Citation: Svyatoslav Lebedev, Elena Sheida, Irina Vershinina, Victoria Grechkina, Ilmira Gubaidullina, Sergey Miroshnikov, Oksana Shoshina. Use of chromium nanoparticles as a protector of digestive enzymes and biochemical parameters for various sources of fat in the diet of calves[J]. AIMS Agriculture and Food, 2021, 6(1): 14-31. doi: 10.3934/agrfood.2021002
[1] | Rajab Ali Borzooei, Hee Sik Kim, Young Bae Jun, Sun Shin Ahn . MBJ-neutrosophic subalgebras and filters in BE-algebras. AIMS Mathematics, 2022, 7(4): 6016-6033. doi: 10.3934/math.2022335 |
[2] | Songsong Dai . Quasi-MV algebras for complex fuzzy logic. AIMS Mathematics, 2022, 7(1): 1416-1428. doi: 10.3934/math.2022083 |
[3] | Muhammad Jawad, Niat Nigar, Sarka Hoskova-Mayerova, Bijan Davvaz, Muhammad Haris Mateen . Fundamental theorems of group isomorphism under the framework of complex intuitionistic fuzzy set. AIMS Mathematics, 2025, 10(1): 1900-1920. doi: 10.3934/math.2025088 |
[4] | Zhuonan Wu, Zengtai Gong . Algebraic structure of some complex intuitionistic fuzzy subgroups and their homomorphism. AIMS Mathematics, 2025, 10(2): 4067-4091. doi: 10.3934/math.2025189 |
[5] | Man Jiang . Properties of R0-algebra based on hesitant fuzzy MP filters and congruence relations. AIMS Mathematics, 2022, 7(7): 13410-13422. doi: 10.3934/math.2022741 |
[6] | Akarachai Satirad, Ronnason Chinram, Aiyared Iampan . Pythagorean fuzzy sets in UP-algebras and approximations. AIMS Mathematics, 2021, 6(6): 6002-6032. doi: 10.3934/math.2021354 |
[7] | K. Tamilselvan, V. Visalakshi, Prasanalakshmi Balaji . Applications of picture fuzzy filters: performance evaluation of an employee using clustering algorithm. AIMS Mathematics, 2023, 8(9): 21069-21088. doi: 10.3934/math.20231073 |
[8] | Tehreem, Harish Garg, Kinza Ayaz, Walid Emam . Multi attribute decision-making algorithms using Hamacher Choquet-integral operators with complex intuitionistic fuzzy information. AIMS Mathematics, 2024, 9(12): 35860-35884. doi: 10.3934/math.20241700 |
[9] | Admi Nazra, Jenizon, Yudiantri Asdi, Zulvera . Generalized hesitant intuitionistic fuzzy N-soft sets-first result. AIMS Mathematics, 2022, 7(7): 12650-12670. doi: 10.3934/math.2022700 |
[10] | Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613 |
Hoops are algebraic structure which are introduced by B. Bosbach in [5,6] are naturally ordered commutative residuated integral monoids. In the last years, some mathematician studied hoop theory in different fields [1,2,3,5,6,7,8,9,10,17,19]. Most of these results have a very deep relation with fuzzy logic. Particularly, by using of some theorems and notions of finite basic hoops, in [1] the authors could find a short proof for completeness theorem for propositional basic logic, which is introduced by Hájek in [11]. BL-algebras, the familiar cases of hoops, are the algebraic structures corresponding to basic logic. In algebra of logics, there are some sub-algebras that are very important and have a fundamental role in these algebraic structures. They are very similar to normal subgroups in group theory and ideals in ring theory which we called them filters and by using these notion we can introduce a congruence relation on algebraic structures and study the quotient structure that is made by them. Kondo, in [14], introduced different kinds of filters such as implicative, positive implicative and fantastic filters of hoops and investigated some properties of them. Borzooei and Aaly Kologani in [7], investigated these filters deeply and they introduced some equivalent characterizations of these filters on hoops. Also, they studied the relation among these filters and they showed some equivalent characterizations of these filters.
Zadeh in [21] introduced the notion of fuzzy sets and different kinds of operations on them. After that mathematicians studied on them and applied it to diverse fields. Actually, fuzzy mathematics have reached by studying of fuzzy subsets and their application to mathematical contexts. Nowadays, fuzzy algebra is an important branch of mathematics and mathematicians studied it in different fileds. For example, Rosenfeld in [18] studied fuzzy sub-groups in 1971. After using the concept of fuzzy sets to group theory and defined the notion of fuzzy subgroups, in [21] by Rosenfeld, the different fuzzy algebraic concepts has been growing very fast [12,13,16] and applied in other algebraic structures such as lattices, semigroups, rings, ideals, modules and vector spaces. Moreover, the concepts related to fuzzy sets have been used in various fields, including its use in fuzzy graphs and its application in decision theory. Borzooei and Aaly Kologani in [8], studied the notions of fuzzy filter of hoops and the relation among them and characterized some properties of them. Also, they defined a congruence relation on hoops by a fuzzy filter and proved that the quotient structure of this relation is a hoop.
Atanassov for the first time introduced the term, an intuitionistic fuzzy set [4] that is an extended form of a fuzzy set. These are the sets containing elements having degrees of membership and non-membership. Intuitionistic fuzzy sets are more adaptable and real intending to the uncertainty and vagueness than the conventional fuzzy sets. The foremost critical property of intuitionistic fuzzy sets not shared by the fuzzy sets is that modular operators can be characterized over intuitionistic fuzzy sets. The intuitionistic fuzzy sets have basically higher depicting conceivable outcomes than fuzzy sets. Also, there are a lot of applications of intuitionistic fuzzy sets in decision making, pattern recognition, medical diagnosis, neural models, image processing, market prediction, color region extraction, and others. In the last years, some mathematician studied intuitionistic fuzzy sets in different fields [15,20]. In decision-making problems, the use of fuzzy approaches is ubiquitous. The purpose of these intuitionistic fuzzy sets is, to provide a new approach with useful mathematical tools to address the fundamental problem of decision-making. The generality of the fuzzy set is given special importance, illustrating how many interesting decision-making problems can be formulated as a problem of fuzzy sets. These applied contexts provide solid evidence of the wide applications of fuzzy sets approach to model and research decision-making problems.
Now, in the following we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.
In this section, we refer to the basic concepts and properties required in the field of hoop and fuzzy sets that we will use in the following sections.
A hoop is an algebraic structure (H,∗,↠,1) such that, for any d,s,q∈H:
(HP1) (H,∗,1) is a commutative monoid,
(HP2) d↠d=1,
(HP3) (d∗s)↠q=d↠(s↠q),
(HP4) d∗(d↠s)=s∗(s↠d).
On hoop H, we define the relation ⪯ by d⪯s iff d↠s=1. Obviously, (H,⪯) is a poset. A hoop H is said to be bounded if H has a least element such as 0, it means that for all d∈H, we have 0⪯d. Define d0=1,dn=dn−1∗d, for any n∈N. If H is bounded, then we can introduce a unary operation "′" on H such that d′=d↠0, for any d∈H. The bounded hoop H is said to have the double negation property, or (DNP), for short if (d′)′=d, for any d∈H (see [1]).
The next proposition provides some properties of hoop.
Proposition 2.1. [5,6] Suppose (H,∗,↠,1) is a hoop and d,s,q∈H. Then:
(i) (H,⪯) is a ∧-semilattice with d∧s=d∗(d↠s).
(ii) d∗s⪯q iff d⪯s↠q.
(iii) d∗s⪯d,s and dn⪯d, for any n∈N.
(iv) d⪯s↠d.
(v) 1↠d=d.
(vi) d↠1=1.
(vii) d∗(d↠s)⪯s.
(viii) d⪯(d↠s)↠s.
(ix) d↠s⪯(s↠q)↠(d↠q).
(x) (d↠s)∗(s↠q)⪯d↠q.
(xi) d⪯s implies d∗q⪯s∗q.
(xii) d⪯s implies q↠d⪯q↠s.
(xiii) d⪯s implies s↠q⪯d↠q.
(xiv) ((d↠s)↠s)↠s=d↠s.
Proposition 2.2. [5,6] Suppose H is a bounded hoop and d,s∈H. Then:
(i) d⪯d″.
(ii) d∗d′=0.
(iii) d′⪯d↠s.
Proposition 2.3. [10] Let H be a hoop and d,s∈H. Define a binary operation ⊔ on H as d⊔s=((d↠s)↠s)∧((s↠d)↠d). Then for any d,s,q∈H, the next conditions are equivalent:
(i) ⊔ is associative,
(ii) d⪯s implies d⊔q⪯s⊔q,
(iii) d⊔(s∧q)⪯(d⊔s)∧(d⊔q),
(iv) ⊔ is the join operation on H.
Remark 2.4. A hoop H is said to be a ⊔-hoop if ⊔ satisfies in one of the conditions of Proposition 2.3. Note that any ⊔-hoop (H,⊔,∧) is a distributive lattice (see [10]).
A non-empty subset K of H is said to be a filter of H if (F1): d,s∈K implies d∗s∈K, (F2): d∈K and d⪯s imply s∈K, for any d,s∈H. This definition is equal with, if 1∈K and if d,d↠s∈K, then s∈K, for any d,s∈H. We use F(H) to denote the set of all filters of H. Clearly, 1∈K, for all K∈F(H). A proper filter is a filter which is not equal to H. Obviously, a filter is proper iff 0∉H if H is a bounded hoop. Assume ∅≠K⊆H such that 1∈K. Then K is called an implicative filter of H if, d↠((s↠q)↠s)∈K and d∈K imply s∈K, for any d,s,q∈H, is called a positive implicative filter of H if, (d∗s)↠q∈K and d↠s∈K imply d↠q∈K, for any d,s,q∈H, is called a fantastic filter of H if q↠(s↠d)∈K and q∈K imply ((d↠s)↠s)↠d∈K, for any d,s,q∈H (see [10,14]).
Let H be a set. A fuzzy set ς on H is a map ς:H→[0,1]. Let ϱB,ςB:H→[0,1] be two fuzzy sets on H and mapping B:H→[0,1]×[0,1] is defined by B(d)=(ςB(d),ϱB(d)), for any d∈H. Then B=(ςB,ϱB) is called an intuitionistic fuzzy set or an IF-set of H if ςB(x)+ϱB(d)⪯1, for all d∈H or denoted by B={⟨d,ςB(d),ϱB(d)⟩∣d∈H}. The family of all intuitionistic fuzzy sets on H will be denoted by IFS(H). Let B=(ςB,ϱB),C=(ςC,ϱC)∈IFS(H). Then we define B∩C=(ςB∧ςC,ϱB∨ϱC),B∪C=(ςB∨ςC,ϱB∧ϱC) and B⊆C iff ςB⪯ςC,ϱB⪰ϱC. Let B=(ςB,ϱB) and C=(ςC,ϱC) be two IF-sets on H. Then, for any d∈H, we define a relation between them as follows:
B⪯Ciff(ςB(d)<ςC(d))or(ςB(d)=ςC(d)andϱB(d)⪯ϱC(d)) |
A fuzzy set ς on hoop H is called a fuzzy filter of H if for all d,s∈H, ς(d)⪯ς(1) and
ς(d)∧ς(d↠s)=min{ς(d),ς(d↠s)}⪯ς(s) (See[8]) |
Proposition 2.5. [8] Let ς be a fuzzy filter on hoop H. Then, for any d,s∈H, d⪯s implies ς(d)⪯ς(s).
Theorem 2.6. [8] Let ς be a fuzzy set on hoop H and for r∈[0,1] ςr={d∈H∣ς(d)⪰r}. Then ς is a fuzzy filter of H iff for any r∈[0,1], ςr≠∅ is a filter of H.
Theorem 2.7. [8] Let ς be a fuzzy filter on hoop H and fuzzy relation ≈ς on hoop H is defined by
d≈ςsiffς(d↠s)∧ς(s↠d)=ς(1),foranyd,s∈H. |
Then ≈ς is a congruence relation on H.
Theorem 2.8. [8] Suppose H is a hoop and H≈ς={[e]ς∣e∈H}. Define the operations ⊗ and ↪ on H≈ς as follows:
[e]ς⊗[k]ς=[e∗k]ςand[e]ς↪[k]ς=[e↠k]ς |
Then (H≈ς,⊙,↪,[1]ς) is a hoop.
Notation. In the following, we will consider in this article H as a hoop and ς and ϱ as fuzzy sets. Moreover, the set of all fuzzy filters of H and anti-fuzzy filter of H are denoted by FF(H) and AFF(H), respectively.
In this section, the concept of anti-fuzzy filter on hoop H is defined and some related results are investigated.
A complement of ς is the fuzzy set ςc which is defined by, ςc(d)=1−ς(d), for any d∈H.
Definition 3.1. ϱ is called an anti-fuzzy filter of H if for any d,s∈H:
(AFF1) ϱ(d∗s)⪯max{ϱ(d),ϱ(s)}=ϱ(d)∨ϱ(s),
(AFF2) if d⪯s, then ϱ(s)⪯ϱ(d).
Example 3.2. Let H={0,e,k,1} be a chain such that 0⪯e⪯k⪯1. Define the operations ∗ and ↠ on H as follows:
![]() |
Then (H,∗,↠,0,1) is a bounded hoop. Define ϱ:H→H such that ϱ(1)=0, ϱ(0)=ϱ(e)=0.5 and ϱ(k)=0.3. Then ϱ is an anti-fuzzy filter of H.
Remark 3.3. (1) The following statements hold:
(i) ς∈FF(H) iff ςc∈AFF(H).
(ii) ϱ∈AFF(H) iff ϱc∈FF(H).
(2) It is easy to see that ς(d)⪯ς(1)(ϱ(1)⪯ϱ(d)) and ς(0)⪯ς(d)(ϱ(d)⪯ϱ(0)), for any d∈H.
Theorem 3.4. Suppose for any r∈[0,1], we have ϱr={d∈H∣ϱ(d)⪯r}. Then ϱ∈AFF(H) iff for any r∈[0,1], ϱr≠∅ is a filter of H.
Proof. The proof is clear. In the next proposition we investigate some properties of anti-fuzzy filters of hoops.
Proposition 3.5. Assume ϱ(1)⪯ϱ(d), for all d∈H. Then for all d,s,q∈H, the next statements are equivalent:
(i) ϱ∈AFF(H),
(ii) If d⪯s↠q, then ϱ(q)⪯ϱ(d)∨ϱ(s),
(iii) ϱ(d↠q)⪯ϱ(d↠s)∨ϱ(s↠q),
(iv) ϱ(s∗q)⪯ϱ(d∗q)∨ϱ(d↠s),
(v) ϱ(d↠q)⪯ϱ((d↠s)↠q)∨ϱ(s).
Proof. (i)⇒(ii) Let ϱ∈AFF(H) and d,s,q∈H such that d⪯s↠q. Then ϱ(s↠q)⪯ϱ(d). By Proposition 2.1(vii), s∗(s↠q)⪯q, since ϱ∈AFF(H), we have ϱ(q)⪯ϱ(s∗(s↠q))⪯ϱ(s)∨ϱ(s↠q). Hence, ϱ(q)⪯ϱ(s)∨ϱ(d).
(ii)⇒(iii) By Proposition 2.1(ix), d↠s⪯(s↠q)↠(d↠q). Then by (ii),
ϱ(d↠q)⪯ϱ(s↠q)∨ϱ(d↠s). |
(iii)⇒(i) Let d⪯s, then d↠s=1. Thus, by (iii) and assumption,
ϱ(s)=ϱ(1↠s)⪯ϱ(1↠d)∨ϱ(d↠s)=ϱ(d)∨ϱ(1)=ϱ(d). |
Also, from d∗s⪯d∗s, by Proposition 2.1(ii), d⪯s↠(d∗s), then ϱ(s↠(d∗s))⪯ϱ(d). Let d=1 and q=d∗s in (iii). Then
ϱ(d∗s)=ϱ(1↠(d∗s))⪯ϱ(1↠s)∨ϱ(s↠(d∗s))⪯ϱ(s)∨ϱ(d). |
Hence, ϱ∈AFF(H).
(ii)⇒(iv) By Proposition 2.1(vii) and (xi), (q∗d)∗(d↠s)⪯q∗s. Then q∗d⪯(d↠s)↠(q∗s). Thus, by (ii), ϱ(q∗s)⪯ϱ(q∗d)∨ϱ(d↠s).
(iv)⇒(v) Let d,s,q∈H. By Proposition 2.1(iii) and (iv), d∗s⪯s⪯d↠s. Then by Proposition 2.1(xiii) and (HP3),
(d↠s)↠q⪯(d∗s)↠q=s↠(d↠q). |
Thus, by Proposition 2.1(vii), s∗((d↠s)↠q)⪯d↠q. Also, if d⪯s, let q=1 in (iv), then by assumption ϱ(s)=ϱ(1∗s)⪯ϱ(d∗1)∨ϱ(d↠s)=ϱ(d), and so ϱ(d↠q)⪯ϱ(s∗((d↠s)↠q)). Moreover, if q=d and d=1 in (iv), then ϱ(d∗s)⪯ϱ(d)∨ϱ(s). Hence,
ϱ(d↠q)⪯ϱ(s∗((d↠s)↠q))⪯ϱ(s)∨ϱ((d↠s)↠q)). |
(v)⇒(ii) Let d⪯s. Then d↠s=1. It is enough to choose d=1,q=s and s=d in (v). Thus, by assumption,
ϱ(s)=ϱ(1↠s)⪯ϱ((1↠d)↠s)∨ϱ(d)=ϱ(d↠s)∨ϱ(d)=ϱ(1)∨ϱ(d)=ϱ(d). |
So, if d⪯s↠q, then ϱ(s↠q)⪯ϱ(d). Now, let d=1 in (v), then
ϱ(q)=ϱ(1↠q)⪯ϱ((1↠s)↠q)∨ϱ(s)=ϱ(s↠q)∨ϱ(s)⪯ϱ(d)∨ϱ(s). |
Theorem 3.6. Let ϱ∈AFF(H) and fuzzy relation ≈ϱ on H be defined by
d≈ϱsiffϱ(d↠s)∨ϱ(s↠d)=ϱ(1),foranyd,s∈H. |
Then ≈ϱ is a congruence relation on H.
Proof. Since ϱ∈AFF(H), for all d∈H, we get
ϱ(d↠d)∨ϱ(d↠d)=ϱ(1)iffd≈ϱd. |
Hence ≈ϱ is reflexive. Clearly, ≈ϱ is symmetric. Now, suppose d≈ϱs and s≈ϱq, for d,s,q∈H. Then ϱ(d↠s)∨ϱ(s↠d)=ϱ(1) and ϱ(s↠q)∨ϱ(q↠s)=ϱ(1). Thus,
ϱ(d↠s)∨ϱ(s↠d)∨ϱ(s↠q)∨ϱ(q↠s)=ϱ(1). |
Moreover, since ϱ is an anti-fuzzy filter, by Propositions 2.1(x), 3.5(iii) and Remark 3.3(2), we have
ϱ(d↠q)∨ϱ(q↠d)⪯ϱ((d↠s)∗(s↠q))∨ϱ((q↠s)∗(s↠d))⪯[ϱ(d↠s)∨ϱ(s↠q)]∨[ϱ(q↠s)∨ϱ(s↠d)]=ϱ(1). |
So, d≈ϱq and this means that ≈ϱ is transitive. Hence, ≈ϱ is an equivalence relation. Now, we prove that ≈ϱ is a congruence relation. Let d,s,q∈H such that d≈ϱs. Then ϱ(d↠s)∨ϱ(s↠d)=ϱ(1). Since s∗q⪯s∗q, by Proposition 2.1(ii) and (xii), d↠s⪯d↠(q↠(s∗q)). Thus by (HP3), d↠s⪯(d∗q)↠(s∗q). Since ϱ is an anti-fuzzy filter, ϱ(d↠s)⪰ϱ((d∗q)↠(s∗q)). By the similar way, ϱ(s↠d)⪰ϱ((s∗q)↠(d∗q)). Thus,
ϱ(1)=ϱ(d↠s)∨ϱ(s↠d)⪰ϱ((d∗q)↠(s∗q))∨ϱ((q∗s)↠(q∗d)). |
Hence, d∗q≈ϱs∗q. On the other hand, by Proposition 2.1(ix), d↠s⪯(s↠q)↠(d↠q), for any d,s,q∈H. From ϱ is an anti-fuzzy filter, ϱ(d↠s)⪰ϱ((s↠q)↠(d↠q)). By the similar way, ϱ(s↠d)⪰ϱ((d↠q)↠(s↠q)). Then
ϱ(1)=ϱ(d↠s)∨ϱ(s↠d)⪰ϱ((s↠q)↠(d↠q))∨ϱ((d↠q)↠(s↠q)), |
and so d↠q≈ϱs↠q. By the similar way, we can see q↠d≈ϱq↠s. Therefore, ≈ϱ is a congruence relation on H.
For any e∈H, [e]ϱ denotes the equivalence class of e with respect to ≈ϱ. Clearly
[e]ϱ={d∈H∣e≈ϱd}={d∈H∣ϱ(e↠d)∨ϱ(d↠e)=ϱ(1)}. |
Theorem 3.7. Let H≈ϱ={[e]ϱ∣e∈H} and operations ⊗ and ↪ on H≈ϱ defined as follows:
[e]ϱ⊗[k]ϱ=[e∗k]ϱand[e]ϱ↪[k]ϱ=[e↠k]ϱ. |
Then (H≈ϱ,⊗,↪,[1]ϱ) is a hoop.
Proof. We have [e]ϱ=[k]ϱ and [m]ϱ=[z]ϱ iff e≈ϱk and m≈ϱz. Since ≈ϱ is the congruence relation on H, we get that all above operations are well-defined. Thus, by routine calculation, we can see that H≈ϱ is a hoop. Now, we define a binary relation on H≈ϱ by
[e]ϱ⪯[k]ϱiffϱ(e↠k)=ϱ(1),foranye,k∈H. |
Easily we can see (H≈ϱ,⪯) is a partial order monoid.
Example 3.8. Let H be the hoop as in Example 3.2. Define a map ϱ:H→H by ϱ(1)=ϱ(k)=0.3 and ϱ(0)=ϱ(e)=0.5. Then, we have [0]ϱ={0}, [e]ϱ={e} and [k]ϱ=[1]ϱ={k,1}. Hence, H≈ϱ={[0]ϱ,[e]ϱ,[1]ϱ}, which by the operations defining in Theorem 3.7 is a hoop.
In the following, we define the concept of intuitionistic fuzzy filter on hoop H and investigate some related results.
Definition 4.1. An intuitionistic fuzzy set or IF-set B=(ςB,ϱB) on H is called an intuitionistic fuzzy filte or an IF-filter of H if, for any d,s∈H, it satisfies the next conditions:
(IFF1) if d⪯s, then ςB(d)⪯ςB(s) and ϱB(s)⪯ϱB(d),
(IFF2) ςB(d∗s)⪰ςB(d)∧ςB(s),
(IFF3) ϱB(d∗s)⪯ϱB(d)∨ϱB(s).
The family of all intuitionistic fuzzy filters of H will be denoted by IFF(H).
Example 4.2. Let H be the hoop as in Example 3.2. Define ςB(1)=0.9, ςB(0)=ςB(e)=0.5, ςB(k)=0.7 and ϱB(1)=0.1, ϱB(0)=ϱB(e)=0.5 and ϱB(k)=0.3. Then B=(ςB,ϱB) is an intuitionistic fuzzy filter on H.
Proposition 4.3. An IF-set B=(ςB,ϱB) on A is an IF-filter iff ςB∈FF(H) and ϱB∈AFF(H) such that ςB(d)+ϱB(d)⪯1.
Proof. By Definitions 3.1, 4.1 and Proposition 2.5, the proof is clear. In the next example, we show that the condition ςB(d)+ϱB(d)⪯1, for any d∈H is necessary.
Example 4.4. Let H be the hoop as in Example 3.2. Define
ςB(1)=1,ςB(e)=ςB(0)=0.5,ςB(k)=0.7 , ϱB(1)=0.7,ϱB(e)=ϱB(0)=0.9,ϱB(k)=0.8. |
Clearly, ςB∈FF(H) and ϱB∈AFF(H) such that ςB(1)+ϱB(1)⪰1. Hence, B=(ςB,ϱB) is not an IF-set of H.
In the next proposition we prove that by a fuzzy filter (anti-fuzzy filter) on A we can make an IF-filter.
Proposition 4.5. Let B=(ςB,ϱB) be an IF-set on H. Then B is an IF-filter iff BC=(ςB,ςcB) and CB=(ϱcB,ϱB) are IF-filters of H.
Proof. (⇒) Let B=(ςB,ϱB) be an IF-filter of H. By Definition 4.1, ςB∈FF(H) and ϱB∈AFF(H). Thus, by Remark 3.3, ςcB∈AFF(H) and νcB∈FF(H). Also, from ςB+ςcB⪯1 and ϱB+ϱcB⪯1, obviously, BC=(ςB,ςcB) and CB=(ϱcB,ϱB) are IF-filters of H.
(⇐) Let BC=(ςB,ςcB) and CB=(ϱcB,ϱB) be IF-filters of H. Then ςB∈FF(H) and ϱB∈AFF(H). From, B=(ςB,ϱB) is an IF-set on H, then ςB+ϱB⪯1. Thus, by Proposition 4.3, B is an IF-filter of H.
Theorem 4.6. Let B=(ςB,ϱB) be an IF-set on H and for any r∈[0,1],
Br={d∈H∣ςB(d)⪰randϱB(d)⪯r}. |
Then B is an IF-filter of H iff for any r∈[0,1], Br≠∅ is a filter of H.
Proof. By Theorems 2.6, 3.4 and Proposition 4.3, the proof is clear. Now, we mainly investigate the lattice of all IF-filters by introducing the notion of tip-extended pair of IF-sets.
Proposition 4.7. Let {Bi=(ςBi,ϱBi)}i∈I be a set of IF-filters of H and fuzzy sets ⋀i∈IςBi and ⋁i∈IϱBi on H are defined as follows:
(⋀i∈IςBi)(d)=⋀i∈I{ςBi(d)∣i∈I} , (⋁i∈IϱBi)(d)=⋁i∈I{ϱBi(d)∣i∈I}, |
and IF-set ⋂i∈IBi on H, are defined by ⋂i∈IBi=(⋀i∈IςBi,⋁i∈IϱBi). Then B=⋂i∈IBi=(ςB,ϱB) is an IF-filter of H, too.
Proof. Let {Bi=(ςBi,ϱBi)}i∈I be a set of IF-filters of H and B=⋂i∈IBi=(ςB,ϱB) such that ςB=⋀i∈IςBi and ϱB=⋁i∈IϱBi. Let d,s,q∈H such that d⪯s↠q. Then
ςB(q)=(⋀i∈IςBi)(q)=⋀i∈I(ςBi(q))⪰⋀i∈I(ςBi(d)∧ςBi(s))=⋀i∈IςBi(d)∧⋀i∈IςBi(s)=ςB(d)∧ςB(s). |
ϱB(q)=(⋁i∈IϱBi)(q)=⋁i∈I(ϱBi(q))⪯⋁i∈I(ϱBi(d)∨ϱBi(s))=⋁i∈IϱBi(d)∨⋁i∈IϱBi(s)=ϱB(d)∨ϱB(s). |
In the next example we show that (⋁i∈IςBi,⋁i∈IϱBi) is not an IF-filter, in general.
Example 4.8. Let H be as Example 4.4 and;
ςB1(1)=0.4,ςB1(e)=ςB1(0)=0.2,ςB1(k)=0.3,ϱB1(1)=0.6,ϱB1(e)=ϱB1(0)=0.8andϱB1(k)=0.7ςB2(1)=0.5,ςB2(e)=ςB2(0)=0.3,ςB2(k)=0.4,ϱB2(1)=0.5,ϱB2(e)=ϱB2(0)=0.7andϱB2(k)=0.6ςB3(1)=1,ςB3(e)=ςB3(0)=0.5,ςB3(k)=0.7,ϱB3(1)=0,ϱB3(e)=ϱB3(0)=0.5andϱB3(k)=0.3ςB4(1)=0.3,ςB4(e)=ςB4(0)=0.1,ςB4(k)=0.2,ϱB4(1)=0.7,ϱB4(e)=ϱB4(0)=0.9andϱB4(k)=0.8
Then (∨ςB(1),∨ϱB(1))=(1,0.7) such that ςB+ϱB⪰1, which is a contradiction with definition of IF-set.
Let L be an IF-set on H. The intersection of all IF-filters containing L is called the generated IF-filter by L, denoted as ⟨L⟩.
Theorem 4.9. Let L=(ςL,ϱL) be an IF-set on H and B=(ςB,ϱB) is defined on H by;
ςB(d)=⋁e1∗e2∗...∗en⪯d{ςL(e1)∧ςL(e2)∧...∧ςL(en)}, |
and
ϱB(d)=⋀e1∗e2∗...∗en⪯d{ϱL(e1)∨ϱL(e2)∨...∨ϱL(en)}, |
for all d∈H, ei∈H, 1⪯i⪯n and n∈N. Then B=⟨L⟩.
Proof. First, we verify that B is an IF-filter. For all d,s∈H, such that d⪯s, the definition of B yields that ςB(d)⪯ςB(s) and ϱB(s)⪯ϱB(d). For all d,s,ei,kj,ml∈H, 1⪯i⪯n, 1⪯j⪯m, 1⪯l⪯k and n,m,k∈N, we have
ςB(d)∧ςB(s)=⋁e1∗e2∗...∗en⪯d{ςL(e1)∧ςL(e2)∧...∧ςL(en)}∧⋁k1∗k2∗...∗km⪯s{ςL(k1)∧ςL(k2)∧...∧ςL(km)}=⋁e1∗e2∗...∗en⪯d,⋁k1∗k2∗...∗km⪯s{ςL(e1)∧ςL(e2)∧...∧ςL(en) |
∧ςL(k1)∧ςL(k2)∧...∧ςL(km)}⪯⋁m1∗m2∗...∗mk⪯d∗s{ςL(m1)∧ςL(m2)∧...∧ςL(mk)}=ςB(d∗s) |
and
ϱB(d)∨ϱB(s)=⋀e1∗e2∗...∗en⪯d{ϱL(e1)∨ϱL(e2)∨...∨ϱL(en)}∨⋀k1∗k2∗...∗km⪯s{ϱL(k1)∨ϱL(k2)∨...∨ϱL(km)}=⋀e1∗e2∗...∗en⪯d,⋀k1∗k2∗...∗km⪯s{ϱL(e1)∨ϱL(e2)∨...∨ϱL(en)∨ϱL(k1)∨ϱL(k2)∨...∨ϱL(km)}⪰⋀m1∗m2∗...∗mk⪯d∗s{ϱL(m1)∨ϱL(m2)∨...∨ϱL(mk)}=ϱB(d∗s). |
Thus B is an IF-filter. Secondly, let C be an IF-filter such that L⊆C. By definition of IF-filter, for all d,s,ei∈H, 1⪯i⪯n and n∈N, it holds that
ςB(d)=⋁e1∗e2∗...∗en⪯d{ςL(e1)∧ςL(e2)∧...∧ςL(en)}⪯⋁e1∗e2∗...∗en⪯d{ςC(e1)∧ςC(e2)∧...∧ςC(en)}⪯⋁e1∗e2∗...∗en⪯d{ςC(e1∗e2∗...∗en)}⪯ςC(d) |
and
ϱB(d)=⋀e1∗e2∗...∗en⪯d{ϱL(e1)∨ϱL(e2)∨...∨ϱL(en)}⪰⋀e1∗e2∗...∗en⪯d{ϱC(e1)∨ϱC(e2)∨...∨ϱC(en)}⪰⋀e1∗e2∗...∗en⪯d{ϱC(e1∗e2∗...∗en)}⪰ϱC(d) |
and hence, B⊆C. Thus, B=⟨L⟩.
Associating with the above results, similar to the proof of ([15,Theorems 10–12]), we define the operations ⊓ and ⊔ on IF-filters of H in this way, B⊓C=B∩C and B⊔C=⟨B∪C⟩, for any B,C∈IFF(H).
Theorem 4.10. (IFF(H),⊓,⊔,∅,H) is a bounded distributive lattice.
Proof. The proof is similar to the proof of [15,Theorems 10–12].
Theorem 4.11. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} and fuzzy relation {\approx}_{\mathcal{{B}}} on {H} , for any {d}, {s}\in {H} , is defined by
{d}{\approx}_{\mathcal{{B}}} \;s\; \mathit{{iff}}\; {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\wedge {\varsigma}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varsigma}_{\mathcal{{B}}}(1) \ , \ {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {\varrho}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {\varrho}_{\mathcal{{B}}}(1). |
Then {\approx}_{\mathcal{{B}}} is a congruence relation on {H} .
Proof. The proof is similar to the proof of Theorems 2.7 and 3.6 .
Theorem 4.12. Let \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[{e}]_{\mathcal{{B}}}\mid {e}\in {H}\} and operations \odot and \hookrightarrow on \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} are defined as follows:
[{e}]_{\mathcal{{B}}}\odot [{k}]_{\mathcal{{B}}} = [{{e}{\ast} {k}}]_{\mathcal{{B}}}\; \mathit{{and}}\; [{e}]_{\mathcal{{B}}}\hookrightarrow [{k}]_{\mathcal{{B}}} = [{{e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}}]_{\mathcal{{B}}}. |
Also, we define a binary relation on \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} by
[{e}]_{\mathcal{{B}}}{\preceq} [{k}]_{\mathcal{{B}}}\; \mathit{{iff}}\; {\varsigma}_{\mathcal{{B}}}({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {\varsigma}_{\mathcal{{B}}}(1)\; \mathit{{and}}\; {\varrho}_{\mathcal{{B}}}({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {\varrho}_{\mathcal{{B}}}(1),\; \mathit{{for\; any}}\; {e},{k}\in {H}. |
Clearly, (\dfrac{{H}}{{\approx}_{\mathcal{{B}}}}, {\preceq}) is a poset. Then (\dfrac{{H}}{{\approx}_{\mathcal{{B}}}}, \odot, \hookrightarrow, [1]_{\mathcal{{B}}}) is a hoop.
Proof. The proof is similar to the proof of Theorems 2.8 and 3.7 .
Example 4.13. Let {H} be the hoop as in Example 3.2. Define {\varsigma}_{\mathcal{{B}}}(0) = {\varsigma}_{\mathcal{{B}}}({e}) = 0.5 , {\varsigma}_{\mathcal{{B}}}(1) = {\varsigma}_{\mathcal{{B}}}({k}) = 0.7 and {\varrho}_{\mathcal{{B}}}(0) = {\varrho}_{\mathcal{{B}}}({e}) = 0.5 and {\varrho}_{\mathcal{{B}}}(1) = {\varrho}_{\mathcal{{B}}}({k}) = 0.3 . Then \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an intuitionistic fuzzy filter on {H} and \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [{e}]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} with the operations defining in Theorem 4.12 is a hoop.
Here, we define the notions of intuitionistic fuzzy (positive) implicative filters on hoops and some related results are investigated. We find some equivalence characterizations of them.
Definition 5.1. An IF-set \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) on {H} is called an intuitionistic fuzzy implicative filter or an IF-implicative filter of {H} if for all {d}, {s}, {q}\in {H} , it satisfies the next conditions:
(IFIF_{1}) If {d}{\preceq} {s} , then {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d}) ,
(IFIF_{2}) {\varsigma}_{\mathcal{{B}}}({d})\wedge{\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d})\vee{\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) .
Example 5.2. Assume {H} = \{0, {e}, {k}, 1\} is a chain such that 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define two binary operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Clearly, ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a hoop. Define {\varsigma}_{\mathcal{{B}}} on {H} by {\varsigma}_{\mathcal{{B}}}(1) = {\varsigma}_{\mathcal{{B}}}({k}) = {\varsigma}_{\mathcal{{B}}}({e}) = {r}_{2} and {\varsigma}_{\mathcal{{B}}}(0) = {r}_{1} such that 0{\preceq} {r}_{1} < {r}_{2}{\preceq} 1 and {\varrho}_{\mathcal{{B}}} = 1-{\varsigma}_{\mathcal{{B}}} . One easily verify that \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-implicative filter.
Theorem 5.3. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set on {H} . Then \mathcal{{B}} is an IF-implicative filters of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is an implicative filter of {H} .
Proof. The proof is similar to the proof of Theorem 4.6 .
Theorem 5.4. Every IF-implicative filter of {H} is an IF-filter.
Proof. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter. By (IFIF_{1}) , obviously (IFF1) holds. Since {d}{\ast} {s}{\preceq} {d}{\ast} {s} , by Proposition 2.1 (ii), {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}) . Then by (IFIF_{1}) , {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}) . Also, since {{\varrho}_{\mathcal{{B}}}} is an IF-implicative filter, it is enough to choose {q} = 1 , then
{{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{\ast} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 1){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}))) = {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({s}). |
Similarly, we can see {{\varsigma}_{\mathcal{{B}}}}({d}{\ast} {s}){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({s}) . Hence, \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter. In the next example we can see that the converse of the previous theorem does not hold.
Example 5.5. Assume {H} = \{0, {e}, {k}, 1\} is a chain, where 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define two binary operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Hence ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a hoop. Define {\varsigma}_{\mathcal{{B}}}\in FF({H}) by {\varsigma}_{\mathcal{{B}}}(1) = {r}_{1}, \; {\varsigma}_{\mathcal{{B}}}({k}) = {r}_{2} and {\varsigma}_{\mathcal{{B}}}({e}) = {\varsigma}_{\mathcal{{B}}}(0) = {r}_{3} such that 0{\preceq} {r}_{3} < {r}_{2} < {r}_{1}{\preceq} 1 and {\varrho}_{\mathcal{{B}}} = 1-{\varsigma}_{\mathcal{{B}}} . One easily verify that \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} but \mathcal{{B}} is not an IF-implicative filter. Because {r}_{2} = {\varsigma}_{\mathcal{{B}}}({k}) = {\varsigma}_{\mathcal{{B}}}({k})\wedge {\varsigma}_{\mathcal{{B}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}))\nleq {\varsigma}_{\mathcal{{B}}}({e}) = {r}_{3} .
Theorem 5.6. Suppose {H} is bounded and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} . Then the next statements are equivalent, for all {d}, {s}\in {H} ,
(i) \mathcal{{B}} is an IF-implicative filter of {H} ,
(ii) {{\varsigma}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}) and {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}({d}) ,
(iii) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\wedge {{\varsigma}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) and {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) ,
(iv) {{\varsigma}_{\mathcal{{B}}}}(({d}{\ast} {s}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) and {{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {s}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) .
Proof. In this proof, we just prove the items of {\varrho}_{\mathcal{{B}}} . Also, since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Then as we notice, {{\varrho}_{\mathcal{{B}}}}(1){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) and {{\varsigma}_{\mathcal{{B}}}}(1){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}) , for any {d}\in {H} .
(i)\Rightarrow (ii) It is enough to let {d} = 1 in (IFIF_{2}) . Then
{{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
(ii)\Rightarrow (i) Let {d}, {s}, {q}\in {H} . Then by Proposition 2.1 (vii),
{d}{\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}. |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) , we get
{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
By (ⅱ),
{{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
Hence, \mathcal{{B}} is an IF-implicative filter of {H} .
(i)\Rightarrow (iv) Let {d}, {s}\in {H} . Then by Proposition 2.1 (iv) and (xii), {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})'{\preceq} {s}' . Again, by Proposition 2.1 (xiii), {s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) , {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) . Moreover, since {\mathcal{{B}}} is an IF-implicative filter of {H} , we have
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}(({s}'{\ast} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
(iv)\Rightarrow (iii) Let {d}, {s}, {q}\in {H} . Then by Proposition 2.1 (x),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) = (({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} ({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}. |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) ,
{{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}), |
by (iv), {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{\ast} {q}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) . Hence, {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) .
(iii)\Rightarrow (i) Let {d} = 1 and {q} = {s} in (iii). Then {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}))\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) , and so {{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Also, by Proposition 2.1 (vii),
{d}{\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}. |
Since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varrho}_{\mathcal{{B}}} \in AFF({H}) , then {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) . Moreover, by Proposition 2.1 (xiii) and Proposition 2.2 (iii), {s}'{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} , and so ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , thus, {{\varrho}_{\mathcal{{B}}}}({s}'{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Hence, {{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) .
Definition 5.7. Assume \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-set of {H} . Then \mathcal{{B}} is said to be an intuitionistic fuzzy positive implicative filter or an IF-positive implicative filter of {H} if, for all {d}, {s}, {q}\in {H} ,
(IFPIF_{1}) if {d}{\preceq} {s} , then {{\varsigma}_{\mathcal{{B}}}}({d}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({s}) and {{\varrho}_{\mathcal{{B}}}}({s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) ,
(IFPIF_{2}) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\wedge{{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) and {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) .
Example 5.8. Assume {H} = \{0, {e}, {k}, 1\} is a chain where 0{\preceq} {e}{\preceq} {k}{\preceq} 1 . Define two binary operations {\ast} and { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} on {H} as follows:
![]() |
Hence ({H}, {\ast}, { {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}, 0, 1) is a hoop. Define {\varsigma}_{\mathcal{{B}}}\in FF({H}) by {\varsigma}_{\mathcal{{B}}}(1) = {r}_{2} and {\varsigma}_{\mathcal{{B}}}({k}) = {\varsigma}_{\mathcal{{B}}}({e}) = {\varsigma}_{\mathcal{{B}}}(0) = {r}_{1} such that 0{\preceq} {r}_{1} < {r}_{2}{\preceq} 1 and let {\varrho}_{\mathcal{{B}}} = 1-{\varsigma}_{\mathcal{{B}}} . Clearly, \mathcal{{B}} is an IF-positive implicative filter.
Theorem 5.9. Let \mathcal{{B}} be an IF-set of {H} . Then \mathcal{{B}} is an IF-positive implicative filter of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is a positive implicative filter of {H} .
Proof. The proof is similar to the proof of Theorem 4.6 .
Theorem 5.10. Each IF-positive implicative filter of {H} is an IF-filter.
Proof. Assume \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-positive implicative filter of {H} . Then by (IFPIF_{1}) , obviously, (IFF1) holds. Moreover, by Proposition 2.1 (v) and (IFPIF_{2}) , we have
{{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}))) = {{\varrho}_{\mathcal{{B}}}}({s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})). |
Also, by Proposition 2.1 (ii), {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s}) . Then by (IFPIF_{1}) , {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{\ast} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) . Hence, {{\varrho}_{\mathcal{{B}}}}({d}{\ast} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d})\vee{{\varrho}_{\mathcal{{B}}}}({s}) . Similarly, {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{\ast} {s}) . Therefore, \mathcal{{B}} is an IF-filter of {H} .
Next example shows that the converse of the previous theorem does not hold.
Example 5.11. According to Example 5.2 , introduce {{\varsigma}_{\mathcal{{B}}}} by {{\varsigma}_{\mathcal{{B}}}}(1) = {r}_{3}, \; {{\varsigma}_{\mathcal{{B}}}}({k}) = {{\varsigma}_{\mathcal{{B}}}}({e}) = {r}_{2} and {{\varsigma}_{\mathcal{{B}}}}(0) = {r}_{1} such that 0{\preceq} {r}_{1} < {r}_{2} < {r}_{3}{\preceq} 1 . Routine calculation shows {{\varsigma}_{\mathcal{{B}}}}\in FF({H}) and {{\varrho}_{\mathcal{{B}}}} = 1-{{\varsigma}_{\mathcal{{B}}}}\in AFF({H}) . So, \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-filter of {H} but \mathcal{{B}} = ({{\varsigma}_{\mathcal{{B}}}}, {{\varrho}_{\mathcal{{B}}}}) is not an IF-positive implicative filter. Because
{r}_{2} = {{\varsigma}_{\mathcal{{B}}}}({k}) = {{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e})\nsucceq {{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}))\wedge{{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {{\varsigma}_{\mathcal{{B}}}}(1) = {r}_{3}. |
Theorem 5.12. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then for any {d}, {s}, {q}\in {H} the next conditions are equivalent:
(i) \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-positive implicative filter of {H} ,
(ii) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) \, \ {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) ,
(iii) {{\varsigma}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varsigma}_{\mathcal{{B}}}}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) \, \ {{\varrho}_{\mathcal{{B}}}}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) ,
(iv) {{\varsigma}_{\mathcal{{B}}}}({q})\wedge {{\varsigma}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\preceq} {{\varsigma}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \, \ {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))) ,
(v) {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varsigma}_{\mathcal{{B}}}}(1) and {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}(1) .
Proof. In this proof, we just prove the items of {\varrho}_{\mathcal{{B}}} . Also, since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varsigma}_{\mathcal{{B}}} \in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Then as we notice, {{\varrho}_{\mathcal{{B}}}}(1){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) and {{\varsigma}_{\mathcal{{B}}}}(1){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}) , for any {d}\in {H} .
(i)\Rightarrow (ii) Let {q} = {s} and {s} = {d} in (IFPIF_{2}) . Then
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) = {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
(ii)\Rightarrow (iii) Since {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , by Proposition 2.1 (vii), {q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {s} . Also, by (HP3),
{q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} [({q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}] = [{q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})]{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} [{q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}]{\succeq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) ,
{{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))). |
Also, by (ⅱ),
{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
Hence, by (HP3),
{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\succeq} {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
(iii)\Rightarrow (iv) By Proposition 2.1 (vii), {q}{\ast} ({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))){\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) ,
{{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))). |
So it is enough to choose {q} = {s} in (iii). Then
{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee {{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))). |
(iv)\Rightarrow (v) Let {q} = 1, {s} = {d} and {d} = {d}^{2} in (iv). Then
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee {{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))) = {{\varrho}_{\mathcal{{B}}}}(1), |
and so {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}(1) .
(v)\Rightarrow (i) By Proposition 2.1 (vii),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) = {d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}. |
Since {{\varrho}_{\mathcal{{B}}}}\in AFF({H}) , we have
{{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})). |
By Proposition 2.1 (vii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){\ast} ({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q} . Then
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2})\vee{{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}). |
By (v), {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}(1) , hence, {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}) . As we prove,
{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\vee {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})). |
Corollary 5.13. Let {d}^{2} = {d} , for all {d}\in {H} . Then any IF-filter of {H} is an IF-positive implicative filter.
Proof. Let {d}, {s}, {q}\in {H} and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . If, for all {d}\in {H} , {d}^{2} = {d} , then {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) = {{\varrho}_{\mathcal{{B}}}}(1) and also, {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varsigma}_{\mathcal{{B}}}}(1) . Thus, by Theorem 5.12 (v), \mathcal{{B}} is an IF-positive implicative filter.
Theorem 5.14. Every IF-implicative filter of {H} is an IF-positive implicative filter.
Proof. In this proof, we just prove the sentence of {\varrho}_{\mathcal{{B}}} . Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter of {H} . Then by (IFIF_{1}) , clearly (IFPIF_{1}) holds. Now, let {d}\in {H} . Then by Theorem 5.4 , \mathcal{{B}} is an IF-filter. Thus, by Theorem 5.6 (ii), Proposition 2.1 (xiv), (HP2) and (HP3),
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2})&{\preceq} &{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ & = & {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ & = & {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}))\\ & = &{{\varrho}_{\mathcal{{B}}}}({d}^{2}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2})\\ & = &{{\varrho}_{\mathcal{{B}}}}(1) \end{eqnarray*} |
By the similar way, {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {{\varsigma}_{\mathcal{{B}}}}(1) . Hence, by Theorem 5.12 (v), \mathcal{{B}} is an IF-positive implicative filter. The next example shows that the converse of the pervious theorem does not hold, in general.
Example 5.15. According to Example 5.8 , we see that \mathcal{{B}} is an IF-positive implicative filter, but it is not an IF-implicative filter. Because by Theorem 5.6 (iv), {r}_{2} = {{\varsigma}_{\mathcal{{B}}}}(1) = {{\varsigma}_{\mathcal{{B}}}}(0{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}(({k}{\ast} {e}'){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e})\neq {{\varsigma}_{\mathcal{{B}}}}({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}({e}) = {r}_{1} .
Theorem 5.16. Let {H} be bounded with (DNP). Then every IF-positive implicative filter of {H} is an IF-implicative filter.
Proof. Let {H} be bounded with (DNP) and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-positive implicative filter of {H} . Then by Theorem 5.10 , \mathcal{{B}} is an IF-filter. Thus, by Proposition 2.1 (vii),
{d}{\ast} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}, |
and so
{{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varsigma}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}), |
and
{{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\succeq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
Since {H} has (DNP), by (HP3), we have,
{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{''}) = {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0)) = {{\varrho}_{\mathcal{{B}}}}({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0)). |
By the similar way,
{{\varsigma}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) = {{\varsigma}_{\mathcal{{B}}}}({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0)). |
Moreover, since \mathcal{{B}} is an IF-positive implicative filter of {H} , by Theorem 5.12 (iii), Proposition 2.2 (ii) and (DNP), we get
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}({s}) & = &{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\\ & = &{{\varrho}_{\mathcal{{B}}}}((0{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{''})\\ & = &{{\varrho}_{\mathcal{{B}}}}((({s}{\ast} {s}{'}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{''})\\ & = &{{\varrho}_{\mathcal{{B}}}}(({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({s}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 0))\\ & = &{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) \end{eqnarray*} |
By the similar way, {{\varsigma}_{\mathcal{{B}}}}({s}){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})) . Therefore, by Theorem 5.6 (ii), {\mathcal{{B}}} is an IF-implicative filter.
Theorem 5.17. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set of {H} . Then \mathcal{{B}} is an IF-implicative filter of {H} iff \mathcal{{B}} is an IF-positive implicative filter of {H} and {{\varsigma}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) and {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) , for all {d}, {s}\in {H} .
Proof. (\Rightarrow) Let \mathcal{{B}} be an IF-implicative filter. Then by Theorem 5.14 , \mathcal{{B}} is an IF-positive implicative filter. Now, suppose {d}, {s}\in {H} . Then by Proposition 2.1 (iv) and (viii), {d}, {s}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} . Since {s}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , by Proposition 2.1 (xii), we have ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Moreover, since {d}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , by Proposition 2.1 (xiii), {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\succeq} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} ((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Thus, we have,
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} ((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Since \mathcal{{B}} is an IF-implicative filter, by Theorem 5.4 , \mathcal{{B}} is an IF-filter. Thus, by Theorem 5.6 (ii),
{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {\varrho}_{\mathcal{{B}}}(((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Hence, {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) .
(\Leftarrow) Let {d}, {s}\in {H} . Then by Proposition 2.1 (viii), {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and by Proposition 2.1 (xii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}) . Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.12 (ii), we have
{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Also, by assumption,
{\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
On the other hand, by Proposition 2.1 (iv), {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} and by Proposition 2.1 (xiii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} . Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.10 , \mathcal{{B}} is an IF-filter, thus, {\varrho}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Hence,
\begin{eqnarray*} {\varrho}_{\mathcal{{B}}}({d}) &{\preceq} &{\varrho}_{\mathcal{{B}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} )\\ &{\preceq} &{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{\varrho}_{\mathcal{{B}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} )\\ & = &{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \end{eqnarray*} |
Therefore, {\mathcal{{B}}} is an IF-implicative filter.
Theorem 5.18. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then \mathcal{{B}} is an IF-positive implicative filter iff \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice.
Proof. (\Rightarrow) Let \mathcal{{B}} be an IF-filter. Then by Theorem 4.12 , \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is well-defined. Since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a hoop, then by Proposition 2.1 (i), \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a \wedge -semilattice. Now, it is enough to prove that
[{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}}\; {\rm{iff}}\; [{d}]_{\mathcal{{B}}}{\preceq} [{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}},\; \rm{for all}\; {d},{s},{q}\in {H}. |
Let [{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}} . Then by Proposition 2.1 (iii), [{d}]_{\mathcal{{B}}}\otimes [{s}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}} . Thus, [{d}]_{\mathcal{{B}}}\otimes [{s}]_{\mathcal{{B}}}{\preceq} [{q}]_{\mathcal{{B}}} . Since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a hoop, by Proposition 2.1 (ii), we get [{d}]_{\mathcal{{B}}}{\preceq} [{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}} .
Conversely, suppose [{d}]_{\mathcal{{B}}}{\preceq} [{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}} . Then [{d}]_{\mathcal{{B}}}\hookrightarrow ([{s}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}}) = [1]_{\mathcal{{B}}} , so {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varrho}_{\mathcal{{B}}}(1) . Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.6 (iii), we have
{\varsigma}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\succeq} {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varsigma}_{\mathcal{{B}}}(1), |
and
{\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})){\preceq} {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varrho}_{\mathcal{{B}}}(1). |
Thus, {\varsigma}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {q})) = {\varrho}_{\mathcal{{B}}}(1) , and so [{d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}]_{\mathcal{{B}}}{\preceq} [{d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}}{q}]_{\mathcal{{B}}} . Hence, [{d}]_{\mathcal{B}}\hookrightarrow [{s}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}}\hookrightarrow [{q}]_{\mathcal{{B}}} . Since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a hoop, by Proposition 2.1 (ii) and (i), we have
[{d}]_{\mathcal{{B}}}\wedge[{s}]_{\mathcal{{B}}} = [{d}]_{\mathcal{{B}}}\otimes ([{d}]_{\mathcal{{B}}}\hookrightarrow [{s}]_{\mathcal{{B}}}){\preceq} [{q}]_{\mathcal{{B}}}. |
Therefore, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice.
(\Leftarrow) Since \mathcal{{B}} is an IF-filter, by (IFF1) , {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}(1){\preceq} {\varrho}_{\mathcal{{B}}}({d}) , for all {d}\in {H} . By assumption, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice, define [{d}]_{\mathcal{{B}}}\otimes [{s}]_{\mathcal{{B}}} = [{d}]_{\mathcal{{B}}}\wedge [{s}]_{\mathcal{{B}}} , for all {d}, {s}\in {H} . Since [{d}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}} , we have
[{d}]_{\mathcal{{B}}}{\preceq} [{d}]_{\mathcal{{B}}}\wedge [{d}]_{\mathcal{{B}}} = [{d}]_{\mathcal{{B}}}\otimes [{d}]_{\mathcal{{B}}} = [{d}{\ast} {d}]_{\mathcal{{B}}}. |
So, [{d}]_{\mathcal{{B}}}{\preceq} [{d}^{2}]_{\mathcal{{B}}} . Then [{d}]_{\mathcal{{B}}}\hookrightarrow [{d}^{2}]_{\mathcal{{B}}} = [1]_{\mathcal{{B}}} , and so, {\varsigma}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}^{2}) = {\varrho}_{\mathcal{{B}}}(1) . Hence, by Theorem 5.12 (v), \mathcal{{B}} is an IF-positive implicative filter.
Example 5.19. Let {H} be the hoop and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-positive implicative filter of {H} as in Example 5.8. Then \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [{e}]_{\mathcal{{B}}}, [{k}]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} is a Brouwerian semilattice.
In the following, the concept of intuitionistic fuzzy fantastic filter on hoops is defined and some related results are investigated.
Definition 6.1. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-set of {H} . Then \mathcal{{B}} is called an intuitionistic fuzzy fantastic filter or an IF-fantastic filter of {H} if, for all {d}, {s}, {q}\in {H} ,
(IFFF_{1}) if {d}{\preceq} {s} , then {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}({s}) and {\varrho}_{\mathcal{{B}}}({s}){\preceq} {\varrho}_{\mathcal{{B}}}({d}) ,
(IFFF_{2}) {\varsigma}_{\mathcal{{B}}}({q})\wedge{\varsigma}_{\mathcal{{B}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\preceq} {\varsigma}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) and {\varrho}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {\varrho}_{\mathcal{{B}}}({q})\vee{\varrho}_{\mathcal{{B}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) .
Example 6.2. According to Example 5.5 , routine calculation shows that \mathcal{{B}} is an IF-fantastic filter.
Theorem 6.3. Let \mathcal{{B}} be an IF-set of {H} . Then \mathcal{{B}} is an IF-fantastic filter of {H} iff for any {r}\in [0, 1] , \mathcal{{B}}_{{r}}\neq \emptyset is a fantastic filter.
Proof. The proof is similar to the proof of Theorem 4.6 .
Theorem 6.4. Every IF-fantastic filter of {H} is an IF-filter.
Proof. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-fantastic filter and {d}, {s}\in {H} . Then (IFF{1}) holds. Since \mathcal{{B}} is an IF-fantastic filter, then by Proposition 2.1 (v), we have
{{\varrho}_{\mathcal{{B}}}}({d})\vee {{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\succeq} {{\varrho}_{\mathcal{{B}}}}({d})\vee{{\varrho}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\succeq} {{\varrho}_{\mathcal{{B}}}}((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 1){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} 1){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
By the similar way, we can see that {{\varsigma}_{\mathcal{{B}}}}({d})\wedge {{\varsigma}_{\mathcal{{B}}}}({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varsigma}_{\mathcal{{B}}}}({s}) . Therefore, \mathcal{{B}} is an IF-filter of {H} .
In the next example we show that the converse of the previous theorem does not hold, in general.
Example 6.5. According to Example 5.5 , \mathcal{{B}} is an IF-filter but it is not an IF-fantastic filter. Because
{r}_{1} = {{\varsigma}_{\mathcal{{B}}}}(1) = {{\varsigma}_{\mathcal{{B}}}}(1)\wedge{{\varsigma}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}))\nleq {{\varsigma}_{\mathcal{{B}}}}((({k}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {k}) = {{\varsigma}_{\mathcal{{B}}}}({k}) = {r}_{2}. |
Theorem 6.6. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then the next statements are equivalent, for all {d}, {s}\in {H} ,
(i) \mathcal{{B}} is an IF-fantastic filter of {H} ,
(ii) {{\varsigma}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varsigma}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) and {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) ,
(iii) {{\varsigma}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varsigma}_{\mathcal{{B}}}}(1) and {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(1) .
Proof. In this proof, we just prove the items of {\varrho}_{\mathcal{{B}}} . Also, since \mathcal{{B}} is an IF-filter of {H} , by Definition 4.1 , {\varsigma}_{\mathcal{{B}}}\in FF({H}) and {\varrho}_{\mathcal{{B}}}\in AFF({H}) . Then as we notice, {{\varrho}_{\mathcal{{B}}}}(1){\preceq} {{\varrho}_{\mathcal{{B}}}}({d}) and {{\varsigma}_{\mathcal{{B}}}}(1){\succeq} {{\varsigma}_{\mathcal{{B}}}}({d}) , for any {d}\in {H} .
(i)\Rightarrow (ii) Suppose \mathcal{{B}} is an IF-fantastic filter and {d}, {s}\in {H} . Let {q} = 1 . Then
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}(1)\vee{{\varrho}_{\mathcal{{B}}}}(1{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
(ii)\Rightarrow (i) Let {d}, {s}, {q}\in {H} . Since \mathcal{{B}} is an IF-filter, we get {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) . Thus, by (ii),
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({q})\vee{{\varrho}_{\mathcal{{B}}}}({q}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
(ii)\Rightarrow (iii) Let {d}, {s}\in {H} . Then by Proposition 2.1 (viii), {d}{\preceq} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , thus, by Proposition 2.1 (xiii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} ((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so
(((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Since \mathcal{{B}} is an IF-filter,
{{\varrho}_{\mathcal{{B}}}}((((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})){\succeq} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})). |
Now, since \mathcal{{B}} is an IF-fantastic filter, we have
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) &{\preceq} & {{\varrho}_{\mathcal{{B}}}}((((({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ & = &{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ & = &{{\varrho}_{\mathcal{{B}}}}(1) \end{eqnarray*} |
Hence, (iii) holds.
(iii)\Rightarrow (ii) Let {d}, {s}\in {H} such that
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(1). |
Then by (HP3),
{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}(1). |
Now, since \mathcal{{B}} is an IF-filter, we get
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{{\varrho}_{\mathcal{{B}}}}(({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Theorem 6.7. Every IF-implicative filter of {H} is an IF-fantastic filter.
Proof. Let {d}, {s}\in {H} and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter of {H} . Then by Proposition 2.1 (iv), {d}{\preceq} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} , thus by Proposition 2.1 (xiii), ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}{\preceq} {d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s} , and so by Proposition 2.1 (xiii) and (vii),
\begin{eqnarray*} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} &{\preceq} & (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\ast} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}\\ & = & ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\\ &{\preceq} & (((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \end{eqnarray*} |
Moreover, since \mathcal{{B}} is an IF-implicative filter,
\begin{eqnarray*} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) &{\preceq} & {{\varrho}_{\mathcal{{B}}}}((((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} ((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} &{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\\ & = &{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}))\\ &{\preceq} & {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) \end{eqnarray*} |
Hence, by Theorem 6.6 (ii), \mathcal{{B}} is an IF-fantastic filter. The next example shows that the converse of the pervious theorem may not be true, in general.
Example 6.8. According to Example 4.4 , define an IF-set \mathcal{{B}} by {{\varsigma}_{\mathcal{{B}}}}(1) = {{\varsigma}_{\mathcal{{B}}}}({k}) = {r}_{1} and {{\varsigma}_{\mathcal{{B}}}}({e}) = {{\varsigma}_{\mathcal{{B}}}}(0) = {r}_{2} such that 0{\preceq} {r}_{2} < {r}_{1}{\preceq} 1 and {{\varrho}_{\mathcal{{B}}}} = 1-{{\varsigma}_{\mathcal{{B}}}} . By routine calculation, \mathcal{{B}} is an IF-fantastic filter but it is not an IF-implicative filter. Because by Theorem 5.6 (ii),
{{\varsigma}_{\mathcal{{B}}}}(({e}{'}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}(({e}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {e}) = {{\varsigma}_{\mathcal{{B}}}}({e}) = {r}_{2}\neq {r}_{1} = {{\varsigma}_{\mathcal{{B}}}}(1). |
Theorem 6.9. \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-implicative filter of {H} iff \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) is an IF-positive implicative filter and IF-fantastic filter of {H} .
Proof. (\Rightarrow) By Theorems 6.7 and 5.14 , the proof is clear.
(\Leftarrow) Let {d}, {s}\in {H} . Then by Proposition 2.1 (viii) and (xii),
({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}). |
Since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.10 , \mathcal{{B}} is an IF-filter of {H} , we have
{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})). |
Also, since \mathcal{{B}} is an IF-positive implicative filter, by Theorem 5.12 (ii), we get
{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s})){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
On the other side, by Proposition 2.1 (iv) and (xiii), ({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}{\preceq} {s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d} . Since \mathcal{{B}} is an IF-filter of {H} , {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\succeq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}) . Moreover, since \mathcal{{B}} is an IF-fantastic filter, by Theorem 6.6 (ii),
{{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
From \mathcal{{B}} is an IF-filter, then
{{\varrho}_{\mathcal{{B}}}}({d}){\preceq} {{\varrho}_{\mathcal{{B}}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})\vee{{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){\preceq} {{\varrho}_{\mathcal{{B}}}}(({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}). |
Thus, by Theorem 5.6 (ii), \mathcal{{B}} is an IF-implicative filter.
Theorem 6.10. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then \mathcal{{B}} is an IF-fantastic filter of {H} iff \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop.
Proof. (\Rightarrow) Since \mathcal{{B}} is an IF-filter, by Theorem 4.12 , \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is well-define and is a hoop. Since \mathcal{{B}} is an IF-fantastic filter of {H} , by Theorem 6.6 (iii), we get
{\varsigma}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varsigma}_{\mathcal{{B}}}(1), |
and
{\varrho}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varrho}_{\mathcal{{B}}}(1). |
Then by Theorem 4.12 , [({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}]_{\mathcal{{B}}}{\preceq} [({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}]_{\mathcal{{B}}} . By the similar way, [({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}]_{\mathcal{{B}}}{\preceq} [({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}]_{\mathcal{{B}}} . Thus
([{d}]_{\mathcal{{B}}}\hookrightarrow [{s}]_{\mathcal{{B}}})\hookrightarrow [{s}]_{\mathcal{{B}}} = ([{s}]_{\mathcal{{B}}}\hookrightarrow [{d}]_{\mathcal{{B}}})\hookrightarrow [{d}]_{\mathcal{{B}}}. |
Therefore, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop.
(\Leftarrow) Let \mathcal{{B}} be an IF-filter of {H} . Then by (IFF{1}) , {\varsigma}_{\mathcal{{B}}}({d}){\preceq} {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}({d}){\succeq} {\varrho}_{\mathcal{{B}}}(1) , for all {d}\in {H} . Moreover, since \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop, we have ([{d}]_{\mathcal{{B}}}\hookrightarrow [{s}]_{\mathcal{{B}}})\hookrightarrow [{s}]_{\mathcal{{B}}} = ([{s}]_{\mathcal{{B}}}\hookrightarrow [{d}]_{\mathcal{{B}}})\hookrightarrow [{d}]_{\mathcal{{B}}} , for any [{d}]_{\mathcal{{B}}}, [{s}]_{\mathcal{{B}}}\in \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} . Thus, {\varsigma}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varsigma}_{\mathcal{{B}}}(1) and {\varrho}_{\mathcal{{B}}}((({d}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {s}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} (({s}{ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d}){ {{{{{{{{{{{{{{{{{{{\twoheadrightarrow}}}}}}}}}}}}}}}}}}}} {d})) = {\varrho}_{\mathcal{{B}}}(1) , thus, by Theorem 6.6 (iii), \mathcal{{B}} is an IF-fantastic filter of {H} .
Example 6.11. Let {H} be the hoop as in Example 5.5 . Define {\varsigma}_{\mathcal{{B}}}(1) = {\varsigma}_{\mathcal{{B}}}({k}) = r_1 , {\varsigma}_{\mathcal{{B}}}(0) = {\varsigma}_{\mathcal{{B}}}({e}) = r_2 , {\varrho}_{\mathcal{{B}}}(1) = {\varrho}_{\mathcal{{B}}}({k}) = 1-r_1 and {\varrho}_{\mathcal{{B}}}(0) = {\varrho}_{\mathcal{{B}}}({e}) = 1-r_2 , where 0\leq r_2\leq r_1\leq 1 . Then \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [{e}]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} is a Wajesberg hoop.
Theorem 6.12. Let \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-filter of {H} . Then \mathcal{{B}} is an IF-implicative filter of {H} iff \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Heyting semilattice that has Wajesberg property.
Proof. (\Rightarrow) Let \mathcal{{B}} be an IF-filter. Then by Theorem 4.12, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is well-define and is a hoop. Since \mathcal{{B}} is an IF-implicative filter, by Theorem 5.14, we have \mathcal{{B}} is an IF-positive implicative filter. Hence by Theorem 5.18, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice. On the other side, by Theorem 6.7, \mathcal{{B}} is an IF-fantastic filter, and by Theorem 6.10, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Wajesberg hoop. Thus, by Proposition 2.3, we define
[{d}]_{\mathcal{{B}}}\sqcup [{s}]_{\mathcal{{B}}} = ([{d}]_{{\varsigma}}\hookrightarrow [{s}]_{\mathcal{{B}}})\hookrightarrow [{s}]_{\mathcal{{B}}}. |
Then it is easy to see that \sqcup is a join operation, and so by Remark 2.4, {H}/ {\approx}_{\mathcal{{B}}} is a distributive lattice. Therefore, \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} is a Heyting semilattice.
(\Leftarrow) Since \dfrac{{H}}{ {\approx}_{\mathcal{{B}}}} is a Heyting semilattice, then \dfrac{{H}}{ {\approx}_{\mathcal{{B}}}} is a Brouwerian semilattice. Thus, by Theorem 5.18, \mathcal{{B}} is an IF-positive implicative filter. Moreover, by assumption, \dfrac{{H}}{ {\approx}_{\mathcal{{B}}}} is a Wajesberg hoop, by Theorem 6.10, \mathcal{{B}} is an IF-fantastic filter. Thus, by Theorem 6.9, \mathcal{{B}} is an IF-implicative filter of {H} .
Example 6.13. Let {H} be the hoop and \mathcal{{B}} = ({\varsigma}_{\mathcal{{B}}}, {\varrho}_{\mathcal{{B}}}) be an IF-implicative filter of {H} as in Example 5.2. Then \dfrac{{H}}{{\approx}_{\mathcal{{B}}}} = \{[0]_{\mathcal{{B}}}, [1]_{\mathcal{{B}}}\} is a Heyting semilattice that has Wajesberg property.
In decision problems, the use of fuzzy approaches is ubiquitous. Given the importance of fuzzy concepts in solving decision problems, we decided to use these concepts, intuitionistic fuzzy sets, in a specific logical algebra to provide a new approach with useful mathematical tools to address the fundamental decision problem. In this paper, the concept of anti-fuzzy filter of hoops is defined and the concepts of intuitionistic fuzzy filters, intuitionistic fuzzy (positive) implicative and intuitionistic fuzzy fantastic filters of hoops are introduced and the properties and equivalent characterizations of them are discussed. Moreover, it was proved that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, the relations between different kinds of intuitionistic fuzzy filters are investigated and studied that under which conditions they are equivalent. Also, a congruence relation on hoops is defined by an intuitionistic fuzzy filter and proved the new structure is a hoop. Finally, the conditions that quotient structure will be Brouwerian semilattice, Heyting algebra and Wajesberg hoop are investigated.
The authors declare that there is no conflict of interest.
[1] | Zhang J, Shi H, Wang Y, et al. (2018) Effects of limit‐feeding diets with different forage‐to‐concentrate ratios on nutrient intake, rumination, ruminal fermentation, digestibility, blood parameters and growth in Holstein heifers. Anim Sci J 89: 527-536. |
[2] | Celi P, Cowieson AJ, Fru-Nji F, et al. (2017) Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Anim Feed Sci Technol 234: 88-100. |
[3] | Leeson S, Atteh JO (1995) Utilization of fats and fatty acids by turkey poults. Poult Sci 74: 2003-2010. |
[4] | Doreau M, Chilliard Y (1997) Digestion and metabolism of dietary fat in farm animals. Br J Nutr 78: S15-S35. |
[5] | Lebedev SV, Gavrish IA, Shejda EV, et al. (2019) Effect of various fats on digestibility of nutrients in diet of calves Conference on Innovations in Agricultural and Rural development. IOP Conf Series: Earth Environ Sci 341: 012066. |
[6] | Keshri A, Roy D, Kumar V, et al. (2019) Impact of different chromium sources on physiological responses, blood biochemicals and endocrine status of heat stress in dairy calves. Biol Rhythm Res 1-12. |
[7] | Wysocka D, Snarska A, Sobiech P (2019) Copper-an essential micronutrient for calves and adult cattle. J Elem 24:101-110. |
[8] | Chen G, Gao Z, Chu W, et al. (2018) Effects of chromium picolinate on fat deposition, activity and genetic expression of lipid metabolism-related enzymes in 21 day old Ross broilers. Asian-Austral J Anim Sci 31: 569-575. |
[9] | Zhou B, Wang H, Luo G, et al. (2013) Effect of dietary yeast chromium and L-carnitine on lipid metabolism of sheep. Biol Trace Elem Res 155: 221-227. |
[10] | Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123: 626-633. |
[11] | Dalólio FS, Albino LFT, Silva JN, et al. (2018) Dietary chromium supplementation for heat-stressed broilers. Worlds Poult Sci J 74: 101-116. |
[12] | Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev 58: 67-72. |
[13] | Mikulski D, Jankowski J, Zduńczyk Z, et al. (2009) The effect of selenium source on performance, carcass traits, oxidative status of the organism, and meat quality of turkeys. J Anim Feed Sci 18: 518-530. |
[14] | Wang MQ, Xu ZR, Zha LY, et al. (2007) Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Anim Feed Sci Technol 139: 69-80. |
[15] | Mooney KW, Cromwell GL (1995) Effects of dietary chromium picolinate supplementation on growth, carcass characteristics, and accretion rates of carcass tissues in growing-finishing swine. J Anim Sci 73:3351-3157. |
[16] | Mooney KW, Cromwell GL (1997) Efficacy of chromium picolinate and chromium chloride as potential carcass modifiers in swine. J Anim Sci 75: 2661-2671. |
[17] | Jamilian M., Modarres SZ, Siavashani MA, et al. (2018) The influences of chromium supplementation on glycemic control, markers of cardio-metabolic risk, and oxidative stress in infertile polycystic ovary syndrome women candidate for in vitro fertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 185: 48-55. |
[18] | Lebedev SV, Kvan OV, Gubajdullina IZ, et al. (2018) Effect of chromium nanoparticles on digestive enzymes activity and morphological and biochemical parameters of calf blood. Anim Husb Fodder Prod 101: 136-142. |
[19] | Kośla T, Lasocka I, Kołnierzak M (2019) Chromium Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. In: Kalisinska E (Ed), Springer, Cham, 57-124. |
[20] | Kozloski GV, de Moraes Flores EM, Martins AF (1998) Use of chromium oxide in digestibility studies: variations of the results as a function of the measurement method. J Sci Food Agric 76: 373-376. |
[21] | Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21: 28-44. |
[22] | Mertz W, Roginski E (1963) The effect of trivalent chromium on galactose entryin rat epididymal fat tissue. J Biol Chem 238: 868-872. |
[23] | Stearns DM, Wise Sr JP, Patierno SR, et al. (1995) Chromium (III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J 9: 1643-1648. |
[24] | Laschinsky N, Kottwitz K, Freund B, et al. (2012) Bioavailability of chromium (III)-supplements in rats and humans. Biometals 25: 1051-1060. |
[25] | Ban C, Park SJ, Lim S, et al. (2015) Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. J Agricl Food Chem 63: 5266-5272. |
[26] | Zha LY, Wang MQ, Xu ZR, et al. (2007) Efficacy of chromium (III) supplementation on growth, body composition, serum parameters, and tissue chromium in rats. Biol Trace Elem Res 119: 42-50. |
[27] | Seryh MM (1959) Study of the exocrine secretion of the pancreas in calves in relation to age and feeding. Izv Timiryazevsk S-kh Akad 6: 161-172. |
[28] | Hashemi SM, Loh TC, Foo HL, et al. (2014) Small intestine morphology, growth performance and nutrient digestibility of young broilers affected by different levels of dietary putrescine. J Anim Poult Sci 3: 95-104. |
[29] | Association of Official Analytical Chemist (AOAC) (1980) Official method of analysis of AOAC International. 16th ed. Arlington: Association of Official Analytical Chemist, Washington DC, USA. Available from: https://archive.org/stream/gov.law.aoac.methods.1980/aoac.methods.1980_djvu.txt. |
[30] | Smith BW, Roe JH (1949) A photometric method for the determination of α-amylase in blood and urine, with use of the starch-iodine color. J Biol Chem 179: 53-59. |
[31] | Reimerdes EH, Klostermeyer H (1976) Determination of proteolytic activities on casein substrates. Methods Enzymol 45: 26-28. |
[32] | Jenkins TC (1993) Lipid metabolism in the rumen. J Dairy Sci 76: 3851-3863. |
[33] | Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52: 1-18. |
[34] | Parra O, Ojeda A, Combellas J, et al. (1999) Blood metabolites and their relationship with production variables in dual-purpose cows in Venezuela. Prev Vet Med 38: 133-145. |
[35] | Iskra R, Vlizlo V, Fedoruk R (2016) Role of chromium (III) in the nutrition of pigs and cattle. Agric Sci Pract 3: 56-62. |
[36] | Saeed AA, Sandhu MA, Khilji MS, et al. (2017) Effects of dietary chromium supplementation on muscle and bone mineral interaction in broiler chicken. J Trace Elem Med Biol 42: 25-29. |
[37] | Di Bona KR, Love S, Rhodes NR, et al. (2011) Chromium is not an essential trace element for mammals: effects of a "low-chromium" diet. JBIC: J Biol Inorg Chem 16:381-390. |
[38] | Rao SR, Prakash B, Raju MV, et al. (2016) Effect of supplement-ing organic forms of zinc, selenium and chromium on performance, anti-oxidant and immune responses in broiler chicken reared in tropical summer. Biol Trace Elem Res 172: 511-520. |
[39] | Piotrowska A, Pilch W, Tota L, et al. (2018) Biological significance of chromium III for the human organism. Med Pr 69: 211-223. |
[40] | White PE, Vincent JB (2019) Systematic review of the effects of chromium (III) on chickens. Biol Trace Elem Res 188: 99-126. |
[41] | Janes AN, Weekes TEC, Armstrong DG (1985) Carbohydrase activity in the pancreatic tissue and small intestine mucosa of sheep fed dried-grass or ground maizebased diets. J Agric Sci 104: 435-443. |
[42] | Ścibior A, Zaporowska H, Wolińska A, et al. (2010) Antioxidant enzyme activity and lipid peroxidation in the blood of rats co-treated with vanadium (V+5) and chromium (Cr+3). Cell Biol Toxicol 26: 509-526. |
[43] | Evans E, Buchanan-Smith JG, Macleod GK (1975) Postprandial patterns of plasma glucose, insulin and volatile fatty acids in ruminants fed low-and high-roughage diets. J Anim Sci 41:1474-1479. |
[44] | Lien TF, Horng YM, Yang KH (1999) Performance, serum characteristics, carcase traits and lipid metabolism of broilers as affected by supplement of chromium picolinate. Br Poult Sci 40: 357-363. |
[45] | Weiser M (1984) Calcium. In: Solomons NW, Rosenberg IH. (Eds), Absorption and Malabsorbtion of Mineral Nutrients. New York: Alan R. Liss Inc., 39-42. |
[46] | Zemel MB, Shi H, Greer B, et al. (2000) Regulation of adiposity by dietary calcium. FASEB J 14: 1132-1138. |
[47] | Ubarretxena-Belandia I, Boots JWP, Verhei HM, et al. (1998) Role of the cofactor calcium in the activation of outer membrane phospholipase A. Biochemistry 37:16011-16018. |
[48] | Hayirli A, Bremmer DR, Bertics SJ, et al. (2001) Effect of chromium supplementation on production and metabolic parameters in periparturient dairy cows. J Dairy Sci 84: 1218-1230. |
[49] | Pinchasov Y, Nir I (1992) Effect of dietary polyunsaturated fatty acid concentration on performance, fat deposition, and carcass fatty acid composition in broiler chickens. Poult Sci 71: 1504-1512. |
[50] | Ferramosca A, Conte A, Burri L, et al. (2012) A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PloS one 7: e38797. |
[51] | Walker CG, Loos RJF, Olson AD, et al. (2011) Genetic predisposition influences plasma lipids of participants on habitual diet, but not the response to reductions in dietary intake of saturated fatty acids. Atherosclerosis 215: 421-427. |
[52] | Jami E, Israel A, Kotser A, et al. (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7:1069-1079. |
[53] | Malmuthuge N (2017) Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation. J Anim Sci Biotechnol 8: 8. |
[54] | Zened A, Troegeler‐Meynadier A, Nicot MC, et al. (2011) Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. J Dairy Sci 64:5634-5645. |
1. | Necla Kırcalı Gürsoy, Tahsin Öner, Arif Gürsoy, Alper Ülker, Sheffer stroke operation on L-algebras via an algorithmic approach, 2024, 28, 1432-7643, 10801, 10.1007/s00500-024-09906-6 |