Research article

Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions

  • Received: 01 July 2020 Accepted: 19 August 2020 Published: 08 September 2020
  • MSC : 26A51, 26A33, 26D15

  • In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen's type inequalities for this generalization.

    Citation: Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao. Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions[J]. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446

    Related Papers:

    [1] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [2] Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen . A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412
    [3] Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi . Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236
    [4] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [5] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [6] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [7] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241
    [8] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [9] Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-$ h $-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009
    [10] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089
  • In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen's type inequalities for this generalization.


    In non-linear programming and optimization theory, convexity plays an important role. Three important areas of non-linear analysis are monotone operator theory, convex analysis and theory of non-expansive mapping. In early 1960 these theories get emerged. Theses areas have got the attention of many researcher and many connections have been identified between them over the past few years. The notion of convexity has been expanded and generalization in numerous ways utilizing novel and modern methods in recent years. Convexity also plays vital part in fields outside mathematics such as chemistry, biology, physics and other sciences. It is always interesting to generalize the definition of convexity from different aspects because the wide range of applications. Recently the object of numerous studies have been the convexity of functions and sets. For further studies on generalization of convexity one can see [1,2,3,4,5,6,7,8,9] and references therein.

    In this paper, we introduce the concept of modified (p,h)-convex functions as generalization of convex functions. Some basic results under various conditions for the modified (p,h)-convex functions are investigated. We investigate the Jensen and Hermite-Hadamard type inequalities related to modified (p,h)-convex functions. For more on Hermite-Hadamard inequalities, we will refere to the reader [10,11,12,13,14,15,16,17,18,19,20].

    Let us see some basic definitions and generalizations of convex functions [21,22].

    Definition 1.1. (Similarly ordered function) [17] Two functions f and g are called similarly ordered (f is g-monotone) on IR, if

    f(r)f(s),g(r)g(s)0,

    for all r,sI.

    Definition 1.2. (Super (Sub) multiplicative function) [4] A function h:JR is said to be supermultiplicative if

    h(xy)h(x)h(y), (1.1)

    for all x,yJ, where JR. If inequality (1.1) is reversed, then h is said to be a submultiplicative function.

    Definition 1.3. [19] Let fL1[a,b], the Riemann-Liouville Integrals Jαa+f and Jαbf of order α>0 are defined by

    Jαa+(x)=1Γ(α)xa(xt)α1f(t)dt,x>a,

    and

    Jαb(x)=1Γ(α)bx(tx)α1f(t)dt,x<b,

    where

    Γ(α)=0eαxα1dx,

    is the Gamma function.

    Definition 1.4. (Convex function) Let IR be an interval, then a function f:IR is called convex if the following inequality holds:

    f(tx+(1t)y)tf(x)+(1t)f(y),x,yIand t[0,1].

    Definition 1.5. (p-convex set) [18] The interval I is called p-convex set if

    [trp+(1t)sp]1pI,

    for t[0,1] and for all r,sI, whereas p = nm or p = 2k+1, m = 2t+1, n = 2u+1, and t, u, kN.

    Definition 1.6. (p-convex function) [18] A function f from X to R is known as p-convex function whereas I is a p-convex set, if

    f([trp+(1t)sp]1p)tf(r)+(1t)f(s),

    for t[0,1] and r,sI.

    Definition 1.7. (Modified h-convex function) [8] Let f,h:JRR be non-negative functions. A function f:IRR is called modified h-convex function if

    f(tr+(1t)s)h(t)f(r)+(1h(t))f(s),

    for t[0,1] and r,sJ.

    Definition 1.8. ((p,h)-convex function) [9] Assume h:JRR be a non-negative and non-zero function. A function f:IR, where I is pconvex set in R is called (p,h)-convex function, if f is non-negative and

    f([trp+(1t)sp]1p)h(t)f(r)+h(1t)f(s),

    for t(0,1) and r,sI, where p>0.

    Definition 1.9. (Modified (p,h)-convex function) Assume h:JRR be a non-negative and non-zero function. A function f:IR, where I is pconvex set in R is called modified (p,h)-convex function, if f is non-negative and

    f([trp+(1t)sp]1p)h(t)f(r)+(1h(t))f(s), (1.2)

    for t(0,1) and r,sI, where p>0.

    Likewise, if the inequality sign in (1.2) is inverted, then f is known as a modified (p,h)-concave function.

    Of course, if we put in (1.2)

    1. p=1 then we get modified h-convex function;

    2. p=1 and h(t)=t then we get classical convex function.

    The paper is organized as follows: In next section, we will derive some basic properties of this generalization. However, the third, fourth and fifth sections are devoted to develop Hermite-Hadamard inequality, Jensen type inequality and Fejér type inequalities for modified (p,h)-convex functions.

    In this section, we will verify our basic properties.

    Proposition 1. Assume fi:IRR be modified (p,h)-convex function, suppose μi,,μn be positive scalers. Consider a function g from R to R so that

    ADD then g is modified (p,h)-convex function.

    Proof. We know that fi:IRR be modified (p,h)-convex functions. Then t[0,1] and r,sI, we have

    g(trp+(1t)sp)1p=ni=1μifi(trp+(1t)sp)1p,ni=1μi(h(t)fi(r)+(1h(t))fi(s)),=h(t)ni=1μifi(r)+(1h(t))ni=1μifi(s),=h(t)g(r)+(1h(t))g(s).

    The proof is completed.

    Proposition 2. Let h:JR[0,1]. If g:IR is modified (p,h)-convex function, and f:IR is convex and increasing, then fg is also modified (p,h)-convex function.

    Proof. Since g is modified (p,h)-convex function on I, we obtained

    fg([txp+(1t)yp]1p)=f(g([txp+(1t)yp]1p))f(h(t)g(x)+(1h(t))g(y)).

    Then by using the convexity of f, we obtain

    f(h(t)g(x)+(1h(t))g(y))h(t)f(g(x))+(1h(t))f(g(y))=h(t)(fg)(x)+(1h(t))fg)(y),

    which implies that fg is modified (p,h)-convex function.

    Proposition 3. Let h:JR[0,1]. Further let {fj:IR,jN} is non empty collection of modified (p,h)-convex functions such that for each xI,maxjJfj(x) exists in R, then the function f:IR defined by f(x)=maxjJfj(x) for each xI is modified (p,h)-convex.

    Proof. For any x,yI and t[0,1], we have

    f([txp+(1t)yp]1p)=maxjJfj([txp+(1t)yp]1p)maxjJ{h(t)fj(x)+(1h(t))fj(y)}h(t)maxjJfj(x)+(1h(t))maxjJfj(y)),=h(t)f(x)+(1h(t))f(y),

    which is required.

    Proposition 4. Let h:JR[0,1]. Further let g and f are two modified (p,h)-convex functions. Then the product of f and g will be a modified (p,h)-convex function if g and f are similarly ordered.

    Proof. We know that g and f are modified (p,h)-convex function. Then

    f((1t)ap1+tap2)1pg((1t)ap1+tap2)1p[(1h(t))f(r)+h(t)f(s)][(1h(t))g(r)+h(t)g(s)]=[1h(t)]2f(r)g(r)+h(t)(1h(t))f(r)g(s)+h(t)(1h(t))f(s)g(r)+[h(t)]2f(s)g(s)=(1h(t))f(r)g(r)+h(t)f(s)g(s)(1h(t))f(r)g(r)h(t)f(s)g(s)+[1h(t)]2f(r)g(r)+h(t)(1h(t))f(r)g(s)+h(t)(1h(t))f(s)g(r)+[h(t)]2f(s)g(s)=(1h(t))f(r)g(r)+h(t)f(s)g(s)h(t)(1h(t))×[f(r)g(r)+f(s)g(s)f(s)g(r)f(r)g(s)](1h(t))f(r)g(r)+h(t)f(s)g(s).

    That's the required result.

    Theorem 3.1. Assume f from I to R be modified (p,h)-convex function on the interval [a1,a2] with a1<a2 then we have

    10f(ap1+ap22)1pdt(pap2ap1)a2a1rp1f(r)drf(a1)+{f(a2)f(a1)}10h(t)dt. (3.1)

    Proof. Let up=tap1+(1t)ap2 and vp=(1t)ap1+tap2, then we get

    f(ap1+ap22)1p=f(up+vp2)1p=f((tap1+(1t)ap2)+((1t)ap1+tap2)2)1ph(12)f[(tap1+(1t)ap2)1p]+[1h(12)]f[((1t)ap1+tap2)1p].

    Integrating inequality over t[0,1], we get

    10f(ap1+ap22)1pdth(12)10f[(tap1+(1t)ap2)1p]dt+[1h(12)]×10f[((1t)ap1+tap2)1p]dth(12)pap2ap1a2a1rp1f(r)dr+pap2ap1[1h(12)]×a2a1rp1f(r)dr=pap2ap1a2a1rp1f(r)dr. (3.2)

    Now, we know that

    a2a1rp1f(r)dr=ap2ap1p10f[(tap2+(1t)ap1)1p]dtap2ap1p10[h(t)f(a2)+(1h(t))f(a1)]dt=ap2ap1p[f(a1)+{f(a2)f(a1)}10h(t)dt].

    Thus,

    pap2ap1a2a1rp1f(r)drf(a1)+{f(a2)f(a1)}10h(t)dt. (3.3)

    Combining (3.2) and (3.3), we obtain the required result.

    Remark 1. If we put p=1 in (3.1) then we gain Hermite-Hadamard type inequality for modified h-convexity, (see [8]).

    Remark 2. If we put p=1 and h(t)=t in (3.1) then we attain classical Hermite-Hadamard type inequality.

    Theorem 3.2. Assume f be modified (p,h)-convex function and fL1[a1,a2], with a1<a2. Then

    1αf(ap1+ap22)1pΓ(α)(ap2ap1)α[(1h(12))Jαa+1f(a2)+h(12)Jαa2f(a1)], (3.4)

    and

    Γ(α)(ap2ap1)α[Jαa+1f(a2)+Jαa2f(a1)]f(a1)+f(a2)α. (3.5)

    Proof. We know that f is modified (p,h)-convex function, so we have

    f(rp+sp2)1p{1h(12)}f(r)+h(12)f(s).

    Let rp=(tap1+(1t)ap2), and sp=((1t)ap1+tap2), then

    f(ap1+ap22)1p{1h(12)}f(tap1+(1t)ap2)1p+h(12)f((1t)ap1+tap2)1p.

    Multiplying above inequality by tα1, then integrating over t[0,1], we get

    1αf(ap1+ap22)1p=f(ap1+ap22)1p10tα1dt{1h(12)}10tα1f(tap1+(1t)ap2)1p+h(12)10tα1f((1t)ap1+tap2)1pdt={1h(12)}a2a1(ap2upap2ap1)α1f(u)up1pap2ap1du+h(12)a2a1(vpap1ap2ap1)α1f(v)vp1pap2ap1dv=Γ(α)(ap2ap1)α[(1h(12))Jαa+1f(a2)+h(12)Jαa2f(a1)],

    which is (3.4).

    We know that f is a modified (p,h)-convex function, then

    f(tap1+(1t)ap2)1p+f((1t)ap1+tap2)1ph(t)f(a1)+(1h(t))f(a2)+(1h(t))f(a1)+h(t)f(a2)=f(a1)+f(a2).

    Multiplying above inequality by tα1 and then integrating over t[0,1], we get

    10tα1f(tap1+(1t)ap2)1pdt+10tα1f((1t)ap1+tap2)1pdt[f(a1)+f(a2)]10tα1dt,

    from which we have

    Γ(α)(ap2aP1)α[Jαa+1f(a2)+Jαa2f(a1)]f(a1)+f(a2)α.

    The result is completed.

    Remark 3. If p=1 in (3.4) and (3.5) then we will get the result for modified h-convex function, (see [8]).

    The following expression is useful to prove Jensen type inequality for modified (p,h)-convex functions.

    Assume f from I to R be an modified (p,h)-convex function. For r1,r2I and α1+α2=1, we have f(α1rp1+α2rp2)1ph(α1)f(r1)+(1h(α1))f(r2).

    Also when m>2 for r1,r2,...,rmI, mi=1αi=1 and Ti=ij=1αj, we have

    f(mi=1αirpi)1p=f(Tm1m1i=1αiTm1rpi+αmrpm)1ph(Tm1)f(m1i=1αiTm1rpi)1p+(1h(Tm1))f(rm). (4.1)

    Theorem 4.1. Assume f from I to R be an modified (p,h)-convex function and h be non-negative super-multiplicative function. If Ti=ij=1αj for i=1,...,m, so that Tm=1 where mN, then

    f(mi=1αirpi)1pf(rm)+m1i=1h(Ti){f(ri)f(ri+1)}. (4.2)

    Proof. By using (4.1) it follows that:

    f(mi=1αirpi)1ph(Tm1)f(m1i=1αiTm1rpi)1p+(1h(Tm1))f(rm)=(1h(Tm1))f(rm)+h(Tm1)f[Tm2Tm1([m2i=1αiTm2rpi]1p)p+αm1Tm1rpm1]1p,(1h(Tm1))f(rm)+h(Tm1)[h(Tm2Tm1)f(m2i=1αiTm2rpi)1p+(1h(Tm2Tm1))f(rm1)],

    using the fact that h is supermultiplicative function, we have

    (1h(Tm1))f(rm)+h(Tm2)f(m2i=1αiTm2rpi)1p+h(Tm1)(1h(Tm2Tm1))f(rm1)=f(rm)+h(Tm1)f(rm1)h(Tm1)f(rm)h(Tm2)f(rm1)+h(Tm2)f(m2i=1αiTm2rpi)1p,=f(rm)+h(Tm1)[f(rm1)f(rm)]h(Tm2)f(rm1)+h(Tm2)f([Tm3Tm2([m3i=1αiTm3rpi]1p)p+αm2Tm2rpm2]1p),

    from (4.1), we get

    f(rm)+h(Tm1)[f(rm1)f(rm)]h(Tm2)f(rm1)+h(Tm2)[h(Tm3Tm2)f(m3i=1αiTm3rpi)1p+(1h(Tm3Tm2))f(rm2)],

    using the fact that h is supermultiplicative function,

    f(rm)+h(Tm1)[f(rm1)f(rm)]h(Tm2)f(rm1)+h(Tm3)f(m3i=1αiTm3rpi)1p+h(Tm2)f(rm2)h(Tm3)f(rm2)=f(rm)+h(Tm1)[f(rm1)f(rm)]+h(Tm2)[f(rm2)f(rm1)]h(Tm3)f(rm2)+h(Tm3)f(m3i=1αiTm3rpi)1p...f(rm)+h(Tm1)[f(rm1)f(rm)]+h(Tm2)[f(rm2)f(rm1)]+h(Tm3)[f(rm3)f(rm2)]+...+h(T2)[f(r2)f(r3)]+h(T1)[f(r1)f(r2)]=f(rm)+m1i=1h(Ti)[f(ri)f(ri+1)].

    The result is completed.

    Remark 4. If we choose p=1 and h(t)=t in (4.2) then we have classical Jensen type inequality.

    Theorem 5.1. Assume that g and f are functions such that f is modified (p,h1)-convex function and g is modified (p,h2)-convex function, fgL1([v1,v2]) and h1h2L1([0,1]) along v1,v2I and v1<v2. Then we get

    pvp2vp1v2v1rp1f(r)g(r)drf(v2)g(v2)+l(v1,v2)10h1(t)h2(t)dt+m(v1,v2)10h2(t)dt+n(v1,v2)10h1(t)dt, (5.1)

    where

    l(v1,v2)=[f(v1)g(v1)f(v2)g(v1)f(v1)g(v2)+f(v2)g(v2)];m(v1,v2)=[f(v2)g(v1)f(v2)g(v2)];n(v1,v2)=[f(v1)g(v2)f(v2)g(v2)].

    Proof. We know that f be modified (p,h1)-convex function and g be modified (p,h2)-convex function, we have

    f([tvp1+(1t)vp2]1p)h1(t)f(v1)+(1h1(t))f(v2);g([tvp1+(1t)vp2]1p)h2(t)g(v1)+(1h2(t))g(v2),

    for each t[0,1]. Because f and g are non-negative, we attain the inequality

    f([tvp1+(1t)vp2]1p)g([tvp1+(1t)vp2]1p)h1(t)h2(t)f(v1)g(v1)+h1(t)(1h2(t))f(v1)g(v2)+(1h1(t))h2(t)f(v2)g(v1)+(1h1(t))(1h2(t))f(v2)g(v2),

    integrating above inequality over (0, 1), we attain the inequality

    10f([tvp1+(1t)vp2]1p)g([tvp1+(1t)vp2]1p)dtf(v1)g(v1)10h1(t)h2(t)dt+f(v1)g(v2)10h1(t)(1h2(t))dt+f(v2)g(v1)10(1h1(t))h2(t))dt+f(v2)g(v2)10(1h1(t))(1h2(t))dt.

    By setting r=[tvp1+(1t)vp2]1p, we get

    pvp2vp1v2v1rp1f(r)g(r)drf(v2)g(v2)+[f(v1)g(v1)f(v2)g(v1)f(v1)g(v2)+f(v2)g(v2)]10h1(t)h2(t)dt+[f(v2)g(v1)f(v2)g(v2)]10h2(t)dt+[f(v1)g(v2)f(v2)g(v2)]10h1(t)dtf(v2)g(v2)+l(v1,v2)10h1(t)h2(t)dt+m(v1,v2)10h2(t)dt+n(v1,v2)10h1(t)dt.

    Remark 5. If we take p=1 and h(t)=t in (5.1) then we will get the result for convex function.

    Convexity play an important rule in applied sciences and mathematics. In this paper, we introduced modified (p,h)-convex functions which unify p-convexity with modified h-convexity. We investigated the fundamental properties of modified (p,h)-convexity and gave the Hermite-Hadamard, Fejér and Jensen's type inequalities.

    1. Research Project on Basic Scientific Research Operating Costs of Higher Education Institutions in Heilongjiang Province (1353MSYYB017), Mudanjiang City 2018 Guidance Science and Technology Plan Project Technical Attack Project of Mudanjiang City (G2018q2465), Nature Science Fund of Daqing Normal University (19ZR04).

    2. The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

    The authors declare that no competing interests exist.



    [1] G. Toader, Some generalization of the convexity, Proc. Colloqu. Approx. Optim. Cluj-Napoca., (1984), 329-338,
    [2] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, USA, 1993.
    [3] G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248.
    [4] Y. C. Kwun, M. S. Saleem, M. Ghafoor, et al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4
    [5] I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043
    [6] W. Iqbal, K. M. Awan, A. U. Rehman, et al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane, Open J. Math. Sci., 3 (2019), 398-403. doi: 10.30538/oms2019.0082
    [7] S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034
    [8] M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617.
    [9] Y. M. Chu, M. A. Khan, T. Ali, et al. Inequalities for a-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
    [10] C. Y. Jung, M. S. Saleem, W. Nazeer, et al. Unification of generalized and p-convexity, J. Funct. Spaces, 2020 (2020), 1-6.
    [11] D. Ucar, V. F. Hatipoglu, A. Akincali, Fractional integral inequalities on time scales, Open J. Math. Sci., 2 (2018), 361-370.
    [12] S. Zhao, S. I. Butt, W. Nazeer, et al. Some Hermite-Jensen-Mercer type inequalities for k-Caputofractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [13] H. Kadakal, M. Kadakal, I. Iscan, New type integral inequalities for three times differentiable preinvex and prequasiinvex functions, Open J. Math. Anal., 2 (2018), 33-46.
    [14] T. Zhao, M. S. Saleem, W. Nazeer, et al. On generalized strongly modified h-convexfunctions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [15] S. Kermausuor, Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications, Open J. Math. Sci., 3 (2019), 74-83.
    [16] Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
    [17] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991.
    [18] K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130-133, .
    [19] E. M. Wright, An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622,
    [20] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-Type ineualities for h-convex functions, J. Math. Inequal., 2 (2008), 335-341.
    [21] H. Bai, M. S. Saleem, W. Nazeer, et al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1-6.
    [22] X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010 (2010), 1-11.
  • This article has been cited by:

    1. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    2. Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y
    3. Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined (α,hm)-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0
    4. Praphull CHHABRA, Inequalities for 3-convex functions and applications, 2022, 11, 1304-7981, 1, 10.54187/jnrs.978216
    5. Daniel Breaz, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Gauhar Rahman, Büşra Yergöz, New Hadamard Type Inequalities for Modified h-Convex Functions, 2023, 7, 2504-3110, 216, 10.3390/fractalfract7030216
    6. Ammara Nosheen, Khuram Ali Khan, Mudassir Hussain Bukhari, Michael Kikomba Kahungu, A. F. Aljohani, Kavikumar Jacob, On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions, 2024, 19, 1932-6203, e0311386, 10.1371/journal.pone.0311386
    7. Mujahid Abbas, Waqar Afzal, Thongchai Botmart, Ahmed M. Galal, Jensen, Ostrowski and Hermite-Hadamard type inequalities for h-convex stochastic processes by means of center-radius order relation, 2023, 8, 2473-6988, 16013, 10.3934/math.2023817
    8. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953
    9. Attazar Bakht, Matloob Anwar, Ostrowski and Hermite-Hadamard type inequalities via (αs) exponential type convex functions with applications, 2024, 9, 2473-6988, 28130, 10.3934/math.20241364
    10. Waqar Afzal, Najla Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Some novel Kulisch-Miranker type inclusions for a generalized class of Godunova-Levin stochastic processes, 2024, 9, 2473-6988, 5122, 10.3934/math.2024249
    11. Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465
    12. MUHAMMAD KASHIF, GHULAM FARID, MUHAMMAD IMRAN, SADIA KOUSAR, RT-CONVEX FUNCTIONS AND THEIR APPLICATIONS, 2023, 24, 2068-3049, 867, 10.46939/J.Sci.Arts-23.4-a05
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4500) PDF downloads(216) Cited by(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog