Citation: Claudia Totzeck, Marie-Therese Wolfram. Consensus-based global optimization with personal best[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 6026-6044. doi: 10.3934/mbe.2020320
[1] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[2] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[3] | Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580 |
[4] | Toshikazu Kuniya, Hisashi Inaba . Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Mathematical Biosciences and Engineering, 2023, 20(7): 13036-13060. doi: 10.3934/mbe.2023581 |
[5] | Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1 |
[6] | Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189 |
[7] | Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani . Global stability of an age-structured infection model in vivo with two compartments and two routes. Mathematical Biosciences and Engineering, 2022, 19(11): 11047-11070. doi: 10.3934/mbe.2022515 |
[8] | Xiaodan Sun, Yanni Xiao, Zhihang Peng . Modelling HIV superinfection among men who have sex with men. Mathematical Biosciences and Engineering, 2016, 13(1): 171-191. doi: 10.3934/mbe.2016.13.171 |
[9] | Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437 |
[10] | Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri . A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017 |
[1] | R. C. Eberhart, J. Kennedy, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks IEEE, (1995), 1942-1948. |
[2] | M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in Proceedings of the 1999 Congress on Evolutionary Computation (Cat. No. 99TH8406 Vol. 2), IEEE, (1999), 1470-1477. |
[3] | L. J. Fogel, A. J. Owens, M. J. Wash, Artificial Intelligence through a Simulation Evolution, John Wiley & Sons Inc, New York, 1966. |
[4] | J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor, 1975. |
[5] | R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm. Intell., 1 (2007), 33-57. |
[6] | R. Pinnau, C. Totzeck, O. Tse, S. Martin, A consensus-based model for global optimization and its mean-field limit, Math. Models Methods Appl. Sci., 27 (2017), 183-204. |
[7] | J. A. Carrillo, Y.-P. Choi, C. Totzeck, O. Tse, An analytical framework for consensus-based global optimization method, Math. Models Methods Appl. Sci., 28 (2018), 1037-1066. |
[8] | S. Chatterhee, E. Seneta, Towards consensus: Some convergence theorems on repeated averaging, J Appl. Probab., 14 (1977), 89-91. |
[9] | R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, JASSS, 5 (2002), 1-33. |
[10] | S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577- 621. |
[11] | J. A. Carrillo, S. Jin, L. Li, Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, arXiv preprint arXiv:1909.09249. |
[12] | M. Fornasier, H. Huang, L. Pareschi, P. Sünnen, Consensus-Based Optimization on the Sphere I: Well-Posedness and Mean-Field Limit, arXiv preprint arXiv:2001.11994. |
[13] | M. Fornasier, H. Huang, L. Pareschi, P. Sünnen, Consensus-based Optimization on the Sphere II: Convergence to Global Minimizers and Machine Learning, arXiv preprint arXiv:2001.11988. |
[14] | S.-Y. Ha, S. Jin, D. Kim, Convergence and error estimates for time-discrete consensus-based optimization algorithms, arXiv preprint arXiv:2003.05086. |
[15] | P. Butta, F. Flandoli, M. Ottobre, B. Zegarlinski, A non-linear model of self-propelled particles with multiple equilibria, Kinet. Relat. Mod., 12 (2019), 791. |
[16] | D. Crisan, C. Jangjigian, T. G. Kurtz, Particle representations for stochastic partial differential equations with boundary conditions, Electron. J. Probab., 23 (2018), 65-94. |
[17] | M. Wiedermann, J. F. Donges, J. Heitzig, J. Kurths, Node-weighted interacting network measures improve the representation of real-world complex systems, Europhys. Lett., 102 (2013), 28007. |
[18] | G. Wergen, Records in stochastic processes-theory and applications, J. Phys. A: Math. Theor., 46 (2013), 223001. |
[19] | S. Gadat, F. Panloup, Long time behaviour and stationary regime of memory gradient diffusions, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 564-601. |
[20] | R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001. |
[21] | H. Duong, G. Pavliotis, Mean field limits for non-Markovian interacting particles: convergence to equilibrium, GENERIC formalism, asymptotic limits and phase transitions, Commun. Math. Sci., 16 (2018), 2199-2230. |
[22] | A. Kuntzmann, Convergence in distribution of some self-interacting diffusions, J. Probab. Stat., 2014 (2014), 1-13. |
[23] | E. Pardoux, A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Springer, Cham Heidelberg New York Dordrecht London, 2014. |
[24] | A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer Science & Business Media, 2009. |
[25] | S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, Optimization by Simulated Annealing, Science, 220 (1983), 671-680. |
[26] | M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Mod. Num. Opt., 4 (2013), 150-194. |
[27] | D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic Publishers, Boston, 1987. |
[28] | L. A. Rastrigin, Systems of extremal control, Nauka, Moscow, 1974. |
[29] | R. Durrett, Stochastic calculus: a practical introduction, CRC press, Boca Raton, Florida, 1996. |
1. | E. Numfor, S. Bhattacharya, S. Lenhart, M. Martcheva, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Control in Coupled Within-host and Between-host Models, 2014, 9, 0973-5348, 171, 10.1051/mmnp/20149411 | |
2. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group epidemic model with latent period, 2017, 30, 0951-7715, 1287, 10.1088/1361-6544/aa59ae | |
3. | Rony Izhar, Jarkko Routtu, Frida Ben-Ami, Host age modulates within-host parasite competition, 2015, 11, 1744-9561, 20150131, 10.1098/rsbl.2015.0131 | |
4. | Tufail Malik, Abba Gumel, Elamin H. Elbasha, Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus, 2013, 18, 1553-524X, 2151, 10.3934/dcdsb.2013.18.2151 | |
5. | Robert Rowthorn, Selma Walther, The optimal treatment of an infectious disease with two strains, 2017, 74, 0303-6812, 1753, 10.1007/s00285-016-1074-5 | |
6. | Jemal Mohammed-Awel, Eric Numfor, Ruijun Zhao, Suzanne Lenhart, A new mathematical model studying imperfect vaccination: Optimal control analysis, 2021, 500, 0022247X, 125132, 10.1016/j.jmaa.2021.125132 | |
7. | Mohammad A. Safi, Abba B. Gumel, Elamin H. Elbasha, Qualitative analysis of an age-structured SEIR epidemic model with treatment, 2013, 219, 00963003, 10627, 10.1016/j.amc.2013.03.126 | |
8. | S.M. Garba, M.A. Safi, A.B. Gumel, Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza, 2013, 14, 14681218, 1384, 10.1016/j.nonrwa.2012.10.003 | |
9. | Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109 | |
10. | Roberto Cavoretto, Simona Collino, Bianca Giardino, Ezio Venturino, A two-strain ecoepidemic competition model, 2015, 8, 1874-1738, 37, 10.1007/s12080-014-0232-x | |
11. | Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati, Mathematical analysis of a SIPC age-structured model of cervical cancer, 2022, 19, 1551-0018, 6013, 10.3934/mbe.2022281 | |
12. | Chin-Lung Li, Chang-Yuan Cheng, Chun-Hsien Li, Global dynamics of two-strain epidemic model with single-strain vaccination in complex networks, 2023, 69, 14681218, 103738, 10.1016/j.nonrwa.2022.103738 | |
13. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination, 2022, 39, 22113797, 105777, 10.1016/j.rinp.2022.105777 | |
14. | Ting Cui, Peijiang Liu, Fractional transmission analysis of two strains of influenza dynamics, 2022, 40, 22113797, 105843, 10.1016/j.rinp.2022.105843 | |
15. | Shasha Gao, Mingwang Shen, Xueying Wang, Jin Wang, Maia Martcheva, Libin Rong, A multi-strain model with asymptomatic transmission: Application to COVID-19 in the US, 2023, 565, 00225193, 111468, 10.1016/j.jtbi.2023.111468 | |
16. | Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto, Time delay of the appearance of a new strain can affect vaccination behavior and disease dynamics: An evolutionary explanation, 2023, 24680427, 10.1016/j.idm.2023.06.001 | |
17. | Yucui Wu, Zhipeng Zhang, Limei Song, Chengyi Xia, Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network, 2024, 179, 09600779, 114414, 10.1016/j.chaos.2023.114414 | |
18. | 彦锦 吉, Studies with Vaccination and Asymptomatic Transmission Models, 2024, 14, 2160-7583, 424, 10.12677/pm.2024.145197 | |
19. | Mohammadi Begum Jeelani, Rahim Ud Din, Ghaliah Alhamzi, Manel Hleili, Hussam Alrabaiah, Deterministic and Stochastic Nonlinear Model for Transmission Dynamics of COVID-19 with Vaccinations Following Bayesian-Type Procedure, 2024, 12, 2227-7390, 1662, 10.3390/math12111662 | |
20. | Taqi A.M. Shatnawi, Stephane Y. Tchoumi, Herieth Rwezaura, Khalid Dib, Jean M. Tchuenche, Mo’tassem Al-arydah, A two-strain COVID-19 co-infection model with strain 1 vaccination, 2024, 26668181, 100945, 10.1016/j.padiff.2024.100945 | |
21. | Riya Das, Dhiraj Kumar Das, T K Kar, Analysis of a chronological age-structured epidemic model with a pair of optimal treatment controls, 2024, 99, 0031-8949, 125240, 10.1088/1402-4896/ad8e0b | |
22. | Xi-Chao Duan, Chenyu Zhu, Xue-Zhi Li, Eric Numfor, Maia Martcheva, Dynamics and optimal control of an SIVR immuno-epidemiological model with standard incidence, 2025, 0022247X, 129449, 10.1016/j.jmaa.2025.129449 |