Research article Special Issues

Predicting COVID-19 using past pandemics as a guide: how reliable were mathematical models then, and how reliable will they be now?

  • Received: 31 August 2020 Accepted: 23 October 2020 Published: 30 October 2020
  • During the earliest stages of a pandemic, mathematical models are a tool that can be imple-mented quickly. However, such models are based on meagre data and limited biological understanding. We evaluate the accuracy of various models from recent pandemics (SARS, MERS and the 2009 H1N1 outbreak) as a guide to whether we can trust the early model predictions for COVID-19. We show that early models can have good predictive power for a disease's first wave, but they are less predictive of the possibility of a second wave or its strength. The models with the highest accuracy tended to include stochasticity, and models developed for a particular geographic region are often applicable in other regions. It follows that mathematical models developed early in a pandemic can be useful for long-term predictions, at least during the first wave, and they should include stochastic variations, to represent unknown characteristics inherent in the earliest stages of all pandemics.

    Citation: Christian Costris-Vas, Elissa J. Schwartz, Robert Smith?. Predicting COVID-19 using past pandemics as a guide: how reliable were mathematical models then, and how reliable will they be now?[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7502-7518. doi: 10.3934/mbe.2020383

    Related Papers:

    [1] Baoye Song, Shumin Tang, Yao Li . A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments. Mathematical Biosciences and Engineering, 2024, 21(2): 2189-2211. doi: 10.3934/mbe.2024096
    [2] Jian Si, Xiaoguang Bao . A novel parallel ant colony optimization algorithm for mobile robot path planning. Mathematical Biosciences and Engineering, 2024, 21(2): 2568-2586. doi: 10.3934/mbe.2024113
    [3] Yuzhuo Shi, Huijie Zhang, Zhisheng Li, Kun Hao, Yonglei Liu, Lu Zhao . Path planning for mobile robots in complex environments based on improved ant colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 15568-15602. doi: 10.3934/mbe.2023695
    [4] Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008
    [5] Tian Xue, Liu Li, Liu Shuang, Du Zhiping, Pang Ming . Path planning of mobile robot based on improved ant colony algorithm for logistics. Mathematical Biosciences and Engineering, 2021, 18(4): 3034-3045. doi: 10.3934/mbe.2021152
    [6] Xuewu Wang, Bin Tang, Xin Zhou, Xingsheng Gu . Double-robot obstacle avoidance path optimization for welding process. Mathematical Biosciences and Engineering, 2019, 16(5): 5697-5708. doi: 10.3934/mbe.2019284
    [7] Zhenao Yu, Peng Duan, Leilei Meng, Yuyan Han, Fan Ye . Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(2): 2501-2529. doi: 10.3934/mbe.2023117
    [8] Ping Li, Liwei Yang . Conflict-free and energy-efficient path planning for multi-robots based on priority free ant colony optimization. Mathematical Biosciences and Engineering, 2023, 20(2): 3528-3565. doi: 10.3934/mbe.2023165
    [9] Jinzhuang Xiao, Xuele Yu, Keke Sun, Zhen Zhou, Gang Zhou . Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA. Mathematical Biosciences and Engineering, 2022, 19(12): 12532-12557. doi: 10.3934/mbe.2022585
    [10] Chikun Gong, Yuhang Yang, Lipeng Yuan, Jiaxin Wang . An improved ant colony algorithm for integrating global path planning and local obstacle avoidance for mobile robot in dynamic environment. Mathematical Biosciences and Engineering, 2022, 19(12): 12405-12426. doi: 10.3934/mbe.2022579
  • During the earliest stages of a pandemic, mathematical models are a tool that can be imple-mented quickly. However, such models are based on meagre data and limited biological understanding. We evaluate the accuracy of various models from recent pandemics (SARS, MERS and the 2009 H1N1 outbreak) as a guide to whether we can trust the early model predictions for COVID-19. We show that early models can have good predictive power for a disease's first wave, but they are less predictive of the possibility of a second wave or its strength. The models with the highest accuracy tended to include stochasticity, and models developed for a particular geographic region are often applicable in other regions. It follows that mathematical models developed early in a pandemic can be useful for long-term predictions, at least during the first wave, and they should include stochastic variations, to represent unknown characteristics inherent in the earliest stages of all pandemics.




    [1] Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklöv, The Reproductive Number of COVID-19 Is Higher Compared to SARS Coronavirus, J. Travel Med.e 27 (2020), taaa021. doi: 10.1093/jtm/taaa021
    [2] Q. Li. X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia, N. Engl. J. Med., 382 (2020), 1199-1207. doi: 10.1056/NEJMoa2001316
    [3] W. Wang, J. Tang, F. Wei, Updated understanding of the outbreak of 2019 novel coronavirus (2019nCoV) in Wuhan, China, J. Med. Virol. 92 (2020), 441-447. doi: 10.1002/jmv.25689
    [4] K. Kousha, M. Thelwall, COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts, Quant. Sci. Stud. 1 (2020), 1068-1091. doi: 10.1162/qss_a_00066
    [5] J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface 2 (2005), 281-293. doi: 10.1098/rsif.2005.0042
    [6] J. Li, D. Blakeley, R. J. Smith?, The Failure of R0, Comp. Math. Methods Med., 2011 (2011), 527610.
    [7] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the Transmission Risk of the 2019-NCoV and Its Implication for Public Health Interventions, J. Clin. Med., 9 (2020), 462. doi: 10.3390/jcm9020462
    [8] N. Imai, A. Cori, I. Dorigatti, M. Baguelin, C. Donnelly, S. Riley, et al., Report 3: Transmissibility of 2019-nCoV, Imperial College London (2020) 1-6.
    [9] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214-217. doi: 10.1016/j.ijid.2020.01.050
    [10] J. T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689-697. doi: 10.1016/S0140-6736(20)30260-9
    [11] J. Riou, C. L. Althaus, Pattern of early human-to-human transmission of Wuhan 2019-nCoV, Euro. Surveil., 25 (2020), pii = 2000058.
    [12] R. D. Smith, Responding to Global Infectious Disease Outbreaks: Lessons from SARS on the Role of Risk Perception, Communication and Management. Soc. Sci. Med., 63 (2006), 3113-3123. doi: 10.1016/j.socscimed.2006.08.004
    [13] World Health Organization, Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003, https://www.who.int/csr/sars/country/table2004_04_21/en/. Accessed 13 Oct 2020.
    [14] S. Riley, C. Fraser, C. A. Donnelly, A. C. Ghani, L. J. Abu-Raddad, A. J. Hedley, et al., Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions, Science, 300 (2003), 1961-1966. doi: 10.1126/science.1086478
    [15] G. Chowell, P. W. Fenimore, M. A. Castillo-Garsow, C. C. Castillo-Chavez, SARS Outbreaks in Ontario, Hong Kong and Singapore: The Role of Diagnosis and Isolation as a Control Mechanism, J. Theor. Biol., 224 (2003), 1-8. doi: 10.1016/S0022-5193(03)00228-5
    [16] M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma, L. James, et al., Transmission Dynamics and Control of Severe Acute Respiratory Syndrome, Science, 300 (2003), 1966-1970. doi: 10.1126/science.1086616
    [17] G. Zhou, G. Yan. Severe Acute Respiratory Syndrome Epidemic in Asia, Emerging Infect. Dis., 9 (2003), 1608-1610.
    [18] B. C. K. Choi, A. W. P. Pak. A Simple Approximate Mathematical Model to Predict the Number of Severe Acute Respiratory Syndrome Cases and Deaths, J. Epidemiology Community Health, 57 (2003), 831-835. doi: 10.1136/jech.57.10.831
    [19] L. O. Lloyd-Smith, A. P. Galvani, W. M. Getz, Curtailing Transmission of Severe Acute Respiratory Syndrome within a Community and Its Hospital, Proc. Royal Soc. B, 270, (2003), 1979-1989. doi: 10.1098/rspb.2003.2481
    [20] S. A. Eifan, I. Nour, A. Hanif, A. M. Zamzam, S. M. AlJohani, A Pandemic Risk Assessment of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Saudi Arabia, Saudi J. Biol. Sci., 24 (2017), 1631-1638. doi: 10.1016/j.sjbs.2017.06.001
    [21] G. Chowell, F. Abdirizak, S. Lee, J. Lee, E. Jung, H. Nishiura, et al., Transmission Characteristics of MERS and SARS in the Healthcare Setting: A Comparative Study, BMC Med., 13 (2015), 210. doi: 10.1186/s12916-015-0450-0
    [22] C. Drosten, B. Meyer, M. A. Müller, V. M. Corman, M. Al-Masri, R. Hossain, et al., Transmission of MERS-coronavirus in household contacts, N. Engl. J. Med., 371 (2014), 828-835. doi: 10.1056/NEJMoa1405858
    [23] S. Cauchemez, C. Fraser, M. D. Van Kerkhove, C. A. Donnelly, S. Riley, A. Rambaut, et al., Middle East Respiratory Syndrome Coronavirus: Quantification of the Extent of the Epidemic, Surveillance Biases, and Transmissibility, Lancet Infect. Dis., 14 (2014), 50-56. doi: 10.1016/S1473-3099(13)70304-9
    [24] R. Breban, J. Riou, A. Fontanet, Interhuman Transmissibility of Middle East Respiratory Syndrome Coronavirus: Estimation of Pandemic Risk, Lancet, 382 (2013), 694-699. doi: 10.1016/S0140-6736(13)61492-0
    [25] H.-J. Chang, Estimation of Basic Reproduction Number of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) during the Outbreak in South Korea, 2015, BioMed. Eng. OnLine, 16 (2017), 79. doi: 10.1186/s12938-017-0370-7
    [26] Centers for Disease Control, H1N1 Flu Pandemic Timeline. Centers for Disease Control and Prevention, https://www.cdc.gov/flu/pandemic-resources/2009-pandemic-timeline.html, Accessed 13 Oct 2020.
    [27] T. N. Jilani, R. T. Jamil, A. H. Siddiqui, H1N1 Influenza (Swine Flu). StatPearls, 2020, http://www.ncbi.nlm.nih.gov/books/NBK513241/ Accessed 13 Oct 2020.
    [28] Centers for Disease Control, 2009 H1N1 Pandemic (H1N1pdm09 virus), https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html Accessed 13 Oct 2020.
    [29] M. G. Roberts, H. Nishiura, Early Estimation of the Reproduction Number in the Presence of Imported Cases: Pandemic Influenza H1N1-2009 in New Zealand, PLoS ONE, 6 (2011), e17835. doi: 10.1371/journal.pone.0017835
    [30] C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. Van Kerkhove, T. D. Hollingsworth, et al., Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings, Science, 324 (2009), 1557-1561. doi: 10.1126/science.1176062
    [31] H. Nishiura, C. Castillo-Chavez, M. Safan M, G. Chowell, Transmission Potential of the New Influenza A(H1N1) Virus and Its Age-Specificity in Japan, Euro. Surveil., 14 (2009), 19227.
    [32] L. F. White, J. Wallinga, L. Finelli, C. Reed, S. Riley, M. Lipsitch, et al., Estimation of the Reproductive Number and the Serial Interval in Early Phase of the 2009 Influenza A/H1N1 Pandemic in the USA, Influenza Other Respir. Viruses, 3 (2009), 267-276. doi: 10.1111/j.1750-2659.2009.00106.x
    [33] L. C. Mostąo-Guidolin, C. S. Bowman, A. L. Greer, D. N. Fisman, S. M. Moghadas, Transmissibility of the 2009 H1N1 Pandemic in Remote and Isolated Canadian Communities: A Modelling Study, BMJ Open, 2 (2012), e001614. doi: 10.1136/bmjopen-2012-001614
    [34] M. Helferty, J. Vachon, J. Tarasuk, R. Rodin, J. Spika, L. Pelletier, Incidence of Hospital Admissions and Severe Outcomes during the First and Second Waves of Pandemic (H1N1) 2009, CMAJ, 182 (2010), 1981-1987. doi: 10.1503/cmaj.100746
    [35] O. T. Mytton, P. D. Rutter, M. Mak, E. A. Stanton, N. Sachedina, L. J. Donaldson, Mortality Due to Pandemic (H1N1) 2009 Influenza in England: A Comparison of the First and Second Waves, Epidemiol. Infect., 140 (2012), 1533-1541. doi: 10.1017/S0950268811001968
    [36] I. Dorigatti, S. Cauchemez, N. M. Ferguson, Increased Transmissibility Explains the Third Wave of Infection by the 2009 H1N1 Pandemic Virus in England, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 13422-13427. doi: 10.1073/pnas.1303117110
    [37] O. Sharomi, C. N. Podder, A. B. Gumel, S. M. Mahmud, E. Rubinstein, Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic, Bull. Math. Biol., 73 (2011), 515-548. doi: 10.1007/s11538-010-9538-z
    [38] M. A. Jhung, D. Swerdlow, S. J. Olsen, D. Jernigan, M. Biggerstaff, L. Kamimoto, et al., Epidemiology of 2009 pandemic influenza A (H1N1) in the United States, Clin. Infect. Dis., 52 (2011), S13-S26. doi: 10.1093/cid/ciq008
    [39] M. D. Van Kerkhove, A. W. Mounts, S. Mall, K. A. Vandemaele, M. Chamberland, T. dos Santos, et al., Epidemiologic and virologic assessment of the 2009 influenza A (H1N1) pandemic on selected temperate countries in the Southern Hemisphere: Argentina, Australia, Chile, New Zealand and South Africa, Influenza Other Respir. Viruses, 5 (2011), e487-e498. doi: 10.1111/j.1750-2659.2011.00249.x
    [40] R. J. Smith?, Did we Eradicate SARS? Lessons Learned and the Way Forward, Am. J. Biomed. Sci. Res., 6 (2019), 001017.
    [41] R. M. Anderson, C. Fraser, A. C. Ghani, C. A. Donnelly, S. Riley, N. M. Ferguson, et al., Epidemiology, Transmission Dynamics and Control of SARS: The 2002-2003 Epidemic, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 359 (2004), 1091-105. doi: 10.1098/rstb.2004.1490
    [42] S. Ruan, W. Wang, S. A. Levin, The Effect of Global Travel on the Spread of SARS, Math. Biosci. Eng., 3 (2006), 205-218. doi: 10.3934/mbe.2006.3.205
    [43] N. G. Becker, K. Glass, Z. Li, G. K. Aldis, Controlling Emerging Infectious Diseases like SARS, Math. Biosci., 193 (2005), 205-121. doi: 10.1016/j.mbs.2004.07.006
    [44] A. J. Kucharski, C. L. Althaus, The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission, Euro. Surveil. 20 (2015), 14-18.
    [45] S. Bernard-Stoecklin, B. Nikolay, A. Assiri, A. A. Saeed, P. K. Embarek, H. El Bushra, et al., Comparative Analysis of Eleven Healthcare-Associated Outbreaks of Middle East Respiratory Syndrome Coronavirus (Mers-Cov) from 2015 to 2017, Sci. Rep., 9 (2019), 1-9. doi: 10.1038/s41598-018-37186-2
    [46] S. Choi, E. Jung, B. Y. Choi, Y. J. Hur, M. Ki, High Reproduction Number of Middle East Respiratory Syndrome Coronavirus in Nosocomial Outbreaks: Mathematical Modelling in Saudi Arabia and South Korea, J. Hosp. Infect., 99 (2018), 162-168. doi: 10.1016/j.jhin.2017.09.017
    [47] T. Sardar, I. Ghosh, X. Rodó, J. Chattopadhyay, A Realistic Two-Strain Model for MERS-CoV Infection Uncovers the High Risk for Epidemic Propagation, PLOS Negl. Trop. Dis., 14 (2020), e0008065. doi: 10.1371/journal.pntd.0008065
    [48] M. S. Majumder, C. Rivers, E. Lofgren, D. Fisman. Estimation of MERS-Coronavirus Reproductive Number and Case Fatality Rate for the Spring 2014 Saudi Arabia Outbreak: Insights from Publicly Available Data, PLoS Currents, 6 (2014).
    [49] P. Poletti, M. Ajelli, S. Merler, The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics, PLoS One, 6 (2011), e16460. doi: 10.1371/journal.pone.0016460
    [50] S. Tsukui, Case-Based Surveillance of Pandemic (H1N1) 2009 in Maebashi City, Japan, Jpn. J. Infect. Dis., 65 (2012), 132-137.
    [51] G. Chowell, S. Echevarria-Zuno, C. Viboud, L. Simonsen, J. Tamerius, M. A. Miller, et al., Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico, PLoS Med., 8 (2011), e1000436. doi: 10.1371/journal.pmed.1000436
    [52] C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank, B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia, PLOS Currents Outbreaks, 6 (2014).
    [53] D. Fisman, E. Khoo, A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model, PLoS Currents, 6 (2014).
    [54] C. Browne, H. Gulbudak, G. Webb, Modeling contact tracing in outbreaks with application to Ebola, J. Theor. Biol., 384 (2015), 33-49. doi: 10.1016/j.jtbi.2015.08.004
    [55] G. Webb, C. Browne, A model of the Ebola epidemics in West Africa incorporating age of infection, J. Biol. Dyn., 10 (2016), 18-30. doi: 10.1080/17513758.2015.1090632
    [56] T. S. Do, Y. S. Lee, Modeling the spread of Ebola. Osong Public Health and Research Perspectives, 7 (2016), 43-48. doi: 10.1016/j.phrp.2015.12.012
    [57] D. Salem, R. Smith?, A Mathematical Model of Ebola Virus Disease: Using Sensitivity Analysis to Determine Effective Intervention Targets, Proceedings of the SummerSim-SCSC 2016 conference, (2016), 16-23.
    [58] P. Bhandari, Analysis of Prediction Models in spread of Ebola Virus Disease, Thesis, Deakin University (2019).
    [59] T. C. Germann, K. Kadau, I. M. Longini, C. A. Macken, Mitigation strategies for pandemic influenza in the United States, Proc. Natl. Acad. Sci.U. S.A., 103 (2006), 5935-5940. doi: 10.1073/pnas.0601266103
    [60] J. T. Wu, B. J. Cowling, The use of mathematical models to inform influenza pandemic preparedness and response, Exp. Biol. Med., 236 (2011), 955-961. doi: 10.1258/ebm.2010.010271
    [61] S. S. Morse, J. A. Mazet, M. Woolhouse, C. R. Parrish, D. Carroll, W. B. Karesh, et al., Prediction and prevention of the next pandemic zoonosis, Lancet, 380 (2012), 1956-1965. doi: 10.1016/S0140-6736(12)61684-5
    [62] A. Huppert, G. Katriel, Mathematical modelling and prediction in infectious disease epidemiology, Clin. Microbiol. Infect., 19 (2013), 999-1005. doi: 10.1111/1469-0691.12308
    [63] P. Saunders-Hastings, B. Q. Hayes, R. Smith? D. Krewski. Modelling community-control strategies to protect hospital resources during an influenza pandemic in Ottawa, Canada, PloS One, 12 (2017), e0179315. doi: 10.1371/journal.pone.0174953
    [64] M. Valenciano, E. Kissling, J. M. Cohen, N. Oroszi, A. S. Barret, C. Rizzo, et al., Estimates of pandemic influenza vaccine effectiveness in Europe, 2009-2010: results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) multicentre case-control study, PLoS Med., 8 (2011), e1000388. doi: 10.1371/journal.pmed.1000388
  • This article has been cited by:

    1. Liwei Yang, Lixia Fu, Ping Li, Jianlin Mao, Ning Guo, An Effective Dynamic Path Planning Approach for Mobile Robots Based on Ant Colony Fusion Dynamic Windows, 2022, 10, 2075-1702, 50, 10.3390/machines10010050
    2. Qian Wang, Junli Li, Liwei Yang, Zhen Yang, Ping Li, Guofeng Xia, Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO–DWA in Unknown Complex Terrain, 2022, 11, 2079-9292, 2144, 10.3390/electronics11142144
    3. Pranshav Gajjar, Virensinh Dodia, Siddharth Mandaliya, Pooja Shah, Vijay Ukani, Madhu Shukla, 2022, Chapter 19, 978-3-031-23094-3, 262, 10.1007/978-3-031-23095-0_19
    4. Xingcheng Pu, Xinlin Song, Ling Tan, Yi Zhang, Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective, 2023, 1864-5909, 10.1007/s12065-023-00821-7
    5. Xiaoling Meng, Xijing Zhu, Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm, 2022, 14, 2073-8994, 1843, 10.3390/sym14091843
    6. Sai Zhang, Li Tang, Yan-Jun Liu, Formation deployment control of multi-agent systems modeled with PDE, 2022, 19, 1551-0018, 13541, 10.3934/mbe.2022632
    7. Jie Zhang, Xiuqin Pan, 2022, Chapter 1, 978-3-031-23584-9, 3, 10.1007/978-3-031-23585-6_1
    8. Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia, Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments, 2022, 20, 1551-0018, 145, 10.3934/mbe.2023008
    9. Nour Abujabal, Raouf Fareh, Saif Sinan, Mohammed Baziyad, Maamar Bettayeb, A comprehensive review of the latest path planning developments for multi-robot formation systems, 2023, 0263-5747, 1, 10.1017/S0263574723000322
    10. Yiqi Xu, Qiongqiong Li, Xuan Xu, Jiafu Yang, Yong Chen, Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning, 2023, 12, 2079-9292, 3263, 10.3390/electronics12153263
    11. Wenjie Ning, Li Ma, Zhichuang Wang, Fangyuan Hou, 2024, Chapter 33, 978-981-97-3327-9, 393, 10.1007/978-981-97-3328-6_33
    12. Semonti Banik, Sajal Chandra Banik, Sarker Safat Mahmud, Path Planning Approaches in Multi‐robot System: A Review, 2024, 2577-8196, 10.1002/eng2.13035
    13. Georgios Karamitsos, Dimitrios Bechtsis, Naoum Tsolakis, Dimitrios Vlachos, 2024, Chapter 5, 978-3-031-58918-8, 139, 10.1007/978-3-031-58919-5_5
    14. Liwei Yang, Ping Li, Song Qian, He Quan, Jinchao Miao, Mengqi Liu, Yanpei Hu, Erexidin Memetimin, Path Planning Technique for Mobile Robots: A Review, 2023, 11, 2075-1702, 980, 10.3390/machines11100980
    15. Bilal Gurevin, Furkan Gulturk, Muhammed Yildiz, Ihsan Pehlivan, Trung Thanh Nguyen, Fatih Caliskan, Baris Boru, Mustafa Zahid Yildiz, A Novel GUI Design for Comparison of ROS-Based Mobile Robot Local Planners, 2023, 11, 2169-3536, 125738, 10.1109/ACCESS.2023.3327705
    16. Zhen Zhou, Chenchen Geng, Buhu Qi, Aiwen Meng, Jinzhuang Xiao, Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA, 2023, 20, 1551-0018, 19152, 10.3934/mbe.2023846
    17. Mohammed Baziyad, Nour AbuJabal, Raouf Fareh, Tamer Rabie, Ibrahim Kamel, Maamar Bettayeb, 2023, A Direction for Swarm Robotic Path Planning Technique Using Potential Field Concepts and Particle Swarm Optimization, 979-8-3503-8239-6, 7, 10.1109/IIT59782.2023.10366467
    18. Shuai Wu, Ani Dong, Qingxia Li, Wenhong Wei, Yuhui Zhang, Zijing Ye, Application of ant colony optimization algorithm based on farthest point optimization and multi-objective strategy in robot path planning, 2024, 167, 15684946, 112433, 10.1016/j.asoc.2024.112433
    19. Yongrong Cai, Haibin Liu, Mingfei Li, Fujie Ren, A Method of Dual-AGV-Ganged Path Planning Based on the Genetic Algorithm, 2024, 14, 2076-3417, 7482, 10.3390/app14177482
    20. Shuai Wu, Qingxia Li, Wenhong Wei, Zijing Ye, 2023, Research on Mobile Robot Path Planning in Angle-Guided Ant Colony Optimization Algorithm, 979-8-3503-0375-9, 7070, 10.1109/CAC59555.2023.10450803
    21. Nour AbuJabal, Tamer Rabie, Mohammed Baziyad, Ibrahim Kamel, Khawla Almazrouei, Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review, 2024, 13, 2079-9292, 2239, 10.3390/electronics13122239
    22. Nour Ayman Abujabal, Tamer Rabie, Ibrahim Kamel, 2023, Path Planning Techniques for Multi-robot Systems: A Systematic Review, 979-8-3503-8239-6, 1, 10.1109/IIT59782.2023.10366472
    23. Cuicui Cai, Chaochuan Jia, Yao Nie, Jinhong Zhang, Ling Li, A path planning method using modified harris hawks optimization algorithm for mobile robots, 2023, 9, 2376-5992, e1473, 10.7717/peerj-cs.1473
    24. Shuai Wu, Qingxia Li, Wenhong Wei, Application of Ant Colony Optimization Algorithm Based on Triangle Inequality Principle and Partition Method Strategy in Robot Path Planning, 2023, 12, 2075-1680, 525, 10.3390/axioms12060525
    25. Meltem Eyuboglu, Gokhan Atali, A novel collaborative path planning algorithm for 3-wheel omnidirectional Autonomous Mobile Robot, 2023, 169, 09218890, 104527, 10.1016/j.robot.2023.104527
    26. Wenteng Wang, 2024, Chapter 4, 978-981-97-3209-8, 39, 10.1007/978-981-97-3210-4_4
    27. Haobo Feng, Qiao Hu, Zhenyi Zhao, Xinglong Feng, Chuan Jiang, A varied-width path planning method for multiple AUV formation, 2025, 199, 03608352, 110746, 10.1016/j.cie.2024.110746
    28. Luis E. Ruiz-Fernandez, Javier Ruiz-Leon, David Gomez-Gutierrez, Rafael Murrieta-Cid, Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms, 2025, 1861-2776, 10.1007/s11370-024-00582-x
    29. Yong Li, Neng Long, 2024, Path Planning for Mobile Robots Based on the Improved Adaptive Ant Colony Algorithm, 979-8-3503-6860-4, 1761, 10.1109/CAC63892.2024.10865367
    30. Wenyan Zhu, Wenzheng Cai, Hoiio Kong, Optimal Path Planning Based on ACO in Intelligent Transportation, 2025, 26663074, 10.1016/j.ijcce.2025.02.006
    31. Huiliao Yang, Bo Zhang, Chang Xiao, 2025, Chapter 44, 978-981-96-2227-6, 470, 10.1007/978-981-96-2228-3_44
    32. Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang, Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning, 2025, 10, 2313-7673, 347, 10.3390/biomimetics10060347
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(15640) PDF downloads(199) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog