
Example 1. Left panel:
The article discusses the effect of weak and strong damping terms on decay rate for systems of nonlinear m- wave equations with new viscoelastic structures. The factors that allowed system (1.1) to coexist for a long time are the strong nonlinearities in the sources. We showed, under a novel condition on the kernel function in (2.4), a new scenario for energy decay in (3.7) by using an appropriate energy estimates. This result extend the results in [
Citation: Mohamed Biomy. Decay rate for systems of m-nonlinear wave equations with new viscoelastic structures[J]. AIMS Mathematics, 2021, 6(6): 5502-5517. doi: 10.3934/math.2021326
[1] | John D. Towers . An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17(1): 1-13. doi: 10.3934/nhm.2021021 |
[2] | Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617 |
[3] | Giuseppe Maria Coclite, Carlotta Donadello . Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15(2): 197-213. doi: 10.3934/nhm.2020009 |
[4] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[5] |
Giuseppe Maria Coclite, Nicola De Nitti, Mauro Garavello, Francesca Marcellini .
Vanishing viscosity for a |
[6] | Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233 |
[7] | Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020 |
[8] | Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969 |
[9] | Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005 |
[10] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
The article discusses the effect of weak and strong damping terms on decay rate for systems of nonlinear m- wave equations with new viscoelastic structures. The factors that allowed system (1.1) to coexist for a long time are the strong nonlinearities in the sources. We showed, under a novel condition on the kernel function in (2.4), a new scenario for energy decay in (3.7) by using an appropriate energy estimates. This result extend the results in [
This paper proposes an explicit finite volume scheme for first-order scalar conservation laws on a network having a single junction. The algorithm and analysis extend readily to networks with multiple junctions, due to the finite speed of propagation of the solutions of conservation laws. For the sake of concreteness, we view the setup as a model of traffic flow, with the vector of unknowns representing the vehicle density on each road. A number of such scalar models have been proposed, mostly differing in how the junction is modeled. An incomplete list of such models can be found in [4,5,6,7,8,11,12,13,14,15,16,18,19]. In this paper we focus on the so-called vanishing viscosity solution proposed and analyzed in [7] and [2]. The junction has
∂tuh+∂xfh(uh)=0,h=1,…,m+n. | (1.1) |
Incoming roads are indexed by
ui∈L∞(R−×R+;[0,R]),i∈{1,…,m},uj∈L∞(R+×R+;[0,R]),j∈{m+1,…,m+n}. | (1.2) |
Following [2] we make the following assumptions concerning the fluxes
The study of vanishing viscosity solutions on a network was initiated by Coclite and Garavello [7], who proved that vanishing viscosity solutions converge to weak solutions if
For the convenience of the reader, and to establish notation, we review some relevant portions of the theory of network vanishing viscosity solutions, as described in [2], where we refer the reader for a more complete development. Let
Gh(β,α)={min | (1.3) |
(Compared to [2], we list the arguments
\begin{equation} -L_h \le \partial G_h(\beta, \alpha)/\partial \beta \le 0, \quad 0\le \partial G_h(\beta, \alpha)/\partial \alpha \le L_h, \quad h \in \{1, \ldots, m+n\}. \end{equation} | (1.4) |
Definition 1.1 (Vanishing viscosity germ [2]). The vanishing viscosity germ
\begin{equation} \begin{split} &\sum\limits_{i = 1}^m G_i(p_{ \vec{u}}, u_i) = \sum\limits_{j = m+1}^{m+n} G_j(u_j, p_{ \vec{u}}), \\ &G_i(p_{ \vec{u}}, u_i) = f_i(u_i), \quad i = 1, \ldots, m, \\ &G_j(u_j, p_{ \vec{u}}) = f_j(u_j), \quad j = m+1, \ldots, m+n. \end{split} \end{equation} | (1.5) |
The definition of entropy solution requires one-sided traces along the half-line
\begin{equation} \begin{split} &\gamma_i u_i(\cdot) = u_i(\cdot, 0^-), \quad i \in \{1, \ldots, m \}, \\ &\gamma_j u_j(\cdot) = u_j(\cdot, 0^+), \quad j \in \{m+1, \ldots, m+n \}. \end{split} \end{equation} | (1.6) |
Definition 1.2 (
\begin{equation} q_h(v, w) = \mathrm{sign}(v-w)\left(f_h(v)-f_h(w) \right), \quad h = 1, \ldots, m+n. \end{equation} | (1.7) |
Given an initial condition
● For each
\begin{align} \int_{ \mathbb{R}_+} \int_{\Omega_h} \Bigl(\left|{u_h-c}\right| \partial_t \xi + q_h(u_h, c)\partial_x \xi \Bigr)\, dx\, dt + \int_{\Omega_h} \left|{u_{h, 0}-c}\right| \xi(x, 0) \, dx \geq 0. \end{align} | (1.8) |
● For a.e.
Associated with each
\begin{equation} k_h(x) = k_h, \quad x \in \Omega_h, \quad h \in \{1, \ldots, m+n\}. \end{equation} | (1.9) |
It is readily verified that viewed in this way,
Definition 1.2 reveals the relationship between the set
Definition 1.3 (
● The first item of Definition 1.2 holds.
● For any
\begin{equation} \sum\limits_{h = 1}^{m+n} \left(\int_{ \mathbb{R}_+} \int_{\Omega_h} \left\{\left|{u_h - k_h }\right|\xi_t + q_h(u_h, k_h)\xi_x\right\} \, dx \, dt \right) \ge 0 \end{equation} | (1.10) |
for any nonnegative test function
Theorem 1.4 (Well posedness [2]). Given any initial datum
\begin{equation} \vec{u}_0 = (u_{1, 0}, \ldots, u_{m+n, 0}) \in L^{\infty}(\Gamma; [0, R]^{m+n}), \end{equation} | (1.11) |
there exists one and only one
In addition to the results above, reference [2] also includes a proof of existence of the associated Riemann problem. Based on the resulting Riemann solver, a Godunov finite volume algorithm is constructed in [2], which handles the interface in an implicit manner. This requires the solution of a single nonlinear equation at each time step. The resulting finite volume scheme generates approximations that are shown to converge to the unique
The main contribution of the present paper is an explicit version of the finite volume scheme of [2]. It differs only in the processing of the junction. We place an artificial grid point at the junction, which is assigned an artificial density. The artificial density is evolved from one time level to the next in an explicit manner. Thus a nonlinear equation solver is not required. (However, we found that in certain cases accuracy can be improved by processing the junction implicitly on the first time step.) Like the finite volume scheme of [2], the new algorithm has the order preservation property and is well-balanced. This makes it possible to employ the analytical framework of [2], resulting in a proof that the approximations converge to the unique entropy solution of the associated Cauchy problem.
In Section 2 we present our explicit finite volume scheme and prove convergence to a
For a fixed spatial mesh size
\begin{equation} \begin{split} &x_{\ell} = (\ell + 1/2) {\Delta} x, \quad \ell \in \{\ldots, -2, -1\}, \\ &x_{\ell} = (\ell - 1/2) {\Delta} x, \quad \ell \in \{1, 2, \ldots\}. \end{split} \end{equation} | (2.1) |
Each road
\begin{equation} \begin{split} &\Omega_i = \bigcup\limits_{\ell \le -1} I_\ell, \quad I_\ell : = (x_\ell - {\Delta} x/2, x_\ell + {\Delta} x/2] ~\text{ for}~ \ell \le -1 , \\ &\Omega_j = \bigcup\limits_{\ell \ge 1} I_\ell, \quad I_\ell : = [x_\ell - {\Delta} x/2, x_\ell + {\Delta} x/2) ~\text{for }~ \ell \ge 1 . \end{split} \end{equation} | (2.2) |
Our discretization of the spatial domain
\begin{equation} \begin{split} &U_{\ell}^{h, s} \approx u_h(x_\ell, t^s), \quad \ell \in \mathbb{Z} \setminus \{0\}, \\ &P^s \approx p_{\gamma \vec{u}(t^s)}. \end{split} \end{equation} | (2.3) |
We are somewhat artificially assigning a density, namely
Remark 1. We make the association
The initial data are initialized via
\begin{equation} \begin{split} &U^{h, 0}_{\ell} = {1\over {\Delta} x} \int_{I_{\ell}} u_{h, 0}(x) \, dx, \quad h \in \{1, \ldots, m+n \}, \\ &P^0 \in [0, R]. \end{split} \end{equation} | (2.4) |
Note that
\begin{equation} \left\{ \begin{split} &P^{s+1} = P^s - \lambda \left(\sum\limits_{j = m+1}^{m+n} G_j(U_{1}^{j, s}, P^s) - \sum\limits_{i = 1}^m G_i(P^s, U_{-1}^{i, s}) \right), \\ &U_\ell^{i, s+1} = U_\ell^{i, s} - \lambda \left(G_i(U_{\ell+1}^{i, s}, U_{\ell}^{i, s}) - G_i(U_{\ell}^{i, s}, U_{\ell-1}^{i, s}) \right), \quad i \in \{1, \ldots, m \}, \, \, \ell \le -1, \\ &U_\ell^{j, s+1} = U_\ell^{j, s} - \lambda \left(G_j(U_{\ell+1}^{j, s}, U_{\ell}^{j, s}) - G_j(U_{\ell}^{j, s}, U_{\ell-1}^{j, s}) \right), \quad j \in \{m+1, \ldots, m+n \}, \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \, \, \ell \ge 1.\\ \end{split} \right. \end{equation} | (2.5) |
Define
\begin{equation} \lambda (m+n) L\le 1. \end{equation} | (2.6) |
If all of the
\begin{equation} \lambda \max(m, n) L\le 1. \end{equation} | (2.7) |
Remark 2. The algorithm (2.5) is an explicit version of the scheme of [2]. To recover the scheme of [2] from (2.5), one proceeds as follows:
● first substitute
● then advance each
The equation mentioned above (after substituting
\begin{equation} \sum\limits_{j = m+1}^{m+n} G_j(U_{1}^{j, s}, P^s) = \sum\limits_{i = 1}^m G_i(P^s, U_{-1}^{i, s}). \end{equation} | (2.8) |
The implicit portion of the scheme of [2] consists of solving (2.8) for the unknown
Remark 3. The convergence of the scheme (2.5) is unaffected by the choice of
\begin{equation} P^{0}_{\nu+1} = P^0_\nu - \lambda \left(\sum\limits_{j = m+1}^{m+n} G_j(U_{1}^{j, 0}, P^0_\nu) - \sum\limits_{i = 1}^m G_i(P^0_\nu, U_{-1}^{i, 0}) \right). \end{equation} | (2.9) |
Moreover, we found that this same fixed point iteration approach is a convenient way to solve (2.8) when implementing the implicit scheme of [2]. From this point of view the algorithm of this paper and the algorithm of [2] only differ in whether the first equation of (2.5) is iterated once, or iterated to (approximate) convergence. See Appendix A for a proof that the iterative scheme (2.9) converges to a solution of (2.8).
Remark 4. The CFL condition associated with the finite volume scheme of [2] is
\begin{equation} \lambda L \le 1/2. \end{equation} | (2.10) |
As soon as there are more than a few roads impinging on the junction, our CFL condition (2.6) imposes a more severe restriction on the allowable time step, which becomes increasingly restrictive as more roads are included. One could view this as the price to be paid for the simplified processing of the junction. On the other hand, most of the specific examples discussed in the literature are limited to
Let
\begin{equation} \begin{split} &u^{i, {\Delta}} = \sum\limits_{s\ge 0} \sum\limits_{\ell \le -1} \chi_{\ell}(x) \chi^s(t) U^{i, s}_\ell, \quad i \in \{1, \ldots, m \}, \\ &u^{j, {\Delta}} = \sum\limits_{s\ge 0} \sum\limits_{\ell \ge 1} \chi_{\ell}(x) \chi^s(t) U^{j, s}_\ell, \quad j \in \{m+1, \ldots, m+n \}.\\ \end{split} \end{equation} | (2.11) |
The discrete solution operator is denoted by
\begin{equation} S^{\Delta} \vec{u}_0 = \left(u^{i, {\Delta}}, \ldots, u^{m, {\Delta}}, u^{m+1, {\Delta}}, \ldots u^{m+n, {\Delta}} \right). \end{equation} | (2.12) |
The symbol
\begin{equation} \Gamma_{ \text{discr}} = \Bigl(\{1, \ldots, m \}\times\{\ell \in \mathbb{Z}, \ell \le -1 \} \Bigr) \bigcup \Bigl(\{m+1, \ldots, m+n \}\times\{\ell \in \mathbb{Z}, \ell \ge 1 \} \Bigr), \end{equation} | (2.13) |
and with the notation
\begin{equation} U^s = \left(U_{\ell}^{h, s} \right)_{(h, l)\in \Gamma_{ \text{discr}}}, \end{equation} | (2.14) |
Remark 5. In the case where
Lemma 2.1. Fix a time level
Proof. For
Fix
\begin{equation} \begin{split} &\partial U^{i, s+1}_{-1}/ \partial U^{i, s}_{-2} = \lambda \partial G_i(U^{i, s}_{-1}, U^{i, s}_{-2})/\partial U^{i, s}_{-2}, \\ &\partial U^{i, s+1}_{-1}/ \partial U^{i, s}_{0} = -\lambda \partial G_i(U^{i, s}_{0}, U^{i, s}_{-1})/\partial U^{i, s}_{0}, \\ &\partial U^{i, s+1}_{-1}/ \partial U^{i, s}_{-1} = 1- \lambda \partial G_i(U^{i, s}_{0}, U^{i, s}_{-1})/\partial U^{i, s}_{-1} + \lambda \partial G_i(U^{i, s}_{-1}, U^{i, s}_{0})/\partial U^{i, s}_{-1}. \end{split} \end{equation} | (2.15) |
That partial derivatives in the first two lines are nonnegative is a well-known property of the Godunov numerical flux. The partial derivative on the third line is nonnegative due to (1.4) and the CFL condition (2.6).
A similar calculation shows that the partial derivatives of
It remains to show that the partial derivatives of
\begin{equation} \begin{split} &\partial P^{s+1}/\partial U^{i, s}_{-1} = \lambda \partial G_i(P^s, U^{i, s}_{-1})/\partial U^{i, s}_{-1}, \\ &\partial P^{s+1}/\partial U^{j, s}_{1} = -\lambda \partial G_j(U^{j, s}_{1}, P^s)/\partial U^{j, s}_{1}, \\ &\partial P^{s+1}/\partial P^s = 1 - \lambda \left(\sum\limits_{j = m+1}^{m+n} \partial G_j(U^{j, s}_{1}, P^s)/\partial P^s - \sum\limits_{i = 1}^m \partial G_i(P^s, U^{i, s}_{-1})/\partial P^s \right)\\ &\qquad \qquad \quad \ge 1 - \lambda \left(\sum\limits_{j = m+1}^{m+n} \max(0, f'_j(P^s)) - \sum\limits_{i = 1}^m \min(0, f'_i(P^s)) \right). \end{split} \end{equation} | (2.16) |
The first two partial derivatives are clearly nonnegative. For the third partial derivative we have used the following readily verified fact about the Godunov flux:
\begin{equation} \min(0, f'_h(\beta)) \le {\partial G_h \over \partial \beta}(\beta, \alpha) \le 0 \le {\partial G_h \over \partial \alpha}(\beta, \alpha) \le \max(0, f'_h(\alpha)), \end{equation} | (2.17) |
and thus the third partial derivative is nonnegative due to (1.4) and the CFL condition (2.6).
Remark 6. If all of the fluxes
\begin{equation} \partial P^{s+1}/\partial P^s \ge 1 - \lambda \left(n \max(0, f'(P^s)) - m \min(0, f'(P^s)) \right), \end{equation} | (2.18) |
from which it is clear that
Lemma 2.2. Assuming that the initial data satisfies
Proof. The assertion is true for
\begin{equation} \begin{split} \tilde{U}^{h}_{\ell} = 0, \quad \tilde{P} = 0, \\ \hat{U}^{h}_{\ell} = R, \quad \hat{P} = R. \end{split} \end{equation} | (2.19) |
It is readily verified that
\begin{equation} \tilde{U}_{\ell}^h \le U^{0, h}_\ell \le \hat{U}_{\ell}^h, \quad \tilde{P} \le P^0 \le \hat{P}. \end{equation} | (2.20) |
After an application of a single step of the finite volume scheme, these ordering relationships are preserved, as a result of Lemma 2.1. Since
\begin{equation} \tilde{U}_{\ell}^h \le U^{1, h}_\ell \le \hat{U}_{\ell}^h, \quad \tilde{P} \le P^1 \le \hat{P}. \end{equation} | (2.21) |
This proves the assertion for
Given
\begin{equation} K^{h}_\ell = \begin{cases} k^i, \quad & \ell < 0~ \text{ and}~ h\in \{1, \ldots, m \} , \\ k^j, \quad & \ell > 0 ~~\text{and}~~ h\in \{m+1, \ldots, m+n \} .\\ \end{cases} \end{equation} | (2.22) |
and
Lemma 2.3. The finite volume scheme of Section 2 is well-balanced in the sense that each
Proof. For each fixed
Fix
\begin{equation} k^i - \lambda \left(G_i(p_{ \vec{k}}, k^{i}) - G_i(k^i, k^i) \right) = k^i - \lambda \left(f_i(k^{i}) - f_i(k^i) \right) = k^i. \end{equation} | (2.23) |
Here we have used the definition of
\begin{equation} p_{ \vec{k}} - \lambda \left(\sum\limits_{j = m+1}^n G_j(k^j, p_{ \vec{k}}) - \sum\limits_{i = 1}^m G_i(p_{ \vec{k}}, k^i) \right) = p_{ \vec{k}}, \end{equation} | (2.24) |
where we have applied the first equation of (1.5).
With the notation
\begin{equation} Q_{\ell+1/2}^{h}[U^s, \hat{U}^s] = G_h(U^{h, s}_{\ell+1} \vee \hat{U}^{h, s}_{\ell+1}, U^{h, s}_{\ell} \vee \hat{U}^{h, s}_{\ell}) - G_h(U^{h, s}_{\ell+1} \wedge \hat{U}^{h, s}_{\ell+1}, U^{h, s}_{\ell} \wedge \hat{U}^{h, s}_{\ell}). \end{equation} | (2.25) |
Lemma 2.4. Let
\begin{equation} \begin{split} &\sum\limits_{i = 1}^m {\Delta} x {\Delta} t\sum\limits_{s = 1}^{+\infty} \sum\limits_{\ell < 0} \left|{U^{i, s}_{\ell}-\hat{U}^{i, s}_{\ell}}\right| \left(\xi_{\ell}^{s}-\xi_{\ell}^{s-1} \right)/{\Delta} t\\ &+\sum\limits_{i = 1}^m {\Delta} x {\Delta} t \sum\limits_{s = 0}^{+\infty} \sum\limits_{\ell \le 0} \, Q^i_{\ell-1/2}[U^s, \hat{U}^s] \left(\xi^{s}_{\ell} - \xi^{s}_{\ell-1} \right)/{\Delta} x\\ &+\sum\limits_{j = m+1}^{m+n} {\Delta} x {\Delta} t \sum\limits_{s = 1}^{+\infty} \sum\limits_{\ell > 0} \left|{U^{i, s}_{\ell}-\hat{U}^{i, s}_{\ell}}\right| \left(\xi_{\ell}^{s}-\xi_{\ell}^{s-1} \right)/{\Delta} t\\ &+\sum\limits_{j = m+1}^{m+n} {\Delta} x {\Delta} t \sum\limits_{s = 0}^{+\infty} \sum\limits_{\ell \ge 0} \, Q^j_{\ell+1/2}[U^s, \hat{U}^s] \left(\xi^{s}_{\ell+1} - \xi^{s}_{\ell} \right)/{\Delta} x\\ & +{\Delta} x {\Delta} t \sum\limits_{s = 1}^{+\infty} \, \left|{P^s-\hat{P}^s}\right| \left(\xi_{0}^{s}-\xi_{0}^{s-1} \right)/{\Delta} t \ge 0.\\ \end{split} \end{equation} | (2.26) |
Proof. From the monotonicity property (Lemma 2.1), a standard calculation [9] yields
\begin{equation} \begin{split} &\left|{U_{\ell}^{i, s+1}-\hat{U}_{\ell}^{i, s+1}}\right| \le \left|{U_{\ell}^{i, s}-\hat{U}_{\ell}^{i, s}}\right|\\ &\qquad \qquad \qquad \qquad - \lambda \left(Q^i_{\ell+1/2}[U^s, \hat{U}^s] - Q^i_{\ell-1/2}[U^s, \hat{U}^s] \right), \quad \ell \le -1, \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \, \, \, \, i \in \{1, \ldots, m \}, \\ &\left|{U_{\ell}^{j, s+1}-\hat{U}_{\ell}^{j, s+1}}\right| \le \left|{U_{\ell}^{j, s}-\hat{U}_{\ell}^{j, s}}\right|\\ &\qquad \qquad \qquad \qquad - \lambda \left(Q^j_{\ell+1/2}[U^s, \hat{U}^s] - Q^j_{\ell-1/2}[U^s, \hat{U}^s] \right), \quad \ell \ge 1, \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad j \in \{m+1, \ldots, m+n \}, \\ &\left|{P^{s+1}-\hat{P}^{s+1}}\right| \le \left|{P^{s}-\hat{P}^{s}}\right| - \lambda \left(\sum\limits_{j = m+1}^{m+n} Q_{1/2}^j[U^s, \hat{U}^s] - \sum\limits_{i = 1}^m Q_{-1/2}^i[U^s, \hat{U}^s]\right). \end{split} \end{equation} | (2.27) |
We first multiply each of the first and second set of inequalities indexed by
Lemma 2.5. Suppose that
Proof. The proof that the first condition of Definition 1.2 holds is a slight adaptation of a standard fact about monotone schemes for scalar conservation laws [9].
The proof is completed by verifying the second condition of Definition 1.2. Let
With Lemmas 2.1 through 2.5 in hand it is possible to repeat the proof of Theorem 3.3 of [2], which yields Theorem 2.6 below.
Theorem 2.6. For a given initial datum
We found that if
Initialization of
● Initialize
● Initialize
Example 1. This example demonstrates the appearance of a spurious bump when
Example 1. Left panel:
One can also get rid of the spurious bump by choosing
I thank two anonymous referees for their comments and suggestions.
In this appendix we prove that the fixed point iterations (2.9) converge to a solution of the equation (2.8). Let
\begin{equation} u_i = U_{-1}^{i, s} for i = 1, \ldots, m , \quad u_j = U_{1}^{j, s} ~\text{for }~ j = m+1, \ldots, m+n . \end{equation} | (A.1) |
Then (2.8) takes the form
\begin{equation} \Phi_{{\vec u}}^{ \text{out}}(p) = \Phi_{\vec{u}}^{ \text{in}}(p), \end{equation} | (A.2) |
where
\begin{equation} \Phi_{\vec{u}}^{ \text{in}}(p) = \sum\limits_{i = 1}^m G_i(p, u_i), \quad \Phi_{{\vec u}}^{ \text{out}}(p) = \sum\limits_{j = m+1}^{m+n} G_j(u_j, p). \end{equation} | (A.3) |
This notation agrees with that of [2], where it was shown that
With the simplified notation introduced above, the iterative scheme (2.9) becomes
\begin{equation} p_{\nu+1} = p_{\nu} - \lambda \left( \Phi_{{\vec u}}^{ \text{out}}(p_{\nu}) - \Phi_{\vec{u}}^{ \text{in}}(p_{\nu}) \right), \quad p_0 \in [0, R]. \end{equation} | (A.4) |
Proposition 1. The sequence
Proof. Note that
\begin{equation} \begin{split} &0 \le G_i(0, u_i), \quad G_i(R, u_i) = 0, \\ &G_j(u_j, 0) = 0, \quad 0 \le G_j(u_j, R). \end{split} \end{equation} | (A.5) |
Thus,
\begin{equation} \begin{split} &0 \le \Phi_{\vec{u}}^{ \text{in}}(0), \quad \Phi_{\vec{u}}^{ \text{in}}(R) = 0, \\ & \Phi_{{\vec u}}^{ \text{out}}(0) = 0, \quad 0 \le \Phi_{{\vec u}}^{ \text{out}}(R). \end{split} \end{equation} | (A.6) |
Define
\begin{equation} \Psi_{ \vec{u}}(p) = \Phi_{{\vec u}}^{ \text{out}}(p) - \Phi_{\vec{u}}^{ \text{in}}(p), \end{equation} | (A.7) |
and observe that
\begin{equation} \Psi_{ \vec{u}}(0) \le 0 \le \Psi_{ \vec{u}}(R). \end{equation} | (A.8) |
Define
\begin{equation} \Pi(p) = p - \lambda \Psi_{ \vec{u}}(p). \end{equation} | (A.9) |
\begin{equation} \Pi'(p) = 1 - \lambda \Psi'_{ \vec{u}}(p) \ge 1 - \lambda (m+n)L. \end{equation} | (A.10) |
Thanks to (A.10) and the CFL condition (2.6), it is clear that
\begin{equation} 0 \le \Pi(0) \le \Pi(p) \le \Pi(R) \le R ~\text{for}~ p \in [0, R] . \end{equation} | (A.11) |
Thus
\begin{equation} p_{\nu +1} = \Pi(p_{\nu}), \quad p_0 \in [0, R]. \end{equation} | (A.12) |
We can now prove convergence of the sequence
Now consider the case where
\begin{equation} \begin{split} p_{\nu+1}-p_{\nu} & = \Pi(p_{\nu}) - \Pi(p_{\nu-1}) \\ & = {\Pi(p_{\nu}) - \Pi(p_{\nu-1})\over p_{\nu} - p_{\nu-1} } (p_{\nu} - p_{\nu-1}). \end{split} \end{equation} | (A.13) |
Since
\begin{equation} \mathrm{sign}(p_{\nu+1}-p_{\nu}) = \mathrm{sign}(p_{\nu}-p_{\nu-1}) = \ldots = \mathrm{sign}(p_{1}-p_{0}). \end{equation} | (A.14) |
In other words, the sequence
[1] | A. B. Aliev, G. I. Yusifova, Nonexistence of global solutions of Cauchy problems for systems of semilinear hyperbolic equations with positive initial energy, Electron. J. Differ. Eq., 211 (2017), 1–10. |
[2] |
A. B. Aliev, A. A. Kazimov, Global Solvability and Behavior of Solutions of the Cauchy Problem for a System of two Semilinear Hyperbolic Equations with Dissipation, Differ. Equations, 49 (2013), 457–467. doi: 10.1134/S001226611304006X
![]() |
[3] | A. B. Aliev, G. I. Yusifova, Nonexistence of global solutions of the Cauchy problem for the systems of three semilinear hyperbolic equations with positive initial energy, Transactions Issue Mathematics, Azerbaijan National Academy of Sciences, 37 (2017), 11–19. |
[4] | A. Braik, A. Beniani, Kh. Zennir, Well-posedness and general decay for Moore–Gibson–Thompson equation in viscoelasticity with delay term, Ric. Mat., (2021), 1–22. |
[5] |
S. Boulaaras, A. Draifia, Kh. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan‐Taylor damping and logarithmic nonlinearity, Math. Meth. Appl. Sci., 42 (2019), 4795–4814. doi: 10.1002/mma.5693
![]() |
[6] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250
![]() |
[7] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka, W. M. Claudete, Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Adv. Nonlinear Anal., 6 (2017), 121–145. doi: 10.1515/anona-2016-0027
![]() |
[8] |
E. F. Doungmo Goufo, I. Tchangou Toudjeu, Analysis of recent fractional evolution equations and applications, Chaos, Solitons and Fractals, 126 (2019), 337–350. doi: 10.1016/j.chaos.2019.07.016
![]() |
[9] |
E. F. Doungmo Goufo, Yazir Khan, Stella Mugisha, Control parameter & solutions to generalized evolution equations of stationarity, relaxation and diffusion, Results Phys., 9 (2018), 1502–1507. doi: 10.1016/j.rinp.2018.04.051
![]() |
[10] | H. Dridi, Kh. Zennir, Well-posedness and energy decay for some thermoelastic systems of Timoshenko type with Kelvin-Voigt damping, SeMA Journal, (2021), 1–16. |
[11] | H. Dridi, B. Feng, Kh. Zennir, Stability of Timoshenko system coupled with thermal law of Gurtin-Pipkin affecting on shear force, Appl. Anal., (2021), 1–22. |
[12] |
B. Feng, Y. Qin, M. Zhang, General decay for a system of nonlinear viscoelastic wave equations with weak damping, Bound. Value Probl., 2012 (2012), 1–11. doi: 10.1186/1687-2770-2012-1
![]() |
[13] | N. I. Karachalios, N. M. Stavrakakis, Global existence and blow-up results for some nonlinear wave equations on \mathbb R^N, Adv. Differ. Eq., 6 (2001), 155–174. |
[14] | W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. |
[15] |
G. Liu, S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on {\mathbb R}^{N}, Comput. Math. Appl., 70 (2015), 1345–1356. doi: 10.1016/j.camwa.2015.07.021
![]() |
[16] |
W. Liu, Global existence, asymptotic behavior and blow-up of solutions for coupled Klein–Gordon equations with damping terms, Nonlinear Anal-Theor, 73 (2010), 244–255. doi: 10.1016/j.na.2010.03.017
![]() |
[17] |
Q. Li, L. He, General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping, Bound. Value Probl., 2018 (2018), 1–22. doi: 10.1186/s13661-017-0918-2
![]() |
[18] |
T. Miyasita, Kh. Zennir, A sharper decay rate for a viscoelastic wave equation with power nonlinearity, Math. Meth. Appl. Sci., 43 (2020), 1138–1144. doi: 10.1002/mma.5919
![]() |
[19] | S. C. Oukouomi Noutchie, E. F. Doungmo Goufo, Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels, Math. Probl. Eng., 2014 (2014), 1–5. |
[20] |
P. G. Papadopoulos, N. M. Stavrakakis, Global existence and blow-up results for an equation of Kirchhoff type on \mathbb R^N, Topol. Meth. Nonl. Anal., 17 (2001), 91–109. doi: 10.12775/TMNA.2001.006
![]() |
[21] |
S. T. Wu, General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms, J. Math. Anal. Appl., 406 (2013), 34–48. doi: 10.1016/j.jmaa.2013.04.029
![]() |
[22] |
Y. Ye, Global existence and nonexistence of solutions for coupled nonlinear wave equations with damping and source terms, B. Korean Math. Soc., 51 (2014), 1697–1710. doi: 10.4134/BKMS.2014.51.6.1697
![]() |
[23] |
Kh. Zennir, General decay of solutions for damped wave equation of Kirchhoff type with density in {\mathbb R}^{n}, Annali dell'Universita'di Ferrara, 61 (2015), 381–394. doi: 10.1007/s11565-015-0223-x
![]() |
[24] | Kh. Zennir, Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in {\bf{R}}^n, Russian Math., 64 (2020), 21–33. |
[25] | Kh. Zennir, M. Bayoud, S. Georgiev, Decay of solution for degenerate wave equation of Kirchhoff type in viscoelasticity, Int. J. Appl. Comput. Math., 4 (2018), 1–18. |
[26] | Kh. Zennir, T. Miyasita, Dynamics of a coupled system for nonlinear damped wave equations with variable exponents, ZAMM Journal of applied mathematics and mechanics: Zeitschrift fur angewandte Mathematik und Mechanik, (2020), e202000094. |
[27] |
Kh. Zennir, S. S. Alodhaibi, A Novel Decay Rate for a Coupled System of Nonlinear Viscoelastic Wave Equations, Mathematics, 8 (2020), 203. doi: 10.3390/math8020203
![]() |
[28] | S. Zitouni, Kh. Zennir, On the existence and decay of solution for viscoelastic wave equation with nonlinear source in weighted spaces, Rend. Circ. Mat. Palermo, 66 (2017), 337–353. |
1. | Nicola De Nitti, Enrique Zuazua, On the Controllability of Entropy Solutions of Scalar Conservation Laws at a Junction via Lyapunov Methods, 2023, 51, 2305-221X, 71, 10.1007/s10013-022-00598-9 | |
2. | Michael Herty, Niklas Kolbe, Siegfried Müller, Central schemes for networked scalar conservation laws, 2022, 18, 1556-1801, 310, 10.3934/nhm.2023012 | |
3. | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks, 2022, 17, 1556-1801, 101, 10.3934/nhm.2021025 | |
4. | Michael Herty, Niklas Kolbe, Siegfried Müller, A Central Scheme for Two Coupled Hyperbolic Systems, 2024, 6, 2096-6385, 2093, 10.1007/s42967-023-00306-5 | |
5. | Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos, Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a k -star graph with non-smooth source terms, 2024, 19, 1556-1801, 1085, 10.3934/nhm.2024048 | |
6. | Sabrina F. Pellegrino, A filtered Chebyshev spectral method for conservation laws on network, 2023, 151, 08981221, 418, 10.1016/j.camwa.2023.10.017 |