|dt⋅χk(x)=E1+E2. | (3.3) |
For E1, by the generalized Hölder inequality, we have
E1=2−k(n−β)k∑j=−∞∫Aj|b(x)−bAj|m|f(t)|dt⋅χk(x)≤2−k(n−β)k∑j=−∞|b(x)−bAj|m⋅χk(x)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.4) |
By taking the (Lp2(⋅)(ωp2(⋅)))-norm on both sides of (3.4) and using (2.15) of Lemma 2.9, we get
‖E1‖(Lp2(⋅)(ωp2(⋅)))≤2−k(n−β)k∑j=−∞‖|b(x)−bAj|m⋅χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2−k(n−β)k∑j=−∞(k−j)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.5) |
For E2, by the generalized Hölder inequality, we have
E2=2−k(n−β)k∑j=−∞∫Aj|b(t)−bAj|m|f(t)|dt⋅χk(x)≤2−k(n−β)k∑j=−∞‖|b(t)−bAj|m⋅χj(x)‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))⋅χk(x). | (3.6) |
By taking the (Lp2(⋅)(ωp2(⋅)))-norm on both sides of (3.6) and using (2.14) of Lemma 2.9, we get
‖E2‖(Lp2(⋅)(ωp2(⋅)))≤2−k(n−β)k∑j=−∞‖|b(x)−bAj|m⋅χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅)))≲2−k(n−β)k∑j=−∞‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅))). | (3.7) |
Hence, from inequalities (3.3), (3.5) and (3.7), we get
‖Hmβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲2−k(n−β)‖fj‖Lp1(⋅)(ωp1(⋅)){k∑j=−∞(k−j)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+k∑j=−∞‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))}≲2−k(n−β)‖b‖mBMOk∑j=−∞(k−j)m‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅))). | (3.8) |
By virtue of Lemma 2.5, we have
‖χBk‖X‖χk‖X≤(|Bk||Ak|)δ=C⟹‖χBk‖X≤C‖χk‖X. | (3.9) |
Note that ‖χj‖Lp2(⋅)(ωp2(⋅))≤‖χBj‖Lp2(⋅)(ωp2(⋅)) and χBj(x)≲2−jβIβ(χBj) (see [18, p. 350]). By applying (2.8), (3.9) and Lemma 2.8, we obtain
‖χj‖Lp2(⋅)(ωp2(⋅))≤‖χBj‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖Iβ(χBj)‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖χBj‖Lp1(⋅)(ωp1(⋅))≲2−jβ‖χj‖Lp1(⋅)(ωp1(⋅))≲2j(n−β)‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′. | (3.10) |
By virtue of (2.7) and (2.8), combining (2.13) and (3.10), we have
2k(β−n)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′2−kn‖χk‖Lp2(⋅)(ωp2(⋅))≲2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′‖χj‖(Lp2(⋅)(ωp2(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)2j(n−β)‖χj‖−1Lp2(⋅)(ωp2(⋅))‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ2nδ2(j−k)2−jβ(2−jn‖χj‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp2(⋅)(ωp2(⋅)))′)−1≲2(β−nδ2)(k−j). | (3.11) |
Hence by virtue of (3.8) and (3.11), we have
‖Hmβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲‖b‖mBMOk∑j=−∞(k−j)m2(β−nδ2)(k−j)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.12) |
In order to estimate ‖fj‖Lp1(⋅)(ωp1(⋅)), we consider two cases as below.
Case 1: For j<0, we get
‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(0)(2jα(0)q1‖fj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(0)(j∑i=−∞2iα(0)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α(0)){2−jλ(j∑i=−∞2iα(⋅)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α(0))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). | (3.13) |
Case 2: For j≥0, we get
‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(∞)(2jα(∞)q1‖fj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(∞)(j∑i=−∞2iα(∞)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α(∞)){2−jλ(j∑i=−∞2iα(⋅)q1‖fi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α(∞))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). | (3.14) |
Now, by virtue of the condition q1≤q2 and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
‖Hmβ,bf‖q1M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))=supk0∈Z2−k0λq1k0∑k=−∞2kα(⋅)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))≤max{supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),supk0∈Zk0≥02−k0λq1(−1∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))+k0∑k=02kα(∞)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)))}=max{J1,J2+J3}, | (3.15) |
where
J1=supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),J2=supk0∈Zk0≥02−k0λq1−1∑k=−∞2kα(0)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),J3=supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1‖Hmβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)). |
First, we estimate J1. Since α(0)≤α(∞)<nδ2+λ−β, combining (3.12) and (3.13), we get
J1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)2j(λ−α(0))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(k∑j=−∞(k−j)m2(β−nδ2)(k−j)2j(λ−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kλq1(k∑j=−∞(k−j)m2(j−k)(nδ2+λ−β−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). |
The estimate of J2 is similar to that of J1.
Lastly, we estimate J3. Since α(0)≤α(∞)<nδ2+λ−β, combining (3.12) and (3.14), we get
J3≲supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(k∑j=−∞(k−j)m‖b‖mBMO2(β−nδ2)(k−j)2j(λ−α(∞))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1(k∑j=−∞(k−j)m2(β−nδ2)(k−j)2j(λ−α(∞)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0≥02−k0λq1k0∑k=02kλq1(k∑j=−∞(k−j)m2(j−k)(nδ2+λ−β−α(∞)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). |
The desired result is obtained by combining the estimates of J1, J2 and J3.
Theorem3.2. Let 0<q1≤q2<∞, p2(⋅)∈P(Rn)∩Clog(Rn) and p1(⋅) be such that 1p2(⋅)=1p1(⋅)−βn. Also, let ωp2(⋅)∈A1, b∈BMO(Rn), λ>0 and α(⋅)∈L∞(Rn)∩Clog(Rn) be log-Hölder continuous at the origin, with λ−nδ1<α(0)≤α(∞), where δ1∈(0,1) is the constant appearing in (2.12). Then,
‖H∗mβ,bf‖M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))≲‖b‖mBMO‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). | (3.16) |
Proof. From an application of the inequality of Cp, it is not difficult to see that
|H∗mβ,bf(x)χk(x)|≤∫Rn∖Bk|t|β−n|b(x)−b(t)|m|f(t)|dt⋅χk(x)≤∞∑j=k+1∫Aj|t|β−n|b(x)−b(t)|m|f(t)|dt⋅χk(x)≲∞∑j=k+1∫Aj|t|β−n|b(x)−bAj|m|f(t)|dt⋅χk(x)+∞∑j=k+1∫Aj|t|β−n|b(t)−bAj|m|f(t)|dt⋅χk(x)=F1+F2. | (3.17) |
For F1, by the generalized Hölder inequality, we have
F1≤∞∑j=k+12−j(n−β)∫Aj|b(x)−bAj|m|f(t)|dt⋅χk(x)≤∞∑j=k+12−j(n−β)|b(x)−bAj|m⋅χk(x)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.18) |
By taking the (Lp2(⋅)(ωp2(⋅)))-norm on both sides of (3.18) and using (2.15) of Lemma 2.9, we get
‖F1‖(Lp2(⋅)(ωp2(⋅)))≤∞∑j=k+12−j(n−β)‖|b(x)−bAj|m⋅χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲∞∑j=k+12−j(n−β)(j−k)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.19) |
For F2, by the generalized Hölder inequality, we have
F2≤∞∑j=k+12−j(n−β)∫Aj|b(t)−bAj|m|f(t)|dt⋅χk(x)≤∞∑j=k+12−j(n−β)‖|b(t)−bAj|m⋅χj(x)‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))⋅χk(x). | (3.20) |
By taking the (Lp2(⋅)(ωp2(⋅)))-norm on both sides of (3.20) and using (2.15) of Lemma 2.9, we get
‖F2‖(Lp2(⋅)(ωp2(⋅)))≤∞∑j=k+12−j(n−β)‖|b(t)−bAj|m⋅χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅)))≲∞∑j=k+12−j(n−β)‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖(Lp2(⋅)(ωp2(⋅))). | (3.21) |
Hence, from inequalities (3.17), (3.19) and (3.21), we get
‖H∗mβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲‖fj‖Lp1(⋅)(ωp1(⋅)){∞∑j=k+12−j(n−β)(j−k)m‖b‖mBMO‖χk‖(Lp2(⋅)(ωp2(⋅)))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+∞∑j=k+12−j(n−β)‖b‖mBMO‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))}≲‖b‖mBMO∞∑j=k+12−j(n−β)(j−k)m‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅))). | (3.22) |
On the other hand, by (2.7) and (2.8), combining (2.12) and (3.10), we have
2−j(n−β)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′=2jβ‖χk‖Lp2(⋅)(ωp2(⋅))2−jn‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2jβ‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖−1Lp1(⋅)(ωp1(⋅))=2jβ‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)2j(n−β)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′=2jβ2nδ1(k−j)2−jβ(2−jn‖χj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′)−1≲2nδ1(k−j). | (3.23) |
Hence combining (3.22) and (3.23), we obtain
‖H∗mβ,bf(x)χk‖(Lp2(⋅)(ωp2(⋅)))≲‖b‖mBMO∞∑j=k+1(j−k)m2nδ1(k−j)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.24) |
Next, by virtue of the condition q1≤q2 and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
‖H∗mβ,bf‖q1M˙Kα(⋅),λq2,p2(⋅)(ωp2(⋅))=supk0∈Z2−k0λq1k0∑k=−∞2kα(⋅)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))≤max{supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),supk0∈Zk0≥02−k0λq1(−1∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅))+k0∑k=02kα(∞)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)))}=max{Y1,Y2+Y3}, | (3.25) |
where
Y1=supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),Y2=supk0∈Zk0≥02−k0λq1−1∑k=−∞2kα(0)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)),Y3=supk0∈Zk0≥02−k0λq1k0∑k=02kα(∞)q1‖H∗mβ,bfχk‖q1Lp2(⋅)(ωp2(⋅)). |
First, we estimate Y1. Since λ−nδ1<α(0)≤α(∞), combining (3.24) and (3.13), we get
Y1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(∞∑j=k+1(j−k)m‖b‖mBMO2nδ1(k−j)‖f‖Lp1(⋅)(ωp1(⋅)))q1≲supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(∞∑j=k+1(j−k)m‖b‖mBMO2nδ1(k−j)2j(λ−α(0))‖f‖M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kα(0)q1(∞∑j=k+1(j−k)m2nδ1(k−j)2j(λ−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅))supk0∈Zk0<02−k0λq1k0∑k=−∞2kλq1(∞∑j=k+1(j−k)m2(j−k)(λ−nδ1−α(0)))q1≲‖b‖mq1BMO‖f‖q1M˙Kα(⋅),λq1,p1(⋅)(ωp1(⋅)). |
The estimate of Y_{2} is similar to that of Y_{1} .
Lastly, we estimate Y_{3} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.14), we get
\begin{align*} Y_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The desired result is obtained by combining the estimates of Y_{1} , Y_{2} and Y_{3} .
This paper considers the boundedness for m th order commutators of n- dimensional fractional Hardy operators \mathcal{H}^{m}_{_{\beta, b}} and adjoint operators \mathcal{H}_{\beta, b}^{\ast m} on weighted variable exponent Morrey-Herz spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) . When m = 0 , our main result holds on weighted variable exponent Morrey-Herz space for fractional Hardy operators and generalizes the result of Asim et al. in [1, Theorems 4.2 and 4.3]. When m = 1 , our main result holds on weighted variable exponent Morrey-Herz space for commutators of the fractional Hardy operators and generalizes the result of Hussain et al. in [12, Theorems 18 and 19].
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This paper is supported by the National Natural Science Foundation of China (Grant No. 12161071), Qinghai Minzu University campus level project (Nos. 23GH29, 23GCC10).
All authors declare that they have no conflicts of interest.
[1] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[3] |
S. P. Wan, J. Y. Dong, S. M. Chen, A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations, Inform. Sci., 666 (2024), 120404. https://doi.org/10.1016/j.ins.2024.120404 doi: 10.1016/j.ins.2024.120404
![]() |
[4] |
K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 64 (1994), 159–174. https://doi.org/10.1016/0165-0114(94)90331-X doi: 10.1016/0165-0114(94)90331-X
![]() |
[5] |
K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
![]() |
[6] |
J. Y. Dong, X. Y. Lu, H. C. Li, S. P. Wan, S. Q. Yang, Consistency and consensus enhancing in group decision making with interval-valued intuitionistic multiplicative preference relations based on bounded confidence, Inform. Sci., 652 (2024), 119727. https://doi.org/10.1016/j.ins.2023.119727 doi: 10.1016/j.ins.2023.119727
![]() |
[7] |
J. Y. Dong, S. P. Wan, Type-2 interval-valued intuitionstic fuzzy matrix game and application to energy vehicle industry development, Expert Syst. Appl., 249 (2024), 123398. https://doi.org/10.1016/j.eswa.2024.123398 doi: 10.1016/j.eswa.2024.123398
![]() |
[8] |
J. Y. Dong, S. P. Wan, Interval-valued intuitionistic fuzzy best-worst method with additive consistency, Expert Syst. Appl., 236 (2024), 121213. https://doi.org/10.1016/j.eswa.2023.121213 doi: 10.1016/j.eswa.2023.121213
![]() |
[9] |
S. M. Chen, S. H. Cheng, W. H. Tsai, Multiple attribute group decision making based on interval-valued intuitionistic fuzzy aggregation operators and transformation techniques of interval-valued intuitionistic fuzzy values, Inform. Sci., 1 (2016), 367–368. https://doi.org/10.1016/j.ins.2016.05.041 doi: 10.1016/j.ins.2016.05.041
![]() |
[10] |
H. Garg, Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making, Comput. Indust. Eng., 101 (2016), 53–69. https://doi.org/10.1016/j.cie.2016.08.017 doi: 10.1016/j.cie.2016.08.017
![]() |
[11] |
H. Garg, Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application, Eng. Appl. Artif. Intel., 60 (2017), 164–174. https://doi.org/10.1016/j.engappai.2017.02.008 doi: 10.1016/j.engappai.2017.02.008
![]() |
[12] |
H. Garg, Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process, J. Ind. Manag. Optim., 14 (2018), 283–308. https://doi.org/10.3934/jimo.2017047 doi: 10.3934/jimo.2017047
![]() |
[13] |
P. Liu, Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making, IEEE T. Fuzzy Syst., 22 (2014), 83–97. https://doi.org/10.1109/TFUZZ.2013.2248736 doi: 10.1109/TFUZZ.2013.2248736
![]() |
[14] |
K. Ullah, H. Garg, Z. Gul, T. Mahmood, Q. Khan, Z. Ali, Interval valued T-spherical fuzzy information aggregation based on Dombi t-Norm and Dombi t-Conorm for multi-attribute decision making problems, Symmetry, 13 (2021), 1053. https://doi.org/10.3390/sym13061053 doi: 10.3390/sym13061053
![]() |
[15] |
H. Garg, K. Kumar, A novel possibility measure to interval-valued intuitionistic fuzzy set using connection number of set pair analysis and its applications, Neural Comput. Appl., 32 (2020), 3337–3348. https://doi.org/10.1007/s00521-019-04291-w doi: 10.1007/s00521-019-04291-w
![]() |
[16] | A. Tiwari, Q. D. Lohani, P. K. Muhuri, Interval-valued intuitionistic fuzzy TOPSIS method for supplier selection problem, In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, 1–8. https://doi.org/10.1109/FUZZ48607.2020.9177852 |
[17] |
F. Wang, S. Wan, Possibility degree and divergence degree based method for intervalvalued intuitionistic fuzzy multi-attribute group decision making, Expert Syst. Appl., 141 (2020), 112929. https://doi.org/10.1016/j.eswa.2019.112929 doi: 10.1016/j.eswa.2019.112929
![]() |
[18] |
Z. S. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, Fuzzy Optim. Decis. Ma., 6 (2007), 109–121. https://doi.org/ 10.1007/s10700-007-9004-z doi: 10.1007/s10700-007-9004-z
![]() |
[19] | J. Bharatraj, Interval valued intuitionistic fuzzy Gaussian membership function: A novel extension, In: International Conference on Intelligent and Fuzzy Systems, 2021,372–380. https://doi.org/10.1007/978-3-030-51156-2-44 |
[20] |
A. R. Mishra, P. Rani, A. Mardani, K. R. Pardasani, K. Govindan, M. Alrasheedi, Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method, Comput. Indust. Eng., 139 (2020), 106140. https://doi.org/10.1016/j.cie.2019.106140 doi: 10.1016/j.cie.2019.106140
![]() |
[21] |
Y. Wang, Y. Shi, Measuring the service quality of urban rail transit based on intervalvalued intuitionistic fuzzy model, KSCE J. Civ. Eng., 24 (2020), 647–656. https://doi.org/10.1007/s12205-020-0937-x doi: 10.1007/s12205-020-0937-x
![]() |
[22] |
D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
![]() |
[23] |
Z. T. Gong, F. D. Wang, Complex fuzzy sets:(r, \theta)-cut sets, decomposition theorems, extension principles and their applications, J. Intel. Fuzzy Syst., 44 (2023), 8147–8162. https://doi.org/10.3233/JIFS-221639 doi: 10.3233/JIFS-221639
![]() |
[24] |
A. M. D. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
![]() |
[25] |
A. U. M. Alkouri, A. R. Salleh, Some operations on complex Atanassov's intuitionistic fuzzy sets, AIP Conf. Proc., 1571 (2013), 987–993. https://doi.org/10.1063/1.4858782 doi: 10.1063/1.4858782
![]() |
[26] |
Z. T. Gong, F. D. Wang, Operation properties and (\alpha, \beta)-equalities of complex intuitionistic fuzzy sets, Soft Comput., 27 (2023), 4369–4391. https://doi.org/10.1007/s00500-023-07854-1 doi: 10.1007/s00500-023-07854-1
![]() |
[27] |
H. Garg, D. Rani, Complex interval-valued intuitionistic fuzzy sets and their aggregation operators, Fund. Inform., 164 (2019), 61–101. https://doi.org/10.3233/FI-2019-1755 doi: 10.3233/FI-2019-1755
![]() |
[28] | D. E. Tamir, M. Ali, N. D. Rishe, A. Kandel, Complex number representation of intuitionistic fuzzy sets, In: World Conference on Soft Computing, USA, Berkeley, 2016,108–113. |
[29] |
R. T. Ngan, M. Ali, D. E. Tamir, N. D. Rishe, A. Kandel, Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making, Appl. Soft Comput., 87 (2020), 105961. https://doi.org/10.1016/j.asoc.2019.105961 doi: 10.1016/j.asoc.2019.105961
![]() |
[30] |
L. Pan, Y. Deng, K. H. Cheong, Quaternion model of Pythagorean fuzzy sets and its distance measure, Expert Syst. Appl., 213 (2023), 119222. https://doi.org/10.1016/j.eswa.2022.119222 doi: 10.1016/j.eswa.2022.119222
![]() |
[31] | R. P. Moura, F. B. Bergamaschi, R. H. Santiago, B. R. Bedregal, Fuzzy quaternion numbers, In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2013, 1–6. https://doi.org/10.1109/FUZZ-IEEE.2013.6622400 |
[32] |
D. Zindani, S. R. Maity, S. Bhowmik, Complex interval-valued intuitionistic fuzzy TODIM approach and its application to group decision making, J. Amb. Intel. Hum. Comput., 12 (2021), 2079–2102. https://doi.org/10.1007/s12652-020-02308-0 doi: 10.1007/s12652-020-02308-0
![]() |
[33] |
M. S. A. Khan, S. U. Jan, R. Jan, T. Senapati, S. Moslem, Complex interval-valued intuitionistic fuzzy decision support system with application to COVID-19 healthcare facilities, Complex Intell. Syst., 9 (2023), 7103–7132. https://doi.org/10.1007/s40747-023-01090-8 doi: 10.1007/s40747-023-01090-8
![]() |
[34] | G. W. Meng, Basic theory for interval-valued fuzzy sets, Math. Appl., 6 (1993), 212–217. |
[35] | M. M. Gao, T. Sun, J. J. Zhu, A new scoring function in multi-criteria decision-making based on Vague set, J. Syst. Sci. Math. Sci., 34 (2014), 96–105. |
[36] |
D. H. Hong, C. H. Choi, Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Set. Syst., 114 (2000), 103–113. https://doi.org/10.1016/S0165-0114(98)00271-1 doi: 10.1016/S0165-0114(98)00271-1
![]() |
[37] | E. Y. Zhang, J. Wang, S. Y. Wang, A new scoring function in multi-criteria decision-making based on Vague set, J. Syst. Sci. Math. Sci., 31 (2011), 961–974. |
[38] |
T. Gerstenkorn, J. Manko, Correlation of intuitionistic fuzzy sets, Fuzzy Set. Syst., 44 (1991), 39–43. https://doi.org/10.1016/0165-0114(91)90031-K doi: 10.1016/0165-0114(91)90031-K
![]() |
[39] |
H. Bustince, P. Burillo, Correlation of interval-valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 74 (1995), 237–244. https://doi.org/10.1016/0165-0114(94)00343-6 doi: 10.1016/0165-0114(94)00343-6
![]() |
[40] |
H. Garg, A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes, Int. J. Intell. Syst., 31 (2016), 1234–1252. https://doi.org/10.1002/int.21827 doi: 10.1002/int.21827
![]() |
[41] |
H. Garg, Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process, J. Ind. Manag. Optim., 14 (2018), 1501–1519. https://doi.org/10.3934/jimo.2018018 doi: 10.3934/jimo.2018018
![]() |
[42] |
R. Arora, H. Garg, A robust correlation coefficient measure of dual hesitant fuzzy soft sets and their application in decision making, Eng. Appl. Artif. Intel., 72 (2018), 80–92. https://doi.org/10.1016/j.engappai.2018.03.019 doi: 10.1016/j.engappai.2018.03.019
![]() |
[43] |
H. Garg, D. Rani, A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-making, Appl. Intell., 49 (2019), 496–512. https://doi.org/10.1007/s10489-018-1290-3 doi: 10.1007/s10489-018-1290-3
![]() |
[44] | L. Luo, H. Ren, A new similarity measure of intuitionistic fuzzy set and application in MADM problem, AMSE Ser. Adv. A, 53 (2016), 204–223. |
[45] |
B. Liu, Y. Shen, L. Mu, X. Chen, L. Chen, A new correlation measure of the intuitionistic fuzzy sets, J. Intel. Fuzzy Syst., 30 (2016), 1019–1028. https://doi.org/10.3233/IFS-151824 doi: 10.3233/IFS-151824
![]() |
[46] |
C. P. Wei, P. Wang, Y. Z. Zhang, Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications, Inform. Sci., 181 (2011), 4273–4286. https://doi.org/10.1016/j.ins.2011.06.001 doi: 10.1016/j.ins.2011.06.001
![]() |
[47] |
H. Garg, D. Rani, Some results on information measures for complex intuitionistic fuzzy sets, Int. J. Intell. Syst., 34 (2019), 2319–2363. https://doi.org/10.1002/int.22127 doi: 10.1002/int.22127
![]() |
[48] | Z. S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control Decis., 22 (2007), 215–219. |
[49] |
J. Ye, Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets, Appl. Math. Model., 34 (2010), 3864–3870. https://doi.org/10.1016/j.apm.2010.03.025 doi: 10.1016/j.apm.2010.03.025
![]() |
1. | Rishi Kumar Pandey, Kottakkaran Sooppy Nisar, Enhanced numerical techniques for solving generalized rotavirus mathematical model via iterative method and ρ-Laplace transform, 2024, 12, 26668181, 100963, 10.1016/j.padiff.2024.100963 | |
2. | Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor, Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals, 2024, 9, 2473-6988, 10208, 10.3934/math.2024499 | |
3. | Cicik Alfiniyah, Tutik Utami, Nashrul Millah, Reuben Iortyer Gweryina, Optimal control and stability analysis of an alcoholism model with treatment centers, 2025, 22150161, 103311, 10.1016/j.mex.2025.103311 |