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1. Introduction and position of problem
We consider, for x e R", t >0, j=1,2,...,m, the following system of m equations

Wiy +auy — O(x)A (uj + wuj — fot @ j(t — $)u;(s) ds)

= filui,up, ..., uy) (1.1)
uj(x,0) = ujo(x)
uj(x,0) = uj(x),

wherea e R, w > 0, n > 3.

Various non-linear sources have been combined as follows, we combine all two consecutive
equations together and of course the last equation with the first one, which get the whole system
closely linked by the strong nonlinear sources. The functions f;(u;, us, . .., u,) € (R",R) are given for
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j=12,...,m-1by

m

(-1 =
-3)/2 1)/2
fitun e, = o+ D[d] Dl s+ el |0

i=1 i=1

and

m

(-1
-3)/2 1)/2
Foltsy s, ) = D] D] Y s+ el T a7V,

i=1 i=1

with d,e > 0, p > 3. For simplicity reason, we take d = e = 1.
There exists a function ¥ € C'(R?, R) such that

m

D i, ) = (p A DF i, tn, ), Y, 1ty) € R (12)
=1
such that
" +1 m=l (p+1)/2
(p+ DF (uy,uo, ..., uy) = ‘Zujp +2’Zujuj+l ! + 2ty [PV (1.3)
=1 =

In order to use Poincare’s inequality which is a key in calculus for the PDEs, we will study the problem
(1.1) in the presence of a density function 6 to find a generalized formula for Poincare’s inequality
that can be used in unbounded domain R". The function ®(x) > O for all x € R" is a density and
(®)7!(x) = 1/O(x) = 6(x) such that

2n 2n

L'(R" ith =—— fi 2<r< .
OcLi(RY) with 7 2n —rn +2r of _r_n—2

(1.4)

We define a new space related to the nature of our system, taking into account the boundless of space
R". The function spaces H is defined as the closure of Cj’(R"), as in [20], we have

H = {v e Le2(R") | Vv € LAR"Y").

with respect to the norm ||v||y = (v, v);j2 for the inner product

(v, W)rH = f Vv - Vwdx,
Rn

and Lg(R”) as that to the norm ||v|| 2= (v, v)iéz for
(7

(v, W)Lz = f Ovw dx.
R}l

Il = ( f ol dx) .
R)l
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is the norm of the weighted space Ly(R").

The following references in connection to our system for a single equation [6] and [7]. The work [6]
was the pioneer in the literature for the single equation, source of inspiration of several works, while the
work [7] is a recent generalization of [6] by introducing less dissipative effects (See [8,9, 19,24,26]).
With regard to the study of this type of systems without viscoelasticity, with the existence of both weak
damping u, and strong damping Au,, under condition (3.2), we mention the work recently published in
one equation in [14]

Uy + pu; — Au — wAu, = ulnlul, (x,t) € Q x (0, 00)
u(x,t) =0,x € 0Q,t >0 (1.5
u(x’ 0) = MO(X), ut(x’ O) = ul(X),X € Q’

where Q is a bounded domain of R”, n > 1 with a smooth boundary dQ2. The aim goal was mainly on
the local existence of weak solution by using contraction mapping principle and of course the authors
showed the global existence, decay rate and infinite time blow up of the solution with certain conditions
on initial energy.

In the case of non-bounded domain R”, we mention the paper recently published by T. Miyasita and
Kh. Zennir in [18], where they considered equation as follows

Uy + au, — p(x)A (u + wu, — f g(t — s)u(s) ds) = ululP!, (1.6)
0

with initial data

u,(x,0) = uy(x). (1.7)

The authors succeeded in highlighting the existence of unique local solution and they continued to
expand it to be global in time. The rate of the decay for solution was the main result, for more results
related to decay rate of solution of this type of problems, please see [15,23,25,28].

Regarding the study of the coupled system of two nonlinear wave equations, we mention the work
done by Baowei Feng et al. which was considered in [12], a coupled system for viscoelastic wave
equations with nonlinear sources in bounded domain with smooth boundary as follows

{ u(x,0) = uo(x)

e~ Au+ [ g(t = )Au(s)ds +u; = fi(u,v)
(1.8)
Ve — Av + fot h(t — $)Av(s)ds +v, = fo(u,v).

Under appropriate hypotheses, they established a general decay result by multiplication techniques to
extend some existing results for a single equation to the case of a coupled system.

There are several results in this direction, notably the generalization made by Shun in a complicate
nonlinear case with degenerate damping term in [21]. The IBVP for a system of nonlinear viscoelastic
wave equations in a bounded domain was considered in the problem

iy = D+ ) gt = $)Au(s)ds + (ut + WOl = fiu,v)

Ve — Av + fot h(t = $)Av(s) ds + (W’ + ) v~ v, = fo(u, v)

u(x,t) =v(x,t) =0,x € 0Q,t >0 (1.9)
u(x, 0) = up(x), v(x, 0) = vo(x)

u(x,0) = u1(x), vi(x,0) = vi(x),
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where Q is a bounded domain with a smooth boundary. Given certain conditions on the kernel
functions, degenerate damping and nonlinear source terms, they got a decay rate of the energy function
for some initial data.

In n—equations, paper in [1] considered a system

m
Wit + YUy — Ay + u; = Z o7 il uzy, 1= 1,2, ,m, (1.10)

i,j=1,i#j

where the absence of global solutions with positive initial energy was investigated. Next, a
nonexistence of global solutions for system of three semilinear hyperbolic equations was introduced
in [3]. A coupled system of semilinear hyperbolic equations was investigated by many authors and
many results were obtained with the nonlinearities in the form f; = |ul/P"'W|7u, o = VP~ Hul7Hy.
(Please, see [2,16,22])

2. Preliminaries

We introduce the Sobolev embedding and generalized Poincaré inequalities.

Lemma 2.1. [13, 18] Let 0 satisfy (1.4). For positive constants C, > 0 and Cp > 0 depending only on
0 and n, we have

VIl 20 < CrlVllge s [VIIz2 < CplVilg
and
Ml < Co Al €, = Col6llE
hold forv € H. Here T =2n/(2n —rn + 2r) for 1 <r < 2n/(n - 2).

In the 1950s and 1970s, the linear theory of viscoelasticity was extensively developed and now, it
becomes widely used to represent this term using several improvements to the nature of decreasing the
kernel function. We assume that the kernel functions @; € C'(R*, R") satisfying

+00
1-@;=p;>0 for @ = f @i(s)ds, @(t) <0, @;(0) > 0. 2.1)
0
We mean by R* the set {r | 7 > 0}. Noting by
u(®) = max {@1 (1), 20 ... (D)}, (22)
and
! ! !
po(t) = min { f @1 (s)ds, f @ (s)ds, .. ., f @u(s)ds). (2.3)
20 % Jo 0 0

We assume that there is a function y € C!(R*,R") which is linear or is strictly convex C? function
on (0,&),& < @;(0), with (0) = x’(0) = 0 and a positive nonincreasing differentiable function
& 1[0, 00) — [0, 00), such that the novel properties

@) + (@) <0, x0)=0, x>0 and x"(0)>0,i=12,...,m, (2.4)
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satisfied for any o > 0.

We note that, if y is a strictly increasing convex C?— function on (0, 7] with x(0) = y’(0) = 0, then y has
an extension j, which is strictly increasing and strictly convex C>—function on (0, ). For example, ¥
can be given by

1 1
X(1) = 5)("(T)t2 + (@) —x" (Ol + x (1) - X' (07 + EX"(T)TZ, t>T.

Holder and Young’s inequalities give

(p+D/2
(p+D/2 2 2
||uiuj||Lga+l>/2 < (||Mi||L<p+1) + ||uj||L(p+l))
0 (2
(p+D)/2
2 2
< (pdlllz, + pill)” (2.5)
Thanks to Minkowski’s inequality to give
m (p+1) m (p+1)/2
2
Dl < )] ||uj||L<,,m)
=t Al j=1 v
. (p+1)/2
2
< oDl j||w] .
J=1
Then, there exist n > 0 such that
(p+D) -
N S P+ (p+1)/2
Z M] + 2” Z u]uj+1 L(l’+l)/2 + 2||umu1||L(p+])/2
J=1 j=1 ’ !

(p+1)
Ly

- (p+D)/2
< n[Z pj||uj||a) . (2.6)
j=1

We need to define positive constants 4y and &y by
1 1
o= and & = (5 - —— ). (2.7)

The mainly aim of the present paper is to obtain a novel decay rate of solution from the convexity
property of the function y given in Theorem 3.4.
We denote, as in [18], an eigenpair {(4;, €;)};cy € R X H of

—-O(x)Ae; = die; xeR",

for any i € N. Then
O0<ApH<AH<-- <A<+ T +00,

holds and {e;} is a complete orthonormal system in H.
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Definition 2.2. The vectors (u, us,...,u,) is said a weak solution to (1.1) on [0, T] if satisfies for

xeR"
f Ujnpidx + af ujpidx
Rn n

t
+ f Ox)V (uj + wuj — f @ j(t — s)u;(s) ds) Vodx
Rn 0
= f}(ul’ Uyy..., um)gojdx7 (28)
Rn
for all test functions ¢; € H, j=1,2,...,mfor almost all t € [0, T].

3. Statement of main results

The local solution (in time [0, 7]) is given in next Theorem.

Theorem 3.1. (Local existence) Assume that

and n > 3. (3.1

Let (w10, Usg, . . . Umo) € H™ and (uyy, uzy, ..., Up) € [LS(R")]'”. Under the assumptions (1.4)-(1.3) and
(2.1)-(2.4), suppose that
a+ Ajw > 0. (3.2)

Then (1.1) admits a unique local solution (uy, us, . .., u,) such that
(1,2, ..., Uy) € X7, Xp = C([0, T, H) N C'([0, T]; Li(RM),
Jor sufficiently small T > 0.

Remark 3.2. The constant A, introduced in (3.2) being the first eigenvalue of the operator —A.

We will show now the global solution in time established in Theorem 3.3. Let us introduce the
potential energy J : H™ — R defined by

S, ) = ) (1 - fo wj(s)ds) il + > (@i 0u). (3.3)
J=1 j=1

The modified energy is defined by

&(t) = Z||uﬂ||Lz+ —J(uy, ta, . . ., Uy) — f O(0)F (uy, U, . . . Uy )dX, (3.4)
j=1

Rn

NI'—*

here

(Wj ° W) (0= fo @(t = 5) |Iw(t) = w(s)liz ds,

forany w € L2 (R"), j=1,2,...,m
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Theorem 3.3. (Global existence) Let (1.4)-(1.3) and (2.1)-(2.4) hold. Under (3.1), (3.2) and for
sufficiently small (uyg, uyy), (U0, U1), - - - » (Unmo, Um1) € ‘HXL?(R”), problem (1.1) admits a unique global
solution (uy,uy, . .., u,) such that

(ul’ Uz, ..., l/lm) € Xm’ X = C([O’ +OO), 7-{) N Cl([07 +OO), Lz(Rn)) (35)
The decay rate for solution is given in the next Theorem.

Theorem 3.4. (Decay of solution) Let (1.4)-(1.3) and (2.1)-(2.4) hold. Under conditions (3.1), (3.2)
and

20p+1) (p-1)/2
= n(“E2e0) " < 1, (3.6)
p—1
there exists ty > 0 depending only on @, a, w, A, and x'(0) such that
t
0 < (1) < E(to) exp (— f &) (3.7)
o 1 _/J()(t)

holds for all t > t,.
In particular, by the positivity of i in (2.2), we have, as in [17],

0 < &) < E(ty) exp (—f u(s) ds),

for a single wave equation.

Lemma 3.5. For (uy,uy,...,u,) € X7, the functional &(t) associated with problem (1.1) is a
decreasing energy.

Proof. For0 <t <t, <T, we have

&) — &(1y)

t2d
= —&(d
fz. S o0t

o (" 2 2 1 2 1,
3 [ ke + ol + Sl 2o o)
j=1

< 0,

owing to (2.1)-(2.4). |

We define an inner product as

(v,w)*:a)f Vv'dex+af Ovw dx,
R” Re

and the associated norm is given by
IVl = V¥, v)..

Yv,w € H. By (3.2), we get

w,v), = wf Vv dx + af v dx > (wl, + a)f 6v? dx > 0.
Rﬂ n R)l

The following Lemma yields.

AIMS Mathematics Volume 6, Issue 6, 5502-5517.
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Lemma 3.6. Let 6 satisfy (1.4). Under condition (3.2), we get

Vo Vlly < IVl < yJw+ CR IVl ,

forveH.
4. Proof of existence results

We give here the outline of the proof for local solution by a standard procedure (See [15,28]).

Proof. (Of Theorem 3.1.) Let (uyg, u11), (20, U21), « - - (Uo, Upm1) € H X Lz(R"). The presence of the
nonlinear terms in the right hand side of our problem (1.1) gives us negative values of the energy. For
this purpose, for any fixed (uy, us,...,u,) € X7, we can obtain first, a weak solution of the related
system

Zj +azj — O(x)A (z.,- + wz.,-[) +O(x)A fot @ (t — 5)z;(s)ds

= filuy, up, ..., uy) .1

Zj(x,0) = ujo(x)

Zj(x,0) = uji(x).
The Faedo-Galerkin’s method consist to construct approximations of solutions (21, Zons - - - » Zmn» ) fOr
(4.1), then we obtain a prior estimates necessary to guarantee the convergence of approximations. In
the last step we pass to the limit of the approximations by using the compactness of some embedding in
the Sobolev spaces. The uniqueness is obtain by letting two solutions for (4.1) and then, after ordinary
calculations, we find that the solutions are equal.
Some details regarding the transition to ODE systems are given, for this end let {e;} be the Galerkin
basis and let

W, = spanieji,ej,.....ej,}, j=1,...,m.

Given initial data ujy € H, u;; € Lg(R“), we define the approximations
Zjn = Zn: gjin(Deji(x), 4.2)
i=1
which satisfy the following approximate problem
(ij,, ej,-) + (azj,,,, eﬁ) - (@(x)A (Zjn + a)zjm) , ej,-)
= —(@(x)A j: @ (t = 8)zju(s)ds, ej;) + (fj(ul, Upy ..U, €i), 4.3)
with initial conditions
Zjn(x, 0) = wy(x), Zju(x,0) = (%), 4.4)

which satisfies

uio = uj, strongly in H

AIMS Mathematics Volume 6, Issue 6, 5502-5517.



5510

u{" — uj, strongly in Li(R™). 4.5)

Taking e;; = g;; in (4.3) yields the following Cauchy problem for a ordinary differential equation with
unknown g

D) + agl (1) + 4 (&30 + wgly (1)

= A fo @ (t — s)g?i(s) ds + (f,-(ul, Uy, ..., um),gj,-), 4.6)

By using the Caratheodory Theorem for standard ordinary differential equations theory, the problem
(4.3)-(4.4) has a solutions (g1in, &2ins - - - » &min)i=1n € (H3[0,T])™ and by using the embedding
H™0,T] — C™[0, T], we deduce that the solution (g1s, &2ins - - - » Emin)i=1.n € (C?[0, T1)*. In turn, this
gives a unique (Zy,, Zon, - - - » Zmn) defined by (4.2) and satisfying (4.3).

To return to the problem (1.1), we should find a solution map

T (u17u27-'-9um) = (ZI’ZZ,---,Zm)

from X7 to X7. We are now ready to show that T is a contraction mapping in an appropriate subset of
X7 forasmall T > 0. Hence T has a fixed point

T(”l’ u2a AR um) = (ul’ u29 MR um)’
which gives a unique solution in X7. |

We will show the global solution. For this end, by using conditions on functions @ ;, we have

1
&) = EJ(MI’ Up, ..y ly) — f 0(X)F (uy, ua, . .., uy)dx
RIZ

1 1 m (p+1)
> —Juy,uy, ..., Uy — U

2 (1, uz ) Pt JZ_; i o

0
2 e (p+1)/2 ety

B p+ 1(” ; Ujlhjy L+ + ||MmM1||LZp+1)/2)

! n S 2 p+D)/2
- EJ(MI’MQ’M’M"Z) Cp+ I[ZPJHMJ“H]

j=1

! n (p+1)/2
> S up, . uy) — —— (S, U, o Uy

7 (uy, uy ) Py 1( (ur, u ))
- on 4.7)

here 8% = J(uy,u,, . . .,u,), for t € [0, T), where
1 n
G = &2~ 1),
€3] 2§ Py lf

AIMS Mathematics Volume 6, Issue 6, 5502-5517.
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Noting that &) = G(4y), given in (2.7). Then

G) >0 in &£€0, 1]
(4.8)
G(E) <0 in &> Ay.

Moreover, flim G(¢) — —oo. Then, we have the following Lemma
E—+00

Lemma 4.1. Let 0 < E(0) < &,.
) If 3, ||u,0||2H < /IS, then local solution of (1.1) satisfies
j=1

J(uy, g, ... uy) < A2, Yt €[0,7).

@) If Y. ||u‘,~0||;{ > /1(2), then, local solution of (1.1) satisfies
j=1

Z ||Mj||i, > A3, Ve [0,T), 4, > Ag.

=

Proof. Since 0 < &) < & = G(Ay), there exist & and &, such that G(&)) = G(&) = &) with
0< é:l < /10 < fz.
The case (i). By (4.7), we have

G(J (w10, 20, . . - Umo)) < E0) = G(&y),

which implies that J(uy, U2, . . . Upmg) < ff. Then, we claim that J(u;, us, ..., u,) < &, Vt € [0,7).
Moreover, there exists 7, € (0, T') such that

& < Jui(to), ux(to), . . ., un(10)) < &.

Then
G(J(u1(10), ux(to), . . . , um(fp)) > E(0) = E(to),

by Lemma 3.5, which contradicts (4.7). Hence we have

J(ui g, ... uy) < E < A5, Y1 €[0,7).

The case (ii). We can now show that ) ||uj0||; > & and that ), ||uj||fH > & > A3 in the same way as
J=1 j=1

(@). |

Proof. (Of Theorem 3.3.) Let (ug, u11), (20, Uz1), . . ., (U0, Up1) € H X Lg(R") satisfy both 0 < &(0) <

&Ep and ) ||uj0||§{ < /1(2). By Lemma 3.5 and Lemma 4.1, we have
j=1

m m

2 2
E , ||”jt||Lg + E P il
J=1 J=1

AIMS Mathematics Volume 6, Issue 6, 5502-5517.
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et 2 1(1- [ ook« (o)
=1 -1

26(1) + z )

j=1

)(p+1)/2

277
< 28(0) + o 1(J(u1,u2, T

2
<28 + —L o+
p+1

- (4.9)
This completes the proof. O
5. Proof of general decay result

Let

A(ul’u2a--~aum) =

21 [ o)l (o)

9()(:)7:(1/!1, Uyy..., um)dx’

%g}l\.)l

Oy, usy ..o yuy) = Z (l—fw,(s)ds)”u,”q{ ( ouj)]
=1

— (p+ 1) | OX)F (uy,us,...,u,dx.
Rn

Lemma 5.1. Let (uy,u,,...,u,) be the solution of problem (1.1). If
< 2
> Nuoll, - o+ 1)f O)F (1, ttz, .. ., ) > 0. (5.1)
j:1 R)l

Then, under condition (3.6), the functional 11(u,, us, . ..,u,) > 0, Yt > 0.

Proof. By (5.1) and continuity, there exists a time #; > 0 such that
(uy, uy, ..., u,) = 0,Vt <.
Let
Y = {(uy,un, ... uy) | (uy(2o), usx(to), - . . s t(t)) = 0, (uy, us, ..., u,) > 0,Vt € [0,19)}).  (5.2)
Then, by (5.1), we have for all (uy,uy,...,u,) €Y,

A(ub Uz, ..., l/lm)

AIMS Mathematics Volume 6, Issue 6, 5502-5517.
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-1
:2(p+1 ( f w]<s)ds)||uj||ﬂ

-1 & 1
+2Z)+1);(wjouj)+p Uy ..., Upy)
-1 <&
> 2(12_’_ 1 < [p]“u]H‘H (wjouj)].

Owing to (3.4), it follows for (uy, us, ..., u,) €Y

2(p + 1) 2(p + 1) 2(p + 1)
pP- pP-

A(uy, ug, ..., uy) < &) <

p; |l < &(0). (5.3)

By (2.6), (3.6) we have

(p+ 1)f F (u1(t0), ux(to), - . . , unm(1o))
Rﬂ

n (p+1)/2
< UZ(pj||uj(fo)||;)p
2p + 1
< ( (p+ ) (O) <p /2 Zp,Hu](to)HH
j=1
< vzpjﬂuj(fo)“;

Ms

(1- f @;()ds) ||u )|,

.
1l

Ms

(1- f @ (s)ds) ||u o),

.
1l

M=

(@ o u(to)), (5.4

~.
I
—_

hence I1(u(ty), ux(ty),...,un(ts)) > 0 on Y, which contradicts the definition of Y since
II(uq(2), ux(ty), . . ., uym(ty)) = 0. Thus I1(uy, uy, ..., u,) >0, ¥t > 0. O

We are ready to prove the decay rate.

Proof. (Of Theorem 3.4.) By (2.6) and (5.3), we have for ¢t > 0

“ 2 1
0< Y pillull, < 2P, 55)
=1
Let ©
u
(0= —""_
= T

AIMS Mathematics Volume 6, Issue 6, 5502-5517.
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where u and y defined in (2.2) and (2.3).
Noting that lim u(z) = 0 by (2.1)-(2.3), we have
t—+00

lim I(r) =0, I(t) >0, ¥Vt > 0.
t—+0c0
Then, we take 7y > 0 such that
0<I(r)< mion 2(wA, +a), £ (0)}, (5.6)
1>

with (2.4) for all r > fy. Due to (3.4), we have

N =
Ngh
l\)l’—‘
Ingh

&) <

leill; +
1 J

1< '
w]ou] EZ(I—waj(s)ds)”uj”i{
=1

(wj o uj) + 5(1 = Ho(D) Z ””J”;ZH :
=1

1

J

INgE

1
sl + 2

IA
N | —
gt

1l
—_
1l
—_

J J

Then, by definition of /(¢), we have
1 = 1 - 1 <
108 < 510) ; Jueally; + Sucy ; el + 510 ]Z:; (@ 0u;). (5.7)

and Lemma 3.5, we have for all #;,1, > 0

E(ty) — &(1y)

1 m n 1 =z
:fPZwmwaWmﬁymzwmdf
1 =1 j=1 Jj=1
53 1 m ,
' f > D@ oupdr
I3 j:l

then, by generalized Poincaré’s inequalities, we get

m 1 m &
8’(I) < —(wAd; +a) Z ||l/tﬂ||i§ - EIU(I) Z ||I/t]||§_{ + E Z(w; o Llj),
=1 =1 =1

Finally, by (5.6), Yt > ty, we have
@)+ I(HE®)

{ 10 (@l + a>} e

j=1

Z 1
Z(w oup) + 510 Z(w,- o uj)
=1

IA

SR

DM 2

fo (@t - 0) + 1Ot = O} |u,(0) = uy@)];, dr

IA
N —

~.
I
—_
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1 m
< EZf (@) + 10w O} [, = e = D, dr
1 m
< EZ f -&(1)x w](T))+§(T)X (O)wj(r)}”u](t) u(t — T)||W dr
j=1
< 0,

by the convexity of y and (2.4), we have

§(x(0) = £t (0) + ' (0)o = (X' (0)o.

Then .
E(1) < E(1p) exp (—f I(s)ds),

which completes the proof. O
6. Conclusions

The paper deals with a kind of m—nonlinear wave equations with viscoelastic structures. We
considered the local existence, global existence and exponential decay rate of solution. We discussed
the effects of weak and strong damping terms on decay rate. The methods are standard for local
existence and we extended the local solution to a global one by appropriate energy estimates. At last,
We obtained a novel decay rate of solution from the convexity property of the function which extends
the results in [Math. Meth. Appl. Sci., 43(3), 1138 (2020); Mathematics 8(2), 203 (2020)]. The

treatment of Cauchy problem for a family of effectively damped single wave models with a nonlinear
memory on the righthand side, that is for x € R”

g + (L + 0w, — A(u+ wu,) = f(t = 8) u(s, )l|Pds (6.1)
0

where w > 0,p > 1,r € (—1,1) and y € (0, 1), remains as an open problem, which will be our next
work, based on [4,5,10,11].
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